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a database of optimal integration 
times for Lagrangian studies of 
atmospheric moisture sources and 
sinks
Raquel Nieto   & Luis Gimeno

Lagrangian methods for estimating sources and sinks of water vapour have increased in importance 
in recent years, with hundreds of publications over the past decade on this topic. Results derived from 
these approaches are, however, very sensitive to the integration time of the trajectories used in the 
analysis. the most widely used integration time is that derived from the average residence time of 
water vapour in the atmosphere, normally considered to be around 10 days. In this article, we propose 
an approach to estimate the optimal integration time for these Lagrangian methods for estimating 
sources and sinks, by comparing estimates of precipitation from the Lagrangian approach using 
different times of integration with results obtained from three state-of-the-art reanalyses, thereby 
providing a database of optimal integration times per month, for a spatial resolution of 0.25° × 0.25° in 
latitude and longitude.

Background & Summary
In any understanding of the global hydrological cycle, one of the key variables is the residence time of water 
vapour in the atmosphere. Studies based on dividing the atmospheric reservoir by the incoming or outgoing flux 
typically estimate the residence time at around 8–10 days1. This quantity clearly has significant variability in space 
and time, with marked seasonality and sharp variations with latitude and orography, and is also very dependent 
on weather conditions, being very short when local or mesoscale meteorological systems occur, and much longer 
in the upper troposphere where few precipitating systems are found. By taking W/P or W/E (where W is the 
water in the local atmospheric column, P is precipitation and E evaporation) Trenberth2 found residence times of 
approximately 9 days. Using moisture tracking models (semi-Lagrangian3 or Eulerian4), residence times ranged 
between approximately 7 days (spring) and 9 days (summer), values very close to those found in classic studies. 
Using age tracers and a global circulation model, Numaguti5 also found residence times of around 10 days, and 
this study has been widely cited in the scientific literature since then. For a more complete review of the different 
methods and results obtained, the reader is referred to the introduction of van der Ent and Tuinenburg6, but suf-
fice it to say that residence time has not generally been considered a controversial variable in scientific terms until 
now, commonly being estimated at around 8–10 days.

More recently, the scientific literature has seen a great deal of controversy regarding the estimation of average 
values of residence time, which could point to the adoption of more specific values by place and season than the 
8–10 day figure. Two studies, using completely different techniques, produced clearly divergent results. Using 
average times of the duration of the phase of the humidity gain of so-called particles with a Lagrangian method 
based on backward trajectories computed by the Lagrangian particle tracking method FLEXPART (FLEXible 
PARTicle dispersion model)7,8 forced with the reanalysis ERA-Interim9, Läderach and Sodemann10 obtained 
times as short as 4–5 days, just half the value found in previous studies. In response, van der Ent and Tuinenburg6 
used two different atmospheric moisture tracking models (WAM-2layers and 3D-T) to obtain a residence time 
of around 8.5 days based on ERA-Interim data. In both papers6,10, spatial maps of residence time were generated.
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Residence time is not only of theoretical interest in the study of the hydrological cycle; many estimates of 
other characteristics of the hydrological cycle also depend on it, in particular our concern here is the estimation 
of sources and sinks of moisture. Lagrangian methods for estimating sources and sinks have gained in importance 
in recent years due to the reliability of the technique, which is able to track the positions of so-called particles, and 
estimate the specific humidity changes experienced by them on their trajectories (see Gimeno et al.11 for a review 
of this topic together with advantages and disadvantages of the different techniques used to estimate moisture 
sources). These Lagrangian techniques have been used extensively in hundreds of studies over the past decade, 
the great majority using 10 days as the integration time5. Self-evidently, the results of these studies (of sources and 
sinks) are highly sensitive to the time used for integration, identifying sources closer to the target region when 
short times are used, approaching those found in Läderach and Sodemann10, and much further away when con-
ventional times are used, as in van der Ent and Tuinenburg6, these being much closer to the estimates made to date.

One example of the possible strong divergence is illustrated in Fig. 1, based on the dispersion model 
FLEXPART12 v9.0 (https://www.flexpart.eu/) and the Stohl and James (2004, 2005)7,13 approach for the same 
target region (Iberian Peninsula) and season (winter). The results differ greatly depending on whether we 
use an integration time of 3 days as per Läderach and Sodemann10, or a time of 7 days as per van der Ent and 
Tuinenburg6.

Although these Lagrangian techniques are based on estimates of Evaporation minus Precipitation, they have 
also been used extensively in dozens of papers, with great success, for the estimation of the precipitation originat-
ing from the humidity from each source to a given target region (for global analyses14,15, or for regional studies at 
a variety of different latitudes16–18).

In this article, we propose a different approach to the scientific problem. Here our objective is not to seek the 
residence time of the water vapour, but rather to seek the optimal time for the integration in these Lagrangian 
studies to estimate of moisture sources and sinks, a value that reflects the residence time without being precisely 
the same thing; as it was also shown for Eulerian approaches19. To this end, we intend to make use of the property 
of Lagrangian approaches of estimating the precipitation in a target region from the moisture transported from 
its sources of humidity. The grid-to-grid comparison of this estimated precipitation for different times of integra-
tion with the precipitation obtained from “state-of-the-art” reanalysis allows us to generate a database of optimal 
integration times at annual and monthly basis, with a degree of spatial resolution equivalent to the reanalysis of 
comparison; this can then be used as a reference for the estimation of moisture sources by Lagrangian techniques.

Methods
To implement our Lagrangian moisture transport approach, we use data from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis9 (hereafter ERA-I, https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era-interim). This reanalysis covers the period from January 1979 to the pres-
ent, and contains data at six-hourly intervals with a spatial resolution of 1° × 1° in latitude and longitude; in our study 
this is downscaled to 0.25 degrees using linear interpolation, for 61 vertical levels (1000 to 0.1 hPa). Comparison 
with other reanalyses indicates that ERA-I is the most appropriate for representing the hydrological cycle20.

To compare monthly precipitation estimated from the Lagrangian approach with gridded data, in addition 
to the monthly precipitation taken from the reanalysis ERA-I we have also used precipitation derived from two 
other databases, namely GPCP and MSWEP. GPCP (Global Precipitation Climatology Project, https://climateda-
taguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-climatology-project) is a well-known initiative 
of Global Energy and Water Cycle Exchanges (GEWEX) activity for more than 20 years, and has been used in 
thousands of papers. The GPCP version used in this study (v2.2) has a native spatial resolution of one degree of 
latitude-longitude, and a daily temporal resolution, and is derived from the integration of various satellite data 
sets over land and ocean and analysis of rain gauge data over land21. MSWEP (Multi-Source Weighted-Ensemble 
Precipitation, http://www.gloh2o.org/) is a global precipitation dataset specifically designed for hydrological mod-
elling, which optically merges with other high quality precipitation data in a search for the best quality by times-
cale and location. It is available for the period 1979–2015 with a 3-hourly temporal and 0.25° spatial resolution22.

Fig. 1 Comparing integration times for the moisture source definition for the Iberian Peninsla. (E-P) > 0 
fields (in mm/day) calculated from the FLEXPART outsputs in its backward mode to determine the sources of 
moisture for the Iberian Peninsula, (a) using 3 days or (b) 7 days.
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In this study, the data were downscaled to 0.25 degrees using linear interpolation, and aggregated over 
monthly intervals for the common period 1980–2015.

a brief description of the lagrangian approach. In this study we use the Lagrangian approach7,13 based 
on the particle dispersion model FLEXPART v9.012, forced by ERA-I data9 from the ECMWF. The atmosphere 
is divided into so-called particles (i.e., finite elements of volume with equal mass), and the trajectory of these 
particles is followed for an integration time, normally 10 days, and as commented in the introduction, this is 
the average residence time of water vapour in the atmosphere5. By summing the individual changes of specific 
humidity of each particle every 6 hours over a given area we can estimate the total budget of atmospheric humid-
ity (E-P), where E denotes evaporation and P denotes precipitation. By taking all particles leaving a given source 
region and reaching a target region, and then selecting those particles that lose humidity in the target region, the 
aggregation of these losses of specific humidity for all these particles yields the transport of humidity for precipi-
tation from the source region to the target region for a given daily, monthly, or yearly time scale. This Lagrangian 
method has been used many times with great success in the analysis of moisture transport15,23. An assessment of 
its advantages and disadvantages compared to other methods of tracing water vapour can be found in two recent 
review articles11,24.

Sequence of steps to calculate optimal integration times and quality control. Estimation of a 
first approximation of the gridded precipitation calculated from the Lagrangian method (PLi) for multiple integration 
times. After dividing the world into two large sources, namely the entire continental area and the entire oceanic 
one, FLEXPART is run in forward mode from these two global sources, taking only the negative E-P values as in 
previous calculations of the contribution of moisture sources to precipitation, for the period 1980–2015. This con-
tribution of the moisture sources to precipitation is termed “precipitation calculated by Lagrangian method” (PL), 
although in itself this is merely an approximation to the precipitation, being instead the contribution of moisture 
sources to it. In this way and for each grid element of 0.25° lat × 0.25° lon, we have two values of PL, one corre-
sponding to the terrestrial source (PLT) and another corresponding to the oceanic source (PLO). This calculation 
is done for different integration times, from day 1 to day 15 (i = 1, …, 15), and we thus obtain the contribution of 
the oceanic and terrestrial sources to the precipitation for a range of integration days in each element of the grid 
(PLOi) and (PLTi). From the sum of these two quantities, we obtain a first approximation to the precipitation cal-
culated by Lagrangian methods (PLi) for each integration time and grid element. Plots of these values are shown 
in Fig. 2 together with the precipitation (P) obtained from the three different reanalyses.

Comparison of PLi with precipitation taken from various reanalysis P and choice of optimal integration time. For 
a single integration time (Fig. 2), the values of precipitation obtained from the reanalyses and the precipitation 
calculated by Lagrangian methods may not coincide. This disagreement is the basis of this study; for example for 
a time of integration time of 5 days there are regions where the adjustment is good, and therefore the integration 
time is appropriate (e.g., Northeast Brazil), and others where agreement is poor, because the integration time of 5 
days is too large, as for the precipitation linked to the Choco jet in northwestern South America25, or too small, as 
for extratropical regions with precipitation due to moisture transported long distances in the middle troposphere, 
as in the North Iberian Peninsula23.

For this reason, for each grid element and integration time, PLi is compared with the precipitation obtained 
from different reanalysis (P), and the integration time is chosen for each grid element where the difference 
between these two values is as small as possible. Figure 3 shows these integration times on an annual scale 
together with PL for the optimum integration time (hereafter PLopt). For the three reanalyses used in the com-
parison, ERA-I, MSWEP and GPCP, the results are very similar for very low integration times of around 1–2 days 
in the desert and semi-desert regions of the African and Asian continent, for times of 3–5 days in the extratropical 
regions of the Southern Hemisphere, 5–7 days in the interior of North America and Eurasia, and times greater 
than 9 days, and as high as 15 days in regions affected by the storm track of the Northern Hemisphere (East Coast 
of North America, Japan, and Western Europe), and those affected by important Low Level jet systems such as 
North and Central South America or the Indian coasts of southern Africa and the Indian subcontinent. These 
integration times provide reliable preliminary results, with very good adjustments indicated by spatial correla-
tions exceeding 0.97 for the three reanalyses.

A number of different concepts are described here; nevertheless a useful comparison can be made with the 
results of the average residence times of water vapour in Läderach and Sodemann10 (2016; their Fig. 2a) and in 
van der Ent and Tuinenburg6 (2017; their Fig. 2c). In general terms, the spatial distribution in continental regions 
with non-negligible precipitation is similar in all three cases, thus for example in North America the residence 
time is smaller in the western than in the eastern half, and the same applies for the optimal integration times. In 
South America, on the LLJ track from north to south through the centre of the subcontinent, the residence time 
is greater than it is to the east and west, and so also for the optimal integration time. Similar characteristics are 
seen for the inner part of the Indian Ocean coast of the African continent, and in the high values of both residence 
times and optimal integration times in the coastal Asian monsoonal regions. This is not seen when the precipita-
tion is very low (such as in the North of Eurasia) or almost nonexistent, as in the desert regions of North Africa or 
Central Australia, where residence times are very high and the times of integration are very low. In these regions, 
the mechanisms in place are somewhat different. Given the low efficiency of the precipitation mechanisms and/
or the low humidity, the water vapour in these regions lasts a long time, hence the high residence time, but if we 
track the water vapour that generates precipitation for a given event, a concept closer to our optimal integration 
time, this travels a shorter distance and for less time, being linked to mesoscale events such as the development 
of storms.

https://doi.org/10.1038/s41597-019-0068-8
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Given the seasonal variations inherent in moisture transport and precipitation, it is also appropriate to per-
form these calculations on a monthly basis, and for this reason we present also a database of integration times 
by month in this paper. As an example, Fig. 4 shows values of optimal integration times for the central months 
of boreal and austral winter (January and August). Clear differences between these two months are apparent in 
all regions; for example, in extratropical regions affected by the passage of winter storms, such as the Iberian 
Peninsula in January, integration times are very high with a threshold of 15 days, while in summer (August), 
convective rainfall is much more important, giving an integration time of around 5–7 days. Of particular note are 
the differences that occur in the values of annual integration in regions affected by monsoon circulation or with 
precipitation linked to strong systems of LLJs. For example, for the west coast of the Indian subcontinent the times 
vary from very small (around 1–2 days) in January to 15-day periods in August. A region-by-region analysis is 
possible using the continental geographical regions used in the IPCC 5th Assessment Report26,27 (Supplementary 
Fig. S1), revealing the effect of changing regional weather patterns with season and the logical effect of these on 
the time of integration. For instance, the Sahara region is the area with the lowest values for the optimal integra-
tion time (near to 1 day). Low values are also found during summer in West and Central Asia, the Mediterranean 
region, South Africa or North Australia; regions with low mean summer precipitation and mainly due to convec-
tive events. In these arid or semiarid regions, the results could be related to spurious relationships in the driving 
data related with thermal gradients between the surrounding maritime areas and the hot land surface.

Fig. 2 Continental precipitation from reanalysis data and those calculated the Lagrangian approach using 
different times of integration for the period 1980–2015. (a) Precipitation over continents from ERA-I (a1), 
GPCP (a2) and MSWEP (a3). (b) Continental precipitation calculated by the Lagrangian method (PLi) for 3, 5, 
7, 10, and 15 days of integration over each grid element.

https://doi.org/10.1038/s41597-019-0068-8
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Fig. 3 Gridded annual optimum integration times and precipitation calculated from the Lagrangian outputs 
for the optimum integration times (PLopt). (a) Annual optimum integration times from ERA-I29, GPCP and 
MSWEP. (b) Continental precipitation calculated by the Lagrangian method for the optimum integration time 
(PLopt) for each reanalysis over each grid element.

Fig. 4 Gridded monthly optimum integration times. Optimum integration times for January and August from 
ERA-I29, GPCP and MSWEP.

https://doi.org/10.1038/s41597-019-0068-8
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A snapshot of the climatological values of P and PLopt for these two months (Fig. 5) shows a very good match, 
with excellent spatial correlations greater than 0.98, which indicates the usefulness of these integration times 
classified by grid element and month. In addition, the Root Mean Square Error (RMSE)28 by the signal (P in this 
case) is calculated as

n
PLopt P P1 (( )/ )

(1)j

n

j j j
1

2∑ −
=

with n the number of grid points (n = 520000). The values indicate very low uncertainties in the mean moisture 
source estimation, with values around 0.2–0.3, equivalent to about 0.05% of average relative error by grid between 
P and PLopt.

On the convergence of the estimated precipitation with the precipitation obtained from reanalysis considering inte-
gration time. The sources and sinks estimated from this Lagrangian approach are dependent on the integration 
time, which determines the sizes of the sources and sinks. By extending the integration time in the approach used 
to identify the sources, these can be shown to grow endlessly and to occur exactly with the sinks. An example can 

Fig. 5 Gridded monthly precipitation from reanalysis (P) and from the Lagrangian outputs for the optimum 
integration times (PLopt) and their correlation. For January and for August: (a) precipitation from ERA-I, 
GPCP and MSWEP; and (b) precipitation calculated by the Lagrangian method for the optimum integration 
time (PLopt) for each reanalysis over each grid element, from ERA-I29, GPCP and MSWEP. (c) Correlation 
coefficient between P and PLopt. (d) RMSE/signal between P and PLopt.

https://doi.org/10.1038/s41597-019-0068-8
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be seen in Supplementary Fig. S2, in which the sources for the Iberian Peninsula in January are plotted for several 
integration days up to 20 days. Sources grow in both extension and integrated value (see Supplementary Fig. S3 
for an example for the Iberian Peninsula) with the integration day and there is no integration day on which they 
are stationary. Taking the sources for each integration day as calculated in Supplementary Fig. S2 and running 
FLEXPART in forward mode to calculate the contribution to precipitation in January on the Iberian Peninsula 
from the estimated sources, it is possible to observe also that the contribution to precipitation increases with 
integration day in line with the sources, without converging on an asymptotic value (Supplementary Fig. S4). 
The optimum integration time cannot therefore be determined by identifying the day on which precipitation no 
longer continues to increase. In summary, because the technique in itself does not provide a convergent diagnosis 
of sources and sinks, it cannot be expected that the estimation of precipitation will converge with the precipitation 
obtained from reanalysis at a given time. That said, it should not be difficult to obtain an optimal value in which 
the approximation does not converge. In optimization theory, for the determination of optima we must first 
define an objective function, which in our case is defined as the absolute value of PL-P, with PL being an estimate 
of precipitation from the Lagrangian analysis, and P being the precipitation obtained from reanalysis. The neces-
sary and sufficient condition for the existence of an optimum value is that the objective function has a maximum 
or a minimum in the interval of definition, and that a local optimality is thus implied. Supplementary Fig. S5 
shows the values of our objective function for four grid points in the analysis (the same thing occurs for the 
remainder of the grid points as well) and for the months of January and August. The function has a minimum and 
an optimal value exists, this minimum being the one used to calculate the optimum integration time. Values close 
to 1 (such as those occurring during August over Northeastern Brazil and South Africa in Supplementary Fig. S5) 
imply that the minimum is reached at some time during day 1 (the original results were produced every 6 hours).

Data Records
All datasets, which includes optimal integration time using ERA-I as reference reanalysis on an annual and 
monthly basis, are freely available at the link provided from the Zenodo repository29 licensed under a Creative 
Commons Attribution 4.0 International License (CC BY). The accompanying ‘Readme.pdf ’ file provides all the 
necessary information concerning the format of the data and the file contents. Estimation of optimal integration 
times using GPCP and MSWEP base data was only done for comparison purposes and not included in the data 
records.

technical Validation
For quality control purposes, we used three different procedures. First, we calculated the difference between 
annual climatologies of PLopt and P (Fig. 6a for GPCP). The coincidence is high, and only negative differences 
appear in the continental coastal areas (FLEXPART underestimates the precipitation in some regions where the 
optimal integration time perhaps is also higher than 15 days, as commented previously), and positive and nega-
tive difference between ±0.4 mm/day are showed over those areas of global maxima precipitation as the Amazon, 
La Plata and Congo River basins, and Southeast Asia (including Mekong River). Second, we generated maps of 
the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) according to GPCP, two widely used 
indicators of performance validation28. Both RMSE (Fig. 6c) and MAE (Fig. 6d) show values near to zero, indicat-
ing that both sets of values are quite similar. The major RMSE and MAE values are observed over the same areas 
where the annual differences are detected.

Fig. 6 Technical validation for derived precipitation data. Technical validation for annual fields for GPCP 
derived precipitation data: (a) Difference between annual climatology of P and PLopt, (c) Root Mean Square 
Error (RMSE) and (d) the Mean Absolute Error (MAE). Units in mm/day. (b) Monthly spatial correlations of 
PLopt with P for ERA-I (red line), GPCP (black line) and MSWEP (blue line).

https://doi.org/10.1038/s41597-019-0068-8
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Then, we calculated the spatial correlations of PLopt with P for each month for the whole set of 36 years used 
(Fig. 6b). For the three reanalyses and for all months, the spatial correlations were greater than 0.95. As expected, 
the best correlations occurred for ERA-I because it is the input data set used to run FLEXPART and PL is there-
fore calculated from this, followed by GPCP and MSWEP. The month of highest spatial correlation occurs in the 
Northern Hemisphere winter, specifically in February with values of around 0.98 for the three reanalyses, reach-
ing values close to 0.99 for ERA-I. The month of worst spatial correlation is October in the transition between 
summer and winter circulation in the Northern Hemisphere, with correlations between 0.95 for MSWEP and 
0.98 for ERA-I.

Finally, and making use of the approximation that allows us to distinguish precipitation according to the 
origin of humidity in continents (PLTopt) or in the ocean (PLOopt), we calculated the ratio of PLTopt to PLopt, 
which gives an idea of the recycling and allows a comparison with two previous studies using a similar ratio but 
with different methodologies. Figure 7 shows PLopt, PLTopt, and PLOopt for the months of January and August, 
using the optimal integration time calculated by comparison with precipitation according to GPCP. This plot is 
interesting in itself, and leads to a discussion of the results linked to meteorological and precipitation patterns 

Fig. 7 Monthly oceanic and terrestrial components of PLopt for GPCP. Precipitation according to the origin 
of humidity with: (a) a oceanic (PLOopt) or (b) a continental (PLTopt) origin for the optimal integration time 
according to GPCP for January and August. (c) Sum of PLOopt and PLTopt (PLopt). Units in mm/day.

Fig. 8 Continental precipitation recycling ratio from GPCP calculated from the FLEXPART run. Ratio of 
PLTopt by PLopt that approximates to the precipitation with a terrestrial origin (namely “recycling”) from 
results modelled by the outputs of FLEXPART using GPCP reanalysis. (a) Annual recycling, and (b) for March, 
April and May.

https://doi.org/10.1038/s41597-019-0068-8
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known as the higher precipitation of continental origin, as compared with precipitation of oceanic origin, for the 
Amazon30 and Congo31 basins in January or their seasonal variations, but this is somewhat beyond the scope of 
this paper. Here these plots are used to illustrate the potential of the method and how our results can be compared 
with those obtained using other methodologies.

Dividing PLTopt by PLopt yields an approximation to the precipitation of terrestrial origin (“recycling”) as 
calculated in other studies. Thus Fig. 8 shows a visual comparison of the joint results for March, April and May 
to allow comparison with the plot of Dirmeyer et al.32, and the annual combination to allow comparison with 
that of Van der Ent et al.33. Despite the predictable logical differences due to the way the different methods are 
applied, the patterns are clearly recognisable and identifiable, with a similar distribution of maxima and minima, 
and comparable values.

applicability of the database and implications for future studies. This database is designed to allow 
better integration times than the generic 10-days usually taken in Lagrangian moisture transport analyses used 
to identify moisture sources and sinks. Although specific for a Lagrangian approach, that based on Stohl and 
James7,13 one, which is the most widely used with more than 70% of the papers to determine sources and sinks in 
the last semi-decade, it could be applicable to other similar Lagrangian approaches, whose results are very similar 
to those reached with the used approach when the same integration time is taken.

However, the method also allows a distinction to be made between precipitation originating from global ter-
restrial and oceanic sources, with the same resolution of 0.25°. Being gridded with a high spatial resolution as well 
as a temporal scale that could be higher than monthly, these data show great potential to differentiate at global 
scale terrestrial-versus-oceanic components for any region of interest (tropical forests, regions of strong precip-
itation deficits, hydrological basins…) and advance and complement the results of other methods. Knowing the 
terrestrial-versus-oceanic component of the precipitation associated with extreme precipitation events causing 
droughts and floods could help advance our understanding of the role of any change in the terrestrial sources of 
humidity associated with deforestation, or estimating at a global scale the percentage of moisture of oceanic origin 
associated with the main mechanisms of moisture transport such as low level jets or atmospheric rivers29. A better 
precision for particular extreme months or for individual events the optimal integration time could be calculated 
following the same methodology. Likewise, these results could allow us to calculate the interannual variability 
and trends of these two components of precipitation, oceanic or terrestrial, in support of the interpretation of the 
origin of the interannual variability and the trends in global and regional precipitation detected over the last few 
decades34, with implications for the interpretation of the results of predictions of precipitation in future climates.

Code availability
The code that support the findings of this study are available on request from the corresponding author [RN].
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