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Abstract. Heart failure (HF) secondary to acute myocardial 
infarction (AMI) is a public health concern. The current study 
aimed to investigate differentially expressed genes (DEGs) 
and their possible function in HF post‑myocardial infarction. 
The GSE59867 dataset included microarray data from periph-
eral blood samples obtained from HF and non‑HF patients 
following AMI at 4 time points (admission, discharge, and 1 
and 6 months post‑AMI). Time‑series DEGs were analyzed 
using R Bioconductor. Functional enrichment analysis was 
performed, followed by analysis of protein‑protein interac-
tions (PPIs). A total of 108 DEGs on admission, 32 DEGs 
on discharge, 41 DEGs at 1 month post‑AMI and 19 DEGs 
at 6 months post‑AMI were identified. Among these DEGs, 

4 genes were downregulated at all the 4 time points. These 
included fatty acid desaturase 2, leucine rich repeat neuronal 
protein 3, G‑protein coupled receptor 15 and adenylate 
kinase 5. Functional enrichment analysis revealed that these 
DEGs were mainly enriched in ‘inflammatory response’, 
‘immune response’, ‘toll‑like receptor signaling pathway’ 
and ‘NF‑κβ signaling pathway’. Furthermore, PPI network 
analysis revealed that C‑X‑C motif chemokine ligand 8 and 
interleukin 1β were hub genes. The current study identified 
candidate DEGs and pathways that may serve important 
roles in the development of HF following AMI. The results 
obtained in the current study may guide the development of 
novel therapeutic agents for HF following AMI.

Introduction

The prevalence of heart failure (HF) is >23 million worldwide 
at present and its number is continuing to increase (1). Although 
the management of HF has improved in the past 3 decades, 
the 5‑year mortality rate of patients with HF remains high at 
~50% (2). A common cause of HF is acute myocardial infarc-
tion (AMI), which often signals the onset of cardiac dysfunction 
that may progress to HF (3). This progression is dependent 
on the extent of myocardial damage, recurrent ischemia, the 
development of myocardial stunning and hibernation, ventricle 
remodeling and chronic neuroendocrine stimulation (4). The 
incidence of HF among patients hospitalized for an AMI varies 
among studies, ranging between 14 and 36% (5‑7). This high-
lights the requirement for early and effective prediction tools 
and subsequent intervention following AMI.

Biomarkers such as brain‑type natriuretic peptide and 
N‑terminal pro‑brain natriuretic peptide (NT‑proBNP) are 
associated with ventricle remodeling and the development 
of HF, and are widely applied in the clinical diagnosis and 
prognosis of HF (8,9); they have a fair prognostic value for 
HF in patients with acute coronary syndromes (10). However, 
these biomarkers lack specificity, as they are elevated in 
patients with renal failure, primary aldosteronism, conges-
tive HF and thyroid disease  (11). Genome‑wide gene 
expression profiling has been extensively used for screening 
new potential biomarkers for the diagnosis and/or prediction 
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of disease severity, such as breast cancer and gastric adeno-
carcinoma (12,13), as well as the identification of novel drug 
targets (14). Maciejak et al (15) have previously utilized this 
approach to identify new biomarkers that may have predic-
tive value for HF following AMI, including ribonuclease A 
family member 1 pancreatic (RNASE1), formin 1 (FMN1) 
and Jun dimerization protein 2 (JDP2). However, the dynamic 
expression changes of the key genes and associated biological 
processes in the development of HF following AMI have not 
been fully elucidated.

The present study used the microarray data of the GSE59867 
dataset deposited by Maciejak et al (15) to identify time‑series 
differentially expressed genes (DEGs) and pathways associated 
with HF following AMI using comprehensive bioinformatics 
methods. The time‑series DEGs and their associated functions 
and pathways were analyzed. The protein‑protein interaction 
network (PPI) of these DEGs was subsequently constructed and 
hub genes were identified. Results from the current study may 
provide novel insights into potential prognostic and therapeutic 
targets for HF following AMI.

Materials and methods 

Data sources. The gene expression profile data of GSE59867 
were downloaded from the Gene Expression Omnibus database 
(GEO; www.ncbi.nlm.nih.gov/geo). The GeneChip Human 
Gene 1.0 ST Array (Affymetrix; Thermo Fisher Scientific, 
Inc.) platform was used. The dataset contained samples from 
111  patients with ST‑elevation myocardial infarction at 4 
time points: i) Admission, the day when AMI was confirmed; 
ii) discharge, 4‑6 days post‑AMI; iii) 1 month post‑AMI; and 
iv) 6 months post‑AMI. The dataset included samples at the 4 
aforementioned time points from 46 control patients that had 
stable coronary artery disease on the day of admission, and no 
history of myocardial infarction (MI). Among the 111 patients 
with ST‑elevation MI, 9 patients were diagnosed with HF 
and 8 patients were considered no to have HF on the basis 
of the first and fourth quartiles of plasma NT‑proBNP level 
and left ventricular ejection fractions (LVEF) at 6 months 
post‑AMI. The mean ± standard deviation of the age of the HF 
and non‑HF patients was 60.1±14.3 and 51.8±7.2, respectively. 
There were no significant differences in mean age, sex, body 
mass index or history of hypertension, diabetes, smoking, 
hypercholesterolemia, MI and AMI. Additionally, there was 
no significant difference in aspirin, clopidogrel, β‑blockers, 
angiotensin‑converting‑enzyme inhibitors and statins taken by 
the two groups of patients. The percentage of HF and non‑HF 
patients taking diuretics was 77.8 and 12.5%, respectively. The 
level of NT‑proBNP was 918.3±848.5 and 62.0±14.1 pg/ml 
in HF and non‑HF patients respectively, while the level of 
LVEF was 39.3±8.4 and 66.8±1.9%, respectively. There were 
significant differences in these three variables between the 
two groups (Table  I). A total of 8 patients with HF and 6 
non‑HF patients were followed across the aforementioned 4 
time points and were used for subsequent analysis.

Data preprocessing. The raw data were quantile normalized 
using the robust multiarray average in the Affy package (www.
bioconductor.org/packages/release/bioc/html/affy.html) (16) 
in R Bioconductor. The probes were converted into gene 

symbols according to probe annotation information. If multiple 
probes corresponded to the same gene symbol, the median was 
calculated as the gene expression value of the gene. The probes 
that matched with multiple genes were deleted. Additionally, 
the expression values of the genes with unknown specific 
functions were removed.

DEGs analysis. The DEGs in peripheral blood samples from 
HF patients at different time points compared with non‑HF 
patients were identified using the Limma package (www.biocon-
ductor.org/packages/release/bioc/html/limma.html) (17) in R 
Bioconductor. A fold‑change of gene expression ratio of >1.5 
and P<0.05 were used as the cut‑off criteria. The hierarchical 
clustering analysis of these DEGs was performed using 
Genesis (genome.tugraz.at) (18). Additionally, a Venn diagram 
was created using Venny software (version 2.1; bioinfogp.cnb.
csic.es/tools/venny/index.html).

Functional enrichment analysis. To explore the potential 
biological processes and pathways that may be involved in 
patients with post‑AMI HF, the Database for Annotation, 
Visualization and Integrated Discovery (DAVID; david.
ncifcrf.gov.uk) (19) was used to perform Gene Ontology (GO) 
annotation and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis for the DEGs. P<0.05 was used 
as the threshold value, and the number of genes enriched in 
each pathway was ≥2. The differences in biological processes 
between the non‑HF and HF patients at different time points 
were investigated.

PPI construction. PPI networks are used to organize all 
protein‑coding genes into a large network that provides a 
better understanding of the functional organization of the 
proteome (20). The Search Tool for the Retrieval of Interacting 
Genes (STRING; string‑db.org/cgi/input.pl)  (21) database 
provides information regarding predicted and experimental 
interactions of proteins in a given cell. In the present study, 
the DEGs were mapped into the STRING database to identify 
significant protein pairs with a combined score of >0.4. The 
PPI network was subsequently constructed using Cytoscape 
software, version 3.6.1 (www.cytoscape.org) (22). The nodes 
with a higher degree of interaction were considered as hub 
genes. Additionally, cluster analysis for identifying significant 
function modules with a degree cutoff >3 in the PPI network 
was performed using the Molecular Complex Detection 
plug‑in (23) in Cytoscape. GO biological process enrichment 
analysis for the DEGs in modules of the PPI network was 
performed using the Biological Networks GO plug‑in (24) in 
Cytoscape. P<0.05 was considered to indicate a statistically 
significant difference.

Statistical analysis. All continuous data are expressed as 
the mean ± standard deviation while categorical data are 
presented as frequencies and percentages, and both were 
analyzed using SPSS software, version 19.0 (IBM Corp.). Each 
experiment was repeated three times. A Student's t‑test was 
used to compare the continuous data between the two patient 
groups. Categorical data between the two patient groups were 
compared using Fisher's exact test. P<0.05 was considered to 
indicate a statistically significant difference.
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Results

Identification of candidate DEGs in HF following AMI. A 
total of 108 DEGs (46 upregulated and 62 downregulated 
genes) on admission, 32 DEGs (16 upregulated and 16 down-
regulated genes) on discharge, 41 DEGs (22 upregulated and 
19 downregulated genes) at 1 month post‑AMI and 19 DEGs 
(2 upregulated and 17 downregulated genes) at 6  months 
post‑AMI were identified between peripheral blood samples 
obtained from patients with HF and non‑HF patients (Fig. 1). 
Among these DEGs, 4 genes were identified at each of the 4 
time points (Fig. 2A), namely, fatty acid desaturase 2 (FADS2), 
leucine‑rich repeat neuronal protein 3 (LRRN3), G‑protein 
coupled receptor 15 (GPR15) and adenylate kinase 5 (AK5). 
Compared with those of samples obtained from non‑HF 
patients, the gene expression values of the aforementioned 4 
genes were significantly downregulated at the different time 
points following AMI in patients with HF (P<0.05, Fig. 2B). 

Functional enrichment analysis of biological processes. The 
potential functions and pathways of the time‑series DEGs were 
analyzed using DAVID. The dynamic change of biological 
processes in the development of HF following AMI is presented 
in Fig.  3. The results revealed 18 biological processes on 
admission, 12 biological processes on discharge, 17 biological 
processes at 1 month post‑AMI and 3 biological processes at 
6 months post‑ AMI. Compared with the biological processes at 
6 months post‑AMI, which is considered the stable phase (15), 
the ‘inflammatory response’ and ‘immune response’ were 
enriched on admission. On discharge, the biological processes 
were mainly enriched in response to stress, such as ‘response 
to drug’, ‘response to muscle stretch’, ‘cellular response to fatty 

acid’ and so on. The biological processes at 1 month post‑AMI 
were mainly enriched in the regulation of cells and cytokines, 
including ‘positive regulation of smooth muscle cell prolif-
eration’ and, ‘positive regulation of endothelial cell migration’, 
‘cellular response to growth factor stimulus’ and ‘positive 
regulation of vascular endothelial growth factor production’. 
Notably, biological processes involved in the ‘inflammatory 
response’ were enriched in the first three time points.

Functional enrichment analysis of KEGG pathways. The 
KEGG pathways of the DEGs were analyzed using DAVID. A 
total of 7 KEGG pathways were significantly enriched on admis-
sion, including ‘cell adhesion molecules’, ‘cytokine‑cytokine 
receptor interaction’, ‘T cell receptor signaling pathway’, 
‘intestinal immune network for IgA production’, ‘hematopoi-
etic cell lineage’, ‘amoebiasis’ and ‘malaria’ (Fig. 4). A total of 
7 KEGG pathways were significantly enriched on discharge, 
including ‘toll‑like receptor signaling pathway’, ‘pertussis’, 
‘salmonella infection’, ‘rheumatoid arthritis’, ‘Chagas disease’, 
‘hepatitis B’ and ‘antigen processing and presentation’. A total 
of 3 KEGG pathways were significantly enriched at 1 month 
post‑AMI and included the ‘NF‑κβ signaling pathway’, 
‘bladder cancer’ and ‘malaria’. Finally, 1 KEGG pathway, 
‘nitrogen metabolism’, was significantly enriched at 6 months 
post‑AMI.

PPI network analysis. A total of 32 nodes and 44 protein pairs 
on admission, 11 nodes and 10 protein pairs on discharge, 
8 nodes and 12 protein pairs at 1 month post‑AMI, and 2 nodes 
and 1 protein pair at 6 months post‑AMI, with a PPI score of 
>0.4 based on the STRING database, were obtained (Fig. 5A). 
The results revealed that interleukin 1β (IL1β; degree, 10), 

Table I. Demographic characteristics of HF and non‑HF patients. 

Variables	 HF patients (n=9)	N on‑HF patients (n=8)	 P‑value

Age, years (mean ± standard deviation)	 60.1±14.3	 51.8±7.2	 0.147
Male sex, n (%)	 6 (66.7)	 7 (87.5)	 0.576
Body mass index, kg/m2 (mean ± standard deviation)	 26.8±3.1	 25.6±1.6	 0.323
Hypertension, n (%)	 3 (33.3)	 1 (12.5)	 0.576
Diabetes, n (%)	 2 (22.2)	 1 (12.5)	 >0.999
Smoking, n (%)	 3 (33.3)	 5 (62.5)	 0.347
Hypercholesterolemia, n (%)	 5 (55.6)	 4 (50.0)	 >0.999
Previous MI, n (%)	 0 (0.0)	 0 (0.0)	NA
AMI, n (%)	 8 (88.9)	 3 (37.5)	 0.106
Aspirin, n (%)	 9 (100.0)	 8 (100.0)	NA
Clopidogrel, n (%)	 8 (88.9)	 8 (100.0)	 >0.999
β‑blockers, n (%)	 9 (100.0)	 8 (100.0)	NA
ACE inhibitors, n (%)	 9 (100.0)	 8 (100.0)	NA
Statins, n (%)	 9 (100.0)	 8 (100.0)	NA
Diuretics, n (%)	 7 (77.8)	 1 (12.5)	 0.015
NT‑proBNP, pg/ml (mean ± standard deviation)	 918.3±848.5	 62.0±14.1	 <0.001
LVEF, % (mean ± standard deviation)	 39.3±8.4	 66.8±1.9	 0.001

HF, heart failure; ACE, angiotensin‑converting enzyme; AMI, acute myocardial infarction; MI, myocardial infarction; NT‑proBNP, N‑terminal 
pro‑brain natriuretic peptide; LVEF, left ventricular ejection fraction. 
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C‑X‑C motif chemokine ligand 8 (CXCL8; degree, 10) and 
thrombospondin 1 (THBS1; degree, 7) on admission, Fos 
proto‑oncogene AP‑1 transcription factor subunit (degree, 4), 
Jun proto‑oncogene AP‑1 transcription factor subunit 
(degree, 3) and CXCL8 (degree, 2) on discharge, and CXCL8 

(degree, 6), THBS1 (degree, 4) and prostaglandin‑endoperoxide 
synthase 2 (PTGS2; degree, 4) at 1 month post‑AMI were the 
top three hub genes in the first three time points. Notably, 
CXCL8 was the hub gene identified in all of the first three 
time points. Additionally, carbonic anhydrase (CA1; degree, 1) 

Figure 1. Heat map of the DEGs identified in HF and non‑HF patients at different time points. DEGs identified (A) on admission, (B) on discharge, (C) at 
1 month post‑AMI and (D) at 6 months post‑AMI. Green represents lower expression, and red represents higher expression. A set of 4 genes was identified at 
each time point. Each gene is presented by a different color: i) FADS2 (pink); ii) LRRN3 (blue); iii) GPR15 (green); and iv) AK5 (purple). DEGs, differentially 
expressed genes; HF, heart failure; AMI, acute myocardial infarction; FADS2, fatty acid desaturase 2; LRRN3, leucine‑rich repeat neuronal protein 3; 
GPR15, G‑protein coupled receptor 15; AK5, adenylate kinase 5.
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and hemoglobin subunit δ (HBD; degree, 1) were identified at 
6 months post‑AMI. 

Additionally, 1 module network on admission and 
1  module network at 1 month post‑AMI were identified. 
Nodes, including CXCL8, IL1β, CD40 ligand, tumor necrosis 
factor α (TNFα)‑induced protein 6 and interleukin 2 receptor 
subunit α, were highlighted on admission (Fig.  5B). The 
highlighted nodes at 1 month post‑AMI were CXCL8, IL1β, 
PTGS2 and heparin binding EGF‑like growth factor. IL1β and 
CXCL8 were enriched in the 2 modules. However, no signifi-
cant biological processes and pathways were enriched in these 
module networks.

Discussion

Maciejak et al (15) identified 3 upregulated genes on admis-
sion following AMI, including RNASE1, FMN1 and JDP2, 
which were associated with the increase of NT‑proBNP and 
the decrease of LVEF at 6 months post AMI. The study 
demonstrated that these 3 genes may have prognostic value 
for patients with HF. These 3 upregulated genes were identi-
fied in the present study when comparing patients with HF 
patients with non‑HF patients on admission. Additionally, 
the present study identified 4 genes, namely FADS2, 
LRRN3, GPR15 and AK5, which were downregulated on 
admission, on discharge and at 1 and 6 months post‑AMI. 
This suggested that these four genes may serve roles in the 
progression of HF following AMI and may be potential 
therapeutic targets for preventing the development of HF 
following AMI.

Additionally, by analyzing the gene expression profiles 
in peripheral blood samples obtained from patients with HF 
patients and non‑HF patients at different time points, the 
present study identified a series of DEGs enriched in pathways 
of the inflammatory response, immune response, the toll‑like 
receptor signaling pathway and the NF‑κβ signaling pathway. 

CXCL8 and IL1β were identified as hub genes in the PPI 
network.

FADS2 is a member of the fatty acid desaturase family, 
which are important enzymes in fatty acid metabolism (25). 
FADS2, also known as ∆‑6‑desaturase, is one of the 3 main 
desaturases in humans, and is required for the synthesis 
of highly unsaturated fatty acids (HUFA) (25). Previous 
studies indicated that reduced serum concentrations of 
omega‑3 and omega‑6 HUFA were associated with the 
progression of HF (26‑28). Alter et al (29) suggested that 
increased ventricular wall stress and a reduced LVEF were 
associated with decreased docosahexaenoic acid, a HUFA. 
Furthermore, a clinical study demonstrated that dietary 
supplementation with the HUFA eicosapentaenoic and 
docosahexaenoic acids may prevent sudden cardiac death, 
acute coronary syndrome and HF (30). The current study 
revealed that the expression level of FADS2 was down-
regulated in patients with HF when compared with that in 
patients with non‑HF during the entire follow‑up period, 
suggesting that FADS2 may serve an important role in the 
development of HF following AMI. 

As a member of the neuronal leucine‑rich repeat 
family, LRRN3 is a type I transmembrane protein  (31). 
Fukamachi  et  al  (32) reported that LRRN3 may enhance 
the phosphorylation of mitogen‑activated protein kinase 
(MAPK) and therefore activate its signaling pathway in 
COS‑7 cell lines, originally isolated from the kidney of the 
African green monkey. Previous studies demonstrated that 
the MAPK signaling pathway is implicated in the develop-
ment of HF (33‑35). Zhang et al (34) revealed that the MAPK 
signaling pathway regulated cardiomyocyte apoptosis during 
post‑infarction HF in mice. Fei  et  al  (35) revealed that 
the MAPK signaling pathway contributed to angiotensin 
II‑induced cardiac fibrosis in rats. Therefore, LRRN3 may 
mediate the development of HF following AMI via the MAPK 
signaling pathway and its downstream effectors. 

Figure 2. Identification of DEGs in HF following AMI. (A) Venn diagram of the DEGs. Different colours represent different time points: i) Blue, admission; 
ii) yellow, discharge; iii) green, 1 month post‑AMI; and iv) pink, 6 months post‑AMI. (B) The changes in expression levels of the genes FADS2, LRRN3, 
GPR15 and AK5 in HF and non‑HF patients at the different time points. *P<0.05 vs. HF group. DEGs, differentially expressed genes; HF, heart failure; 
AMI, acute myocardial infarction; FADS2, fatty acid desaturase 2; LRRN3, leucine‑rich repeat neuronal protein 3; GPR15, G‑protein coupled receptor 15; 
AK5, adenylate kinase 5.
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GRP15 is an orphan receptor member of the G‑protein 
coupled receptor family that was initially identified as a 
co‑receptor for the human immunodeficiency virus (36). GPR15 
was required for the recruitment of T helper 17, T helper 1 
effector and regulatory T cells in a colitis model in mice (37). 
Koks et al (38) reported that the expression level of GPR15 was 
upregulated in the blood of smokers and served a potential role 
in chronic inflammatory pathologies. Pan et al (39) demon-
strated that GPR15 binds the fifth epidermal growth factor‑like 
region of thrombomodulin and mediates angiogenesis and 
protection of vascular endothelial cells by activating extracel-
lular signal‑regulated kinase and increasing production of 
anti‑apoptotic protein and NO. Thrombomodulin did not protect 
vascular endothelial cells isolated from GPR15 knockout mice 

from tacrolimus‑induced vascular injury (39). Based on the 
results obtained in the aforementioned studies, GRP15 may 
serve a role in the progression of HF following AMI.

AK5 belongs to adenylate kinase family (40). Adenylate 
kinases catalyze the reversible nucleotide phosphoryl 
exchange reaction AMP+ATP→2ADP, and thus control the 
cellular energy supply (40,41). Unlike the other members of 
the adenylate kinase family, AK5 is a cytosolic isoform highly 
expressed in the brain, and it serves an important role in neuro-
genesis and neuronal‑specific metabolism (40). Lai et al (42) 
reported that the complex of AK5 and copine VI was involved 
in epileptogenesis, which was caused by neuronal hyperexcit-
ability. However, to the best of our knowledge, the association 
between AK5 and HF has not been investigated. The decreased 

Figure 3. Significant GO biological process terms enriched at different time points. Differentially expressed genes identified (A) on admission, (B) on discharge, 
(C) at 1 month post‑AMI and (D) at 6 months post‑AMI. AMI, acute myocardial infarction; GO, Gene Ontology.
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expression of AK5 in the blood of patients with HF may be an 
adaptive response of the brain to ischemic stress present in the 
heart. Future studies are required to elucidate the role of AK5 
in the development of HF following AMI.

Prolonged coronary occlusion leads to the death of cardio-
myocytes and damage of the extracellular matrix in the tissues, 
triggering activation of an intense inflammatory response (43). 
The inflammatory response following AMI may aid in the 
repair of the infarcted myocardium through scar formation to 
maintain cardiac integrity; however, excessive inflammatory 
response may contribute to adverse left ventricle remodeling 

and HF (44). Both human and animal studies demonstrated 
that the inflammatory response is involved in the pathogenesis 
of HF (45,46). Compared with the healthy controls, patients 
with HF exhibited increased levels of circulating inflamma-
tory cytokines, including tumor necrosis factor (TNF)‑α, 
C‑reactive protein, IL1β and IL6 (47‑49). Previous studies 
suggested that inhibition of IL1 with anakinra or anti‑IL1β 
antibodies may reduce chamber dilation and improve cardiac 
dysfunction (50,51). Furthermore, a clinical trial reported that 
inhibition of TNF‑α with a recombinant chimeric soluble TNF 
receptor type 2 had beneficial effects on cardiac function in 

Figure 5. (A) Protein‑protein interaction network and (B) module network analysis of DEGs at different time points. Red nodes represent upregulated DEGs 
and blue nodes represent downregulated DEGs. DEGs, differentially expressed genes.

Figure 4. Significant KEGG pathways enriched by time‑series differential expressed genes at different time points. KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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patients with chronic HF (52). The aforementioned studies 
suggested that the inflammatory response may be implicated 
in the development of HF following AMI.

The immune response was revealed to participate in posi-
tive and negative ventricle remodeling following MI (53,54). 
The immune response may synergistically function with the 
inflammatory response to repair the infarcted myocardium by 
removing dead cardiomyocytes and matrix debris, and producing 
mediators that activate fibroblast growth and angiogenesis (55). 
However, an overactive immune response may increase dilative 
remodeling and result in chamber dilation, systolic dysfunc-
tion and HF in patients surviving AMI (56). A double blind, 
placebo‑controlled study of intravenous immunoglobulin 
induction and maintenance therapy for 26 weeks resulted in 
a 5% improvement of LVEF independent of the etiology of 
HF in 40 patients with ischemic and non‑ischemic cardiomy-
opathy (57). Animal experiments revealed that regulation of the 
immune response by targeting interferon regulatory factors may 
regulate cardiac hypertrophy in vitro and in vivo (58,59). These 
studies demonstrate the potential role of the immune response 
in the development of HF following AMI.

Toll‑like receptors are transmembrane proteins that are 
part of the innate immune system used to identify pathogens 
and sense endogenous danger‑associated molecular patterns 
released from necrotic or dying cells (60). Toll‑like receptor 4, 
one of the 13 known mammalian toll‑like receptors, may 
mediate the inflammatory response in the infarcted heart (44). 
In a rat model of HF following AMI, the expression level of 
toll‑like receptor 4 was found to be upregulated in chronic HF, 
and blockade of toll‑like receptor 4 improved left ventricle 
function (61). In addition, the activation of toll‑like receptors 
triggered a downstream signaling cascade involving the acti-
vation of NF‑κβ, interferon regulatory factors, transcription 
factors and activator protein 1, leading to the enhanced expres-
sion of a number of inflammatory genes (62). Therefore, the 
pathways of toll‑like receptor signaling and NF‑κβ signaling, 
which were enriched in the current study, may be implicated in 
the development of HF following AMI.

CXCL8 and IL1β were hub genes analyzed by the PPI 
network. CXCL8 belongs to the CXC chemokine family and 
serves an important role in mediating neutrophil invasion in 
a number of inflammatory processes  (63). The Controlled 
Rosuvastatin Multinational Trial in Heart Failure study 
revealed that increased expression levels of CXCL8 were 
associated with adverse outcome in patients with chronic 
HF (64). Husebye et al (65) demonstrated that high levels of 
CXCL8 in patients with ST‑elevation myocardial infarction 
complicated with HF were associated with poor recovery of 
left ventricular function. IL1β is a member of the IL1 cytokine 
family and serves important roles in the regulation of cardiac 
inflammation and repair (43). IL1β promotes cardiac fibrosis 
by secreting cytokines, chemokines and matrix metallopro-
teinases (66). Furthermore, increased plasma IL1β levels have 
been associated with impaired myocardial function and left 
ventricle hypertrophy following reperfusion after MI (67). 
Based on the results obtained in the aforementioned studies, 
the upregulated expression levels of CXCL8 and IL1β may 
contribute to the development of HF following AMI.

In the present study, time‑series DEGs between periph-
eral blood samples obtained from HF and non‑HF patients 

were identified. A number of DEGs, including FADS2, 
LRRN3, GPR15, AK5, CXCL8 and IL1β, were identified as 
possible target genes for the development of HF following 
AMI. Furthermore, the present study revealed that biological 
processes involved in the inf lammatory and immune 
responses and the toll‑like receptor and NF‑κβ signaling 
pathways may serve important roles in the development of 
HF following AMI. However, future experimental studies are 
required to substantiate the results obtained in the present 
study. 
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