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Abstract

Type 1 diabetes is an autoimmune condition characterised by a pancreatic insulin secretion deficit, 

resulting in high blood glucose concentrations, which can lead to micro- and macrovascular 

complications. Type 1 diabetes also leads to impaired glucagon production by the pancreatic α-

cells, which acts as a counter-regulatory hormone to insulin.

A closed-loop system for automatic insulin and glucagon delivery, also referred to as an artificial 

pancreas, has the potential to reduce the self-management burden of type 1 diabetes and reduce the 

risk of hypo- and hyperglycemia. To date, bihormonal closed-loop systems for glucagon and 

insulin delivery have been based on two independent controllers. However, in physiology, the 

secretion of insulin and glucagon in the body is closely interconnected by paracrine and endocrine 

associations. In this work, we present a novel biologically-inspired glucose control strategy that 

accounts for such coordination.

An in-silico study using an FDA-accepted type 1 simulator was performed to evaluate the 

proposed coordinated control strategy compared to its non-coordinated counterpart. The proposed 

coordinated strategy achieves a reduction of hyperglycemia without increasing hypoglycemia, 

when compared to its non-coordinated counterpart.

1 Introduction

Glucose metabolism in humans is tightly controlled by several feedback mechanisms that 

provide high robustness to prevent undesirable fluctuations (i.e. hyperglycemia or 

hypoglycemia). In these feedback mechanisms, many interconnected biological signals such 

as different hormones (e.g. insulin, glucagon) and neurotransmitters are involved 

[Wasserman 2009].

In addition to insulin and glucagon, which are the most important hormones that regulate 

glucose concentrations, there are many other substances that have to be taken into account. 

The primary glycohormones are insulin, glucagon, amylin and incretin hormones (GLP-1 

and GIP), which are secreted by the pancreas and the gut. Moreover, both the Central 

Nervous System and the Autonomic Nervous System (sympathetic and parasympathetic) are 
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implied directly and indirectly in the regulation mechanisms of glucose (Figure 1). However, 

the central axis of the regulation is the interaction between insulin secreting pancreatic β-

cells and the glucagon secreting pancreatic α-cells.

Diabetes mellitus is a chronic condition that occurs either when the pancreatic β-cells can no 

longer produce sufficient insulin due to autoimmune destruction (type 1), or when there is a 

decreased cellular response to circulating insulin (type 2). The resulting absolute or relative 

deficiency of insulin causes hyperglycaemia (high blood glucose), which can lead to micro- 

and macro vascular complications including blindness, kidney failure, limb amputation, and 

cardiovascular disease. Type 1 diabetes mellitus (T1DM) may also lead to impaired 

glucagon production by the α-cells, which is the primary counter-regulatory hormone to 

insulin.

Current therapy for T1DM consists of measuring blood glucose levels by means of a glucose 

meter and injecting multiple daily doses of insulin to keeps glucose levels in a safe range. 

However, many people with T1DM using this therapy do not achieve the recommended 

glycemic targets [DCCT 1991].

One solution to reduce the burden of self-management of T1DM, as well as to significantly 

improve glycemic control, is a closed-loop system for automatic insulin delivery [Kropff 

2016], also referred to as an artificial pancreas.

The most common configuration of artificial pancreas consists of a subcutaneous continuous 

glucose sensor which measures interstitial glucose levels every five minutes and a 

subcutaneous insulin pump that delivers insulin at a rate computed by a closed-loop 

controller [Doyle 2014] (Figure 2).

Due to the delays in subcutaneous insulin absorption, most of the current artificial pancreas 

systems include a feed-forward control strategy consisting of a pre-meal insulin bolus to 

compensate for perturbations caused by the meals as well as an insulin feedback mechanism 

to take into account the insulin still active in the body (i.e. insulin-on-board) [Doyle 2014].

Another configuration of artificial pancreas consists of a bihormonal closed-loop system 

incorporating insulin and glucagon delivery [Russell 2014]. This system has the advantage 

of accounting for the counter-regulatory action to insulin, which might be very useful in 

certain situations such as following exercise [Taleb 2016]. However, the need for a more 

complex system incorporating two infusion systems, and the lack of a commercial stable 

glucagon solution, makes this control strategy potentially more challenging. Despite these 

challenges, there are at least three companies that are currently working on a stable glucagon 

solutions (Zealand, Xeris, and Adocia) which have reported to be in the latest stage of 

development. In addition, there are two companies developing prototypes of dual-chamber 

bihormonal artificial pancreas (Beta-bionic and Inreda) which plan to have regulatory 

submissions in 2017 [Ginsberg 2017].

To date, most bihormonal closed-loop systems for glucagon and insulin delivery have been 

based on two independent controllers (e.g. MPC+PD [Russell 2014], PID+PID [Jacobs 

2014] [Taleb 2016]) (Figure 3). However, it is well known that the secretion of these two 
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hormones in the body is closely interconnected through potentiation of insulin secretion by 

plasma glucagon levels and a suppression of glucagon secretion by plasma insulin levels 

[Wasserman 2009].

In this work, we present a novel biologically inspired bihormonal closed-loop control 

strategy that accounts for such coordination.

2 Methods

Although the inter-relation between insulin and glucagon secretion is known to be highly 

complex [Wasserman 2009], this work focuses on accounting for the potentiation effect of 

insulin secretion by plasma glucagon levels. The rationale behind considering such 

interaction in a closed-loop system is to anticipate the glucose increase after glucagon 

secretion and therefore minimize a rebound in hyperglycemia.

To account for such effect, the insulin delivered due to the potentiation effect by plasma 

glucagon levels is proportional to the delivered glucagon. More specifically, glucagon is 

integrated from the time it is started being delivered to the time its delivery stops. Then, the 

resulting glucagon dose is multiplied by a correction factor (KC) (Figure 4). This can be 

expressed as

InsulinGN(t) = KC∫
t0

tn
Glucagon(τ)dτ, (1)

where InsulinGN is the insulin delivered due to the glucagon potentiation, Glucagon is the 

glucagon delivered by the glucagon controller, t0 is the time glucagon starts being delivered 

to prevent hypoglycemia, tn is the time glucagon stops and KC is a correction factor defined 

as

KC = K GSF
ISF , (2)

where ISF is the insulin sensitivity factor, GSF is the glucagon sensitivity factor and K is a 

tuning gain. Note that, unlike the ISF, the glucagon sensitivity factor is not a commonly used 

parameter in diabetes management practice. However, this parameter can be obtained in the 

same way ISF is obtained, i.e. measuring the glucose increase in fasting conditions after the 

administration of a standardized glucose dose.

Then, the total insulin sent to the pump is expressed as

Insulin(t) = Insulin0(t) + InsulinGN(t) − InsulinFB(t), (3)

where Insulin0 is the insulin proposed by the controller (e.g. PID) and InsulinFB is the 

insulin feedback term implemented in many of existing controllers [Doyle 2014].
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For evaluation purposes, an updated version of Imperial College Artificial Pancreas (ICAP), 

also referred to as Bio-inspired Artificial Pancreas (BiAP), controller was employed for 

insulin delivery. For the sake of simplicity, the existing controller in the ICAP was selected 

for glucagon delivery. It is important to note that proposed coordination strategy is 

independent of the employed controllers and can be generalized for any artificial pancreas 

system.

The Imperial College Artificial Pancreas Controller

The Imperial College Artificial Pancreas (ICAP) controller, also referred to as Bio-inspired 

Artificial Pancreas (BiAP), has been previously in silico [Herrero 2012] and clinically 

validated [Reddy 2014, Reddy 2015]. ICAP uses a pancreatic insulin secretion model 

[Pedersen 2010] as a core component to emulate the behavior of a healthy β-cell. In this 

work, such model has been updated with a more recent one [Riz 2014] that was proven to 

provide better performance in simulation studies, as well as to reduce the computational 

complexity of the controller.

Similar to most of the existing glucose controllers, ICAP incorporates an insulin feedback 

term [Doyle 2014] to avoid insulin stacking by compensating for delays associated with 

subcutaneous insulin delivery, and a feedforward strategy consisting of a pre-meal insulin 

bolus calculator [Doyle 2014] to tackle the perturbation introduced by meal intake.

The employed glucagon controller uses the same secretion model employed in the insulin 

controller and a glucagon feedback term to avoid glucagon stacking associated with the 

subcutaneous delivery. Figure 5 shows a schematic diagram of the proposed controller.

The insulin controller is described by the equation

Insulin(t) = SR(t) + SRb(t) + Bolus(t) − KyI(t), (4)

where SR is the pancreatic insulin secretion above basal secretion; SRb is the basal insulin 

secretion, which is set to the subject’s basal insulin profile; and Bolus is a pre-meal insulin 

bolus calculated as

Bolus(t) = Carb(t)
ICR +

Glucose(t) − Gsp
ISF , (5)

where Carbs is the amount of ingested carbohydrates, ICR is the patient specific insulin to 

carbohydrate ratio, Gsp is the glucose set-point and ISF is the patient specific insulin 

sensitivity factor.

The insulin feedback term KyI is proportional (Ky) to the plasma insulin estimation I 
computed using the insulin pharmacokinetic [Hovorka 2004] model
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İ(t) = − ke I(t) +
S2(t)

V I tmaxI
, (6)

Ṡ1(t) = u(t) −
S1(t)
tmaxI

, (7)

Ṡ2 =
S1(t) − S2(t)

tmaxI
, (8)

where, ke is the first order decay rate for insulin in plasma, u subcutaneous insulin infusion 

rate, VI is the distribution volume of plasma insulin, tmaxI is the time-to-maximum insulin 

absorption, S1 and S2 are a two-compartment chain representing absorption of 

subcutaneously administered insulin.

As described in [Riz 2014], the pancreatic insulin secretion (SR) above basal secretion (SRb) 

is assumed proportional (m) to the amount X of readily releasable insulin in the beta-cells

SR(t) = m X(t) . (9)

The change in the insulin amount in the ready releasable pool (RRP) X results from the 

balance between the insulin secretion rate, the provision Y of insulin refilling the readily 

releasable pool, and recruitment of readily releasable insulin XD

dX(t)
dt = − mX(t) + Y(t) + XD(t), X(0) = 0, (10)

where XD is responsible for the first phase of secretion and is assumed to be proportional to 

the rate of increase of glucose via the constant parameter KD and expressed as

XD(t) = KD
dG(t)

dt , i f dG(t)
dt > 0;

0, otherwise
(11)

In this work, the conditional statement in Equation (11) regarding the sign of the glucose 

derivative was eliminated. The reason for this modification is that delays in insulin 

absorption and glucose sensing due to the subcutaneous route make reducing insulin 

delivery when glucose is dropping desirable in order to minimize hypoglycemia.
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The provision Y generates the slower second phase of insulin secretion and is controlled by 

glucose according to the equation

dY(t)
dt = − α Y(t) − β(G(t) − Gb) , Y(0) = 0, (12)

where Gb represents the basal value of glucose, and α and β are parameters.

Parameter β is employed as a personalized tunable gain proportional to the subject’s insulin 

sensitivity factor (ISF) used to overcome inter-subject variability.

To minimize hypoglycemia, a simple low-glucose insulin suspend (LGS) mechanism was 

incorporated which reduces basal insulin delivery (SRb) to 50% if the glucose falls below a 

predefined threshold (100 mg/dl) and suspends the insulin delivery if it falls below a second 

lower predefined threshold (80mg/dl).

The employed glucagon controller uses the same secretion and pharmacokinetic model 

structure used in the insulin controller, but with different parameters (see Table 1). The 

glucagon controller is described by the equation

Glucagon(t) = SR′(t) − Ky′N(t), (13)

where SR’ is the pancreatic glucagon secretion above basal secretion and Ky′N is 

proportional (Ky) to the plasma glucagon estimation (N) computed using the same 

pharmacokinetic model used for insulin absorption [Herrero 2013].

Since delays in glucagon absorption are significantly smaller than delays in insulin 

absorption, Equation (11) was kept as in the original model proposed by Riz et al. [Riz 

2014]. For simulation purposes, all the differential equations of the model were discretized 

using Euler method with an integration step of one minute.

Controllers tuning

Controller parameters were fixed to the same value except parameters β (β′ for the 

glucagon controller), which was used to personalize the controller to each individual (see 

Table 1). These two parameters were then correlated to the insulin sensitivity factor (ISF) 

and the glucagon sensitivity factor (GSF) of the subject in order to provide an easy way to 

tune the controller. With such configuration, both single-hormone controllers (i.e. insulin 

and glucagon controllers) were manually tuned in a non-coordinated way to achieve the best 

possible glycemic outcome over one-week scenario. In particular, two standard glycemic 

metrics were employed for such purpose; maximizing the percentage time in target range 

[70,180] mg/dl and minimizing the percentage time below target 70 mg/dL [Maahs 2016].

Figure 5 shows a graphical representation of the correlation GSF vs. β′ (β′=0.046*GSF, 

R2=0.85).
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It is important to note that the tuning of the insulin and glucagon controllers was exactly the 

same for both the non-coordinated and coordinated strategies.

Table 1 shows the parameters for the insulin and glucagon controllers. The parameters for 

the insulin absorption model were taken from [Hovorka 2004]. The parameters for the 

plasma absorption models with plasma glucagon absorption model were obtained by 

identifying the pharmacokinetic model using mean population subject from the UVa-Padova 

T1DM simulator (v3.2). Finally, the coordination gain was set to K = 2.5.

In Silico Evaluation under intra-day variability

The UVa-Padova T1DM simulator (v3.2) [Kovatchev 2009] was used to evaluate the 

proposed coordinated bihormonal closed-loop control strategy. A virtual cohort of 10 adults, 

10 adolescents and 10 children, plus their corresponding average subject, were used for this 

purpose.

The chosen basal insulin infusion rates were the ones provided by the simulator. The 

selected CGM and insulin pump models were the Dexcom G4 and Deltec Cozmo.

Intra-day variability was introduced to the simulator by modifying some of the parameters of 

the model described in [Dalla Man 2007]. In particular, meal variability was emulated by 

introducing meal-size variability (CV=10%), meal-time variability (STD=20) and 

uncertainty in the carbohydrate estimation (uniform distribution between -30% and +40%) 

[Brazeau 2013]. Variability of meal absorption rate (kabs) and carbohydrate bioavailability 

(f) were considered to be ±30% and ±10% respectively. To emulate intra-day meal 

variability, the 11 meals corresponding to each cohort were randomly assigned at each meal 

intake. Intra-subject variability in insulin absorption model parameter (kd, ka1, ka2) was 

assumed ±30% [Haidar 2013]. Insulin sensitivity parameters (Vmx, Kp3) were assumed to 

vary along the day following the sinusoidal pattern

p(t) = p0 + 0.3 ⋅ p0sin 2 π
24 ⋅ 60 t + 2π ⋅ RND, (14)

where p(t) is the corresponding time varying parameter (i.e. Vmx or kp3); p0 is the default 

parameter value in the simulator; and RND is a randomly uniformly generated number 

between 0 and 1. The selected daily pattern of carbohydrate doses was 7am (50g), 1pm 

(80g), 5pm (30g), 8pm (60g).

Physical exercise was simulated using the model introduced by Schiavon et al. [Schiavon 

2013]. Although not being very realistic for most people with type 1 diabetes, a daily 

exercise at 15:00h (STD=20min), intensity of 50% VO2max (CV=10) and a duration of 60 

minutes (CV=10) was employed for this purpose.

The following standard glycemic control metrics [Maahs 2016] were selected for 

comparison purposes: mean blood glucose (BG); percentage time in target ranges [70,140] 

and [70,180] mg/dl (%inT); percentage time below target (%<70); percentage time above 

targets (%>140 and %>180); standard deviation (STD); risk index (RI); low blood glycemic 
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index (LBGI); high blood glycemic index (HBGI); daily average of insulin delivered in units 

of insulin (INSULIN); and daily average of glucagon delivered in mg (GLUCAGON). A 

two-week scenario was used to compare the closed-loop insulin-only strategy (IO), the 

coordinated bihormonal controller (CO) and its non-coordinated counterpart (NC).

3 Results

Table 2, Table 3 and Table 4 show, respectively, the results corresponding to the 10 adults, 

10 adolescents, and 10 children, plus the corresponding average subject, for the closed-loop 

insulin-only strategy (IO), the non-coordinated bihormonal control (NC), and its coordinated 

counterpart (CO). Figure 6, Figure 7 and Figure 8 show the mean plasma glucose, insulin 

delivery and glucagon delivery corresponding to the three evaluated strategies, for the adult, 

adolescent and children cohort, respectively. Note that only one week of data has been 

displayed in order to enhance visualization.

When compared against the insulin-only strategy, both bihormonal strategies significantly 

reduce hypoglycemia in all cohorts. While the non-coordinated strategy slightly increases 

hyperglycemia, the coordinated strategy decreases it in the adult cohort and remains 

unchanged in the adolescent and children cohorts. When comparing the coordinated 

bihormonal control strategy against its uncoordinated counterpart, all the evaluated glycemic 

metrics show a statistically significant improvement, or remain unchanged, apart from the 

low blood glycemic index (LBGI), which slightly increases in all cohorts. Note that the 

improvements in the children cohort are more moderate than the ones in the adult and 

adolescent cohorts.

4 Conclusion

The proposed coordinated bihormonal control strategy, which accounts for the potentiation 

effect of insulin secretion by plasma glucagon levels, achieves a reduction in hyperglycemia 

without increasing hypoglycemia, when compared against an uncoordinated strategy. The 

improvement in glycemic control is achieved at expenses of delivering slightly more insulin 

and glucagon delivery, but this is not clinically significant.

The improvements seen in time in target and time above target suggest that the coordinated 

approach minimises rebound hyperglycaemia from glucagon administration while the 

similarities in time in hypoglycemia reflect that the glucagon controller is similarly effective 

in both arms of the in silico study.

It is important to highlight the simplicity of the tuning procedure, which only requires the 

insulin sensitivity factor and the glucagon sensitivity factor. Although the glucagon 

sensitivity is not currently used in diabetes management, it should become commonplace 

once the utilization of glucagon within artificial pancreas becomes standard.

The potentiation effect of insulin secretion by plasma glucagon levels is only one of 

coordination effects between insulin and glucagon secretion. The suppression of glucagon 

secretion by plasma insulin levels is another coordination which could be studied within a 
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bihormonal controller. However, its benefit in an artificial pancreas using the subcutaneous 

route for delivery is less obvious.

Despite the significant uncertainty and variability used to carry out the in silico testing, a 

clinical trial is required to validate the proposed technique.
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Figure 1. 
Global Hormone and Neurotransmitter interactions. ANS (Autonomic Nervous System), 

Ach (Acetylcholine), NA (Noradrenaline). Arrows indicate a potentiation effect and circles a 

suppressive effect.
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Figure 2. 
Block diagram of a closed-loop system for glucose control incorporating a meal bolus 

calculator.
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Figure 3. 
Graphical representation of the bihormonal control strategy where the two controllers are 

completely independent.
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Figure 4. 
Graphical representation of the bihormonal control strategy incorporating the potentiation 

effect of insulin secretion by plasma glucagon levels.
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Figure 5. 
Block diagram of the non-coordinated ICAP controller, where inputs are the amount of 

ingested carbohydrates, the glucose concentration from a continuous glucose sensor, and the 

basal insulin rate for a given subject, and the output in the insulin dose to be delivered by the 

insulin pump.
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Figure 5. 
Graphical representation of the correlation GSF vs. β′
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Figure 6. 
Upper graph: average plasma glucose (adult cohort) for closed-loop insulin-only therapy 

(red solid line) vs. un-coordinated bihormonal controller (blue solid line) vs. its coordinated 

counterpart (green dashed line) (one week). Vertical bars represent the meals. Middle graph: 

corresponding insulin delivery without considering the meal boluses. Lower graph: 

corresponding glucagon delivery.
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Figure 7. 
Upper graph: average plasma glucose (adolescent cohort) for closed-loop insulin-only 

therapy (red solid line) vs. un-coordinated bihormonal controller (blue solid line) vs. its 

coordinated counterpart (green dashed line) (one week). Vertical bars represent the meals. 

Middle graph: corresponding insulin delivery without considering the meal boluses. Lower 

graph: corresponding glucagon delivery.
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Figure 8. 
Upper graph: average plasma glucose (children cohort) for closed-loop insulin-only therapy 

(red solid line) vs. un-coordinated bihormonal controller (blue solid line) vs. its coordinated 

counterpart (green dashed line) (one week). Vertical bars represent the meals. Middle graph: 

corresponding insulin delivery without considering the meal boluses. Lower graph: 

corresponding glucagon delivery.
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Table 1

Tuning parameters employed for the insulin and glucagon controllers.

Parameter Insulin controller Glucagon controller

m 0.5 0.5

α m m

β (U per mg/dl and mg per mg/dl) 0.0215/ISF 0.0039/GSF (adults)
0.005/GSF (adolescents and children)

KD (min) β·45 β·30

Gb (mg/dl) 117 117

Ky 50 10

ke (min-1) 0.138 0.1

tmax (min) 54 30

V (dl) 12 12
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Table 2

Results corresponding to 10 adults plus the average adult subject. Symbol “*” indicates statistical significance 

(p<0.01) with respect to the closed-loop insulin only therapy (IO) and symbol “‡” indicates statistical 

significance (p<0.01) with respect to the non-coordinated hormonal control (NC). A double symbol (e.g. “‡‡”) 

indicated statistical significance of p<0.05.

Glucose
mg/dl

%IN [70,140]
mg/dl

%<70
mg/dl

%>140
mg/dl

%IN [70,180]
mg/dl

%>180
mg/dl

IO 131.8±5.9 58.7±6.3 5.3±2.1 35.8±5.3 81.1±6.0 13.5±5.5

NC 136.03±6.8* 61.37±6.5* 1.53±1.0* 37.09±6.4 84.53±5.7* 13.93±5.8

CO 130.0±5.9*‡ 66.75±5.8*‡ 1.79±1.5* 31.4±6.0*‡ 88.1±4.7*‡ 10.0±4.9*‡

STD
mg/dl

RI LBGI HBGI INSULIN
U per day

GLUCAGON
mg per day

IO 42.7±7.3 4.6±1.3 1.6±0.7 2.9±1.0 41.2±9.2 0±0

NC 38.10±8.0* 3.48±1.12* 0.45±0.15* 3.03±1.11 43.61±9.92* 0.64±0.52*

CO 35.44±6.89*‡ 2.92±0.84*‡ 0.56±0.24*‡‡ 2.35±0.85*‡ 44.99±10.25*‡ 0.70±0.53*‡
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Table 3

Results corresponding to 10 adolescents plus the average adolescent. Symbol “*” indicates statistical 

significance (p<0.01) with respect to the closed-loop insulin only therapy (IO) and symbol “‡” indicates 

statistical significance (p<0.01) with respect to the non-coordinated hormonal control (NC). A double symbol 

(e.g. “‡‡”) indicated statistical significance of p<0.05.

Glucose
mg/dl

%IN [70,140]
mg/dl

%<70
mg/dl

%>140
mg/dl

%IN [70,180]
mg/dl

%>180
mg/dl

IO 150.4±13.3 46.4±7.3 5.0±4.1 48.5±5.8 67.9±9.0 27.0±8.1

NC 158.4±10.2*   45.3±4.3  1.2±0.9*  53.3±4.1* 69.4±6.3 29.2±6.6*

CO 150.9±12.4‡  49.7±5.1‡  1.9±1.8*  48.3±5.9‡ 73.1±7.5*‡ 24.9±8.3‡

Sth
mg/dl

RI LBGI HBGI INSULIN
U per day

GLUCAGON
mg per day

IO 59.7±10.0 8.2±3.1 2.0±2.4 6.1±2.2 31.1±7.3 0±0

NC 56.7±9.1 7.1±1.8   0.4±0.2*  6.6±1.9*  33.2±7.9* 0.50±0.35*

CO 53.2±9.8**‡ 6.2±1.8**‡ 0.6±0.5*‡‡  5.6±2.1‡ 35.0±8.3*‡ 0.6±0.55*‡
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Table 4

Results corresponding to 10 children plus the average children. Symbol “*” indicates statistical significance 

(p<0.01) with respect to the closed-loop insulin only therapy (IO) and symbol “‡” indicates statistical 

significance (p<0.01) with respect to the non-coordinated hormonal control (NC). A double symbol (e.g. “‡‡”) 

indicated statistical significance of p<0.05.

Glucose
mg/dl

%IN [70,140]
mg/dl

%<70
mg/dl

%>140
mg/dl

%IN [70,180]
mg/dl

%>180
mg/dl

IO 163.3±8.9 44.6±6.39 3.12±2.61 52.2±7.66   65.3±5.39 31.5±6.40

NC 166.5±8.7*  45.0±6.6 0.78±0.78*  54.1±7.1* 66.8±5.86* 32.3±6.26

CO 162.4±8.7*‡ 47.7±6.7*‡ 1.16±1.05*  51.0±7.2‡ 68.18±5.38* 30.6±5.76‡

STD
mg/dl

RI LBGI HBGI INSULIN
U per day

GLUCAGON
mg per day

IO 68.9±6.32 8.92±1.34 0.94±0.78 7.98±1.43 17.45±3.78 0±0

NC 65.3±6.3* 8.31±1.45*  0.25±0.15*  8.05±1.50  17.9±3.79* 0.44±0.64*

CO 65.3±7.4* 7.98±1.44*‡ 0.38±0.24*‡ 7.59±1.46*‡ 18.3±3.76*‡ 0.56±0.78*‡
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