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Abstract

Specificity is one of the most important and complex properties that is central to both natural anti-

body function and therapeutic antibody efficacy. However, it has proven extremely challenging to

define robust guidelines for predicting antibody specificity. Here we evaluated the physicochemical

determinants of antibody specificity for multiple panels of antibodies, including >100 clinical-stage

antibodies. Surprisingly, we find that the theoretical net charge of the complementarity-determining

regions (CDRs) is a strong predictor of antibody specificity. Antibodies with positively charged CDRs

have a much higher risk of low specificity than antibodies with negatively charged CDRs. Moreover,

the charge of the entire set of six CDRs is a much better predictor of antibody specificity than the

charge of individual CDRs, variable domains (VH or VL) or the entire variable fragment (Fv). The best

indicators of antibody specificity in terms of CDR amino acid composition are reduced levels of

arginine and lysine and increased levels of aspartic and glutamic acid. Interestingly, clinical-stage

antibodies with negatively charged CDRs also have a lower risk for poor biophysical properties in

general, including a reduced risk for high levels of self-association. These findings provide powerful

guidelines for predicting antibody specificity and for identifying safe and potent antibody

therapeutics.
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Introduction

The specificity of antibodies – defined as their ability to strongly rec-
ognize their targets and weakly recognize off-target molecules – is
central to their natural functions in the immune system. Seminal
work on understanding the evolution of antibody specificity during
B-cell maturation revealed that a majority of immature B-cells are
polyspecific, and their specificity is greatly increased during the pro-
cess of B-cell maturation and production of antigen-specific anti-
bodies (Wardemann et al., 2003; Keenan et al., 2008). Defects in

this natural process of antibody specificity maturation are linked to
autoimmune disorders (Goodnow, 2007).

The widespread use of antibodies as therapeutics has led to
much interest in understanding determinants of antibody specificity.
These efforts include new or improved experimental methods for
profiling antibody specificity that evaluate antibody interactions
with themselves (i.e. self-association) (Jacobs et al., 2010; Sule et al.,
2013; Sun et al., 2013; Jayaraman et al., 2014; Liu et al., 2014;
Estep et al., 2015; Kelly et al., 2015; Li et al., 2015; Wu et al.,
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2015; Alam et al., 2018; Avery et al., 2018; Geng et al., 2016a,b)
and with diverse types of biomolecules, including proteins, nucleic
acids and polysaccharides (Wardemann et al., 2003; Mouquet et al.,
2010; Hotzel et al., 2012; Xu et al., 2013; Avery et al., 2018; Datta-
Mannan et al., 2015a,b; Kelly et al., 2017a,b). Interestingly, antibody
specificity has recently been shown to be a key physicochemical pre-
dictor of the relative likelihood of success of antibody drugs in the
clinic (Jain et al., 2017).

Nevertheless, it has remained challenging to define the
molecular-level determinants of antibody specificity for two main
reasons. First, antibody specificity is a relative concept and its defin-
ition is based on experimental measurements that are dependent on
the type of non-target molecules used for specificity analysis.
Therefore, it is not possible to compare antibody specificity measure-
ments from different studies that use different polyspecificity
reagents. Second, it is difficult to define the sequence determinants
of antibody specificity given that antibody variable regions – and
especially the complementarity-determining regions (CDRs) – dis-
play significant sequence variation. Therefore, the small portion of
maximal chemical (amino acid) diversity that is typically sampled in
a given study of antibody specificity is often insufficient to determine
how antibody sequence generally impacts antibody specificity.

The goal of this study is to identify key sequence determinants of
antibody specificity and address some of the challenges that have
previously limited such analysis. Based on prior work (Wardemann
et al., 2003; Birtalan et al., 2008, 2010; Sharma et al., 2014;
Dobson et al., 2016; Datta-Mannan et al., 2015a,b; Kelly et al.,
2017a,b; Tiller et al., 2017a,b), we reasoned that the amino acid
composition of antibody CDRs is the primary determinant of anti-
body specificity. Therefore, we first sought to identify sequence
determinants of antibody specificity using common framework anti-
bodies with sequence variation only in a single CDR (heavy chain
CDR3, HCDR3). Next, we sought to test the generality of these
findings using a larger panel of antibodies with much more sequence
variation and whose specificity has been rigorously profiled using
several different types of experimental measurements (Jain et al.,
2017). Finally, we evaluated the connection between CDR sequence
determinants of antibody specificity and antibody biophysical prop-
erties in general, including antibody hydrophobicity, self-association
and aggregation. Here we report key molecular-level determinants
of antibody specificity and demonstrate how specific types of chem-
ical properties of antibody CDRs govern antibody specificity and
other biophysical properties for diverse antibodies, including those
in clinical development.

Materials and Methods

Cloning of antibody variants

The scFv variants were cloned from an existing pET-17b bacterial
expression plasmid containing the parent scFv gene between the
HindIII and KpnI restriction sites. The scFv contains an N-terminal
pelB sequence and C-terminal 3× FLAG and 7× His tags. scFv var-
iants were created using custom DNA primers (Integrated DNA
Technologies) and site-directed mutagenesis with PfuUltra II fusion
polymerase (600850, Agilent Technologies). The scFv variants were
also subcloned into the pBIOCAM5 mammalian expression vector
(39344, Addgene) at the N-terminus of human IgG1 Fc. Each scFv
gene was amplified from the bacterial expression plasmids using
primers that incorporate NcoI and NotI restriction sites at the
5′ and 3′ ends, respectively. The genes were then ligated into the

pBIOCAM5 mammalian expression vector (39344, Addgene). The
resulting scFv-Fc fusions contain a 6× His tag and 3× FLAG tag at
the C-terminus.

Antibody mammalian expression and purification

The scFv-Fc variants were expressed transiently using an adherent
HEK293T cell line (CRL-3216, ATCC). Cultures were seeded with 2
million cells in a 75 cm2 tissue culture (T75) flask (10 062-860,
VWR) containing 15mL of DMEM-GlutaMAX (10 569-044,
Thermo Fisher Scientific) supplemented with 10% fetal bovine serum
(35 010CV, Corning) and 1% penicillin-streptomycin (15140122,
Thermo Fisher Scientific). The cultures were grown at 37°C with 5%
CO2 until ~70% confluency (2 days). The cells were then transfected
with expression plasmids using Lipofectamine 2000 (11668019,
Thermo Fisher Scientific). First, 20 μg of lipofectamine and 8 μg of
plasmid DNA were added separately to 0.5mL of Opti-MEM
(31 985-062, Thermo Fisher Scientific) and incubated for 10min.
Next, the lipofectamine solution was combined with the DNA solu-
tion and incubated for 30min. Following incubation, the lipofecta-
mine/DNA mixture (1mL total volume) was added to each flask.
Three T75 flasks were used for expression of each scFv-Fc antibody.
The expression cultures were grown at 37°C with 5% CO2 for 4
days, and the media containing the secreted antibodies was collected.

The scFv-Fc antibodies were purified by adding 0.5mL of a 50%
slurry of Protein A agarose resin (20333, Thermo Fisher Scientific) to
the collected media and incubating overnight at 4°C with rocking.
Next, the resin was collected by vacuum into a 10mL centrifuge col-
umn (89898, Thermo Fisher Scientific) and washed with 100–150mL
of PBS (pH 7.4). The antibodies were eluted by incubating the resin
in 0.5–1mL of 0.1M glycine (pH 2.5) for 15min. After elution, the
antibodies were neutralized by addition of 1M K2HPO4 (100 μL per
mL of elution volume). Aggregate content was analyzed using size-
exclusion chromatography (SEC). For expression batches with >90%
monomer, the scFv-Fc antibodies were buffer exchanged twice into
PBS prior to use (Zeba desalting columns, 89882, Thermo Fisher
Scientific). Samples with <90% monomer were further purified by
preparative SEC using a Shimadzu high performance liquid chroma-
tography system. The scFv-Fc antibodies were injected (250 μL) onto
two YMC-Pack-Diol-200 columns (30 cm × 8mm; YMC) in series
using PBS with 200mM arginine (pH 7.4) at a flow rate of 0.6mL/
min as the mobile phase. Signal was monitored by UV absorbance at
280 nm, and 0.3mL fractions were collected. The collected fractions
were pooled, concentrated (Amicon Ultra-0.5mL centrifugal filter,
UFC505096, Millipore) and buffer exchanged once into PBS (Zeba
desalting columns, 89882, Thermo Fisher Scientific). The resulting
antibody concentration was measured using the MicroBCA assay
(23235, Thermo Fisher Scientific). The antibodies were re-analyzed
by SEC to ensure >90% monomer and evaluated by SDS-PAGE
(WG1203BX10, Thermo Fisher Scientific).

Antibody bacterial expression and purification

Bacterial expression plasmids were transformed into BL21(DE3)
pLysS cells (200 132, Agilent Technologies). Transformed colonies
were inoculated into 200mL of auto-induction media (Studier,
2005) supplemented with ampicillin (100 μg/mL) and chlorampheni-
col (35 μg/mL). The expression cultures were incubated for 48 h at
30°C with shaking at 225 rpm. The cells were pelleted, and the
scFvs were purified from the supernatant via their polyhistidine tag.
The supernatant was incubated with 3mL of Ni-NTA resin (30230,
Qiagen) overnight at 4°C and 80 rpm. The Ni-NTA resin was
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collected by vacuum and washed with 250mL of PBS. An additional
wash was performed using 3mL of PBS (pH 7.4) with 50mM imid-
azole for 15min. The scFvs were eluted by incubating the resin with
3mL of PBS (pH 7.4) supplemented with 500mM imidazole and
6M GuHCl (15min). After elution, the scFvs were allowed to
unfold overnight at 4°C and refolded by buffer exchanging twice
into PBS (89894, Thermo Fisher Scientific). Aggregates were
removed by centrifugation at 21 000×g for 5min and filtering
through a 0.22 μm filter (SLGV004SL, Millipore). The antibody
concentration was measured by UV absorbance at 280 nm, and
SDS-PAGE (WG1203BX10, Thermo Fisher Scientific) was used to
assess purity.

Non-specific binding analysis

For non-specific binding analysis using milk, transparent MaxiSorp
384 well plates (P6366, Sigma) were blocked with 100 μL of 10%
(w/v) milk (instant non-fat dry milk, Kroger) in PBS overnight at
4°C and subsequently washed six times. All washes were performed
with 100 μL of PBS supplemented with 0.1% Tween 20 (PBST). The
scFv-Fc fusions and mAbs were diluted in PBS to a range of concen-
trations (0–300 nM). After dilution, 25 μL of scFv-Fc or mAb was
added to the wells. Binding occurred overnight at room temperature.
After three washes, 25 μL of a 1000× dilution of goat anti-human
IgG Fc-HRP (A18817, Thermo Fisher Scientific) or a 1000× dilution
of goat anti-mouse IgG-HRP (32430, Thermo Fisher Scientific) in
PBST was added to the wells for the scFv-Fc fusions and mAbs,
respectively. The plate were incubated for 1 h at room temperature
and subsequently washed three times. Next, 25 μL of 1-Step Ultra
TMB-ELISA substrate (34028, Thermo Fisher Scientific) was added
to each well and developed for 5–6min. The reaction was quenched
with 25 μL of 2M H2SO4. Signals were quantified by measuring the
absorbance at 450 nm (SpectraMax Plus384, Molecular Devices).
Non-specific binding signals were reported as the signal divided by
the background. The background was evaluated without scFv-Fc or
mAb but with all other detection reagents.

For the non-specific binding analysis using a panel of non-
antigen proteins, transparent MaxiSorp 384 well plates (P6366,
Sigma) were coated with 100 μL of 0.2mg/mL proteins in PBS. The
panel of proteins included ovalbumin (pI = 4.6; S25132, Thermo
Fisher Scientific), bovine serum albumin (BSA; pI = 4.7; BP9706
Thermo Fisher Scientific), insulin (pI = 5.4; I9278, Sigma), keyhole
limpet hemocyanin (KLH; pI = 4.6; H8283, Sigma), ribonuclease A
(pI = 9.3; R4875, Sigma), avidin (pI = 10; A9275, Sigma) and lyso-
zyme (pI = 11, L6876, Sigma). The wells were coated at 4°C over-
night and subsequently washed six times. All washing steps were
performed with 100 μL of PBST. The scFv-Fc fusions were diluted to
100 nM in PBS, added to the wells (25 μL), and allowed to bind
overnight at room temperature. Subsequent steps were performed as
described for the milk non-specific binding experiments.

Circular dichroism

Antibody (scFv) thermal stability was measured via circular dichro-
ism (CD) using a Jasco 815 spectrophotometer. Ellipticity was moni-
tored at 235 nm while heating from 25 to 95°C. Stock scFv
solutions were diluted in PBS to 0.1mg/mL and heated at a rate of
0.1°C/min. After collecting ellipticity data every 0.5°C, the scFv
solutions were cooled back to 25°C and left for 10min. A second
melt was then performed to examine the efficiency of refolding after
thermal denaturation. Ellipticity data was normalized from 0 to 1
using the maximum and minimum ellipticity values from the first

melt. The melting temperatures were calculated from the first thermal
melts. Both the folded and unfolded ellipticities were fit as linear func-
tions of temperature. The fraction of folded scFv at a given tempera-
ture in the transition region (ΘT) was then calculated from (ΘT–ΘU)/
(ΘF–ΘU), where (ΘU) and (ΘF) represent the predicted ellipticities if
the proteins were unfolded or folded, respectively. Linear regression
of the fraction folded versus temperature within the transition region
was used to determine the apparent melting temperature (temperature
at which the fraction folded is equal to 0.5).

Non-native antibody solubility

Non-native scFv solubility was analyzed by heating the antibody
solutions in PBS at a concentration of ~0.4mg/mL at 65°C for 4 h.
Following the heat stress, the antibody solutions were cooled to 4°C
overnight, centrifuged at 21 000×g for 5min and the top 50% of
the supernatant was removed for concentration analysis. Soluble
antibody concentration was then measured using the BCA assay
(23225, Thermo Fisher Scientific).

Size-exclusion chromatography

For analysis of the scFv-Fc antibodies, the samples were injected
(100 μL at 60 μg/mL) onto an analytical YMC-Pack-Diol-200 col-
umn (30 cm × 8mm; YMC) using a Shimadzu high performance
liquid chromatography system. The mobile phase consisted of PBS
containing 200mM arginine (pH 7.4) at a flow rate of 0.7 mg/mL.
Monomer content was quantified using the Lab Solutions software.
A similar method was performed to assess monomer content follow-
ing preparative SEC using an scFv-Fc concentration of 10 μg/mL
(100 μL injection volume).

For the scFv antibodies, samples were analyzed using the same
column described above on an Agilent 1260 Infinity II high-
performance liquid chromatography system. First, the scFvs were
diluted to 0.40mg/mL in PBS (pH 7.4) and heated at 55°C for 1 h
to reduce the amount of insoluble aggregate. The samples were then
centrifuged at 21 000×g for 30min, and the top 80% of the super-
natant was recovered. Next, half of the sample was normalized to
0.25mg/mL (PBS, pH 7.4) for analysis, and the other half was
heated to 65°C for 4 h, incubated overnight at 4°C, and centrifuged
at 21 000×g for 30min to remove aggregates. The antibody solu-
tions were then injected (100 μL) into the column (mobile phase was
PBS with 0.2M arginine, pH 7.4). The column flow rate was
0.7 mL/min, and scFv elution was monitored via UV absorbance at
280 nm.

Analysis of sequence and biophysical data for clinical-

stage antibodies

The amino acid sequences and biophysical measurements for
the 137 clinical-stage antibodies were obtained from a previous pub-
lication (Jain et al., 2017). The CDRs of all antibodies were identi-
fied using Kabat numbering. The theoretical net charges of the
different antibody regions at pH 7.4 were calculated by summing
the charges of Glu (−1), Asp (−1), Arg (+1), Lys (+1) and His
(+0.1).

Logistic regression analysis was performed using limits for each
biophysical property and assigning each mAb as being either above
or below the various limits. Next, the mAbs were binned based on
increments of their net charge, and the percentages of mAbs in each
bin exceeding the cutoff values were calculated. Finally, a logistic
function [y = 1/(1 + exp(–A–Bx))] was fit to the data and the P-
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value of the independent coefficient (B) was calculated to evaluate
statistical significance. This was performed in Microsoft Excel using
the ‘Binary Logistic and Probit Regression’ option in the Real
Statistics resource pack add-in. First, each mAb was assigned a value
of 1 if it exceeded the biophysical limit or a value of 0 if it was
below the limit. This binary data along with the binned net charge
values were used as the inputs for the logistic regression. Newton’s
method was selected for the analysis (20 iterations). The regression
analysis was performed using an alpha value of 0.05 and a classifi-
cation cutoff of 0.5. This analysis was repeated without binning
antibodies based on increments of their net charge.

The statistical significance of each correlation was also evaluated
using receiver operating characteristic curve (ROC) analysis. The
ROC curve was generated from the true positive rate and false posi-
tive rate outputs of the logistic regression performed with the
Microsoft Excel add-in. The area under the curve was evaluated
using the trapezoidal rule.

The sets of biophysical flags that were most strongly linked to
CDR net charge for the clinical-stage antibodies were evaluated
using the following procedure. First, the 10 biophysical assays (Jain
et al., 2017) were clustered into all possible combinations of groups
of 3–10 assays. For each biophysical group size (e.g. 3 assays), a
given combination of assays (e.g. BVP, CSI and AC-SINS) was
selected and the number of mAbs with <2 biophysical flags was cal-
culated as a function of CDR net charge. Next, the strongest rela-
tionships between CDR net charge and the percentage of mAbs with
<2 biophysical flags were calculated via the multinomial logistic
regression (mnrfit) MATLAB function with the objective of achiev-
ing the best (lowest) P-value.

Results

Antibody specificity analysis for common framework

antibodies

Toward our goal of understanding how antibody CDR sequence
impacts antibody specificity, we first investigated antibody non-
specific binding for three single-chain antibody fragments fused to
human Fc (scFv-Fc; A10, B2 and AF1) that recognize the
Alzheimer’s Aβ42 peptide (Tiller et al., 2017a,b). These antibodies
have common frameworks and only differ in their HCDR3
sequences (Fig. 1). The wild-type (WT) antibody is based on the
variable regions of 4D5 (Carter et al., 1992). We expressed these
antibodies in HEK293T cells, purified them using Protein A chroma-
tography (Fig. S1), and analyzed them using size exclusion chroma-
tography (Fig. S2).

We next evaluated the non-specific binding of the antibodies to
milk proteins (and other types of molecules in milk) immobilized in
well plates (Fig. 1). Increasing concentrations of the A10 and B2
antibodies resulted in large increases in non-specific binding that
were much higher than those for the wild-type antibody.
Conversely, the AF1 antibody displayed unusually low levels of
non-specific binding. These levels were even lower than those for the
wild-type antibody and similar to those for multiple Aβ-specific
monoclonal antibodies (mAbs; 4G8 and NAB228) generated via
immunization. It is notable that the scFv-Fc antibodies with high
specificity (wild-type and AF1) had negatively charged HCDR3s,
while those with low specificity (A10 and B2) had positively charged
HCDR3s.

These findings suggest that the presence of negatively charged
residues in HCDR3 may play a key role in mediating low levels of

non-specific binding. Interestingly, the AF1 antibody has five nega-
tively charged (aspartic acid) residues in HCDR3. To evaluate the
importance of these negatively charged residues in promoting high
specificity, we generated an alanine mutant in which five aspartic
acids were mutated to alanine (5DA; Figs 2 and S1). Removal of
aspartic acid residues dramatically increased non-specific binding to
levels that approached those for antibodies with positively charged
CDRs (Fig. 1). The favorable impact of the negatively charged
HCDR3 residues on AF1 specificity was indistinguishable for
glutamic and aspartic acid residues (5DE; Fig. 2). Finally, mutation
of five tyrosine residues to alanine in HCDR3 of the AF1 antibody
(5YA) resulted in similar levels of non-specific binding as AF1.
These results suggest that the negatively charged residues in AF1 are
important for its high specificity.

We next evaluated to what extent our findings were dependent
on the type of molecules (milk proteins) that we used for measuring
antibody non-specific interactions (Fig. 3). Milk is a complex mix-
ture of casein and other molecules, and these milk components
are generally expected to be negatively charged at neutral pH.
Therefore, our findings that negatively charged CDRs reduce non-
specific interactions may simply be due to the use of negatively
charged milk proteins. Therefore, we evaluated the non-specific
binding of AF1 and its mutants to a panel of proteins with both
acidic (ovalbumin, pI 4.6; BSA, pI 4.7; insulin, pI 5.5; keyhole lim-
pet hemocyanin, pI 4.6) and basic (ribonuclease A, pI 9.3; avidin, pI
10; lysozyme, pI 11) isoelectric points. The theoretical isoelectric
points of the scFv-Fc antibodies were relatively similar (range of pIs
of 8.1 for AF1 to 8.9 for B2). We found that AF1 generally dis-
played low levels of non-specific binding to the panel of proteins
tested, with modestly higher levels of binding to proteins with high
isoelectric points. In contrast, the B2 antibody displayed high levels

Fig. 1 Non-specific binding analysis for a panel of antibodies. The levels of

non-specific binding for scFv-Fc antibodies (WT, B2, A10 and AF1) and mAbs

(4G8 and NAB228) were evaluated using well plates coated with milk pro-

teins. The scFv-Fc antibodies have common frameworks and sequence

variation only in heavy chain CDR3 (HCDR3). The amino acid sequences and

theoretical net charges of HCDR3 at pH 7.4 are shown for the scFv-Fc anti-

bodies. The levels of non-specific binding for two mAbs generated via

immunization are also reported. The reported non-specific binding values

are the signals for each antibody divided by the background signal. The

background values were evaluated without scFv-Fc antibody or mAb but

with all other detection reagents. The average values for three or four inde-

pendent experiments are shown, and the error bars are standard errors.
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of non-specific binding not only to proteins with low isoelectric
points but to proteins with high isoelectric points as well (Fig. 3A).
Similar trends were also seen with the AF1 alanine mutant (5DA)
without charged residues in HCDR3 (Fig. 3B). Moreover, we find a
strong correlation between antibody non-specific binding to milk
proteins and the average non-specific binding values for the panel of
seven proteins with acidic and basic isoelectric points (R2 of 0.96;
Fig. 3C). Therefore, our findings for a small panel of scFv-Fc anti-
bodies suggest that negatively charged residues in antibody CDRs
are linked to high specificity.

CDR chemical composition is a key determinant of

specificity for clinical-stage antibodies

To test the generality of our findings, we next evaluated whether the
net charge of HCDR3 or the entire set of six CDRs are key predic-
tors of specificity for clinical-stage antibodies (approved antibody
drugs or antibodies in Phase 2/3 clinical trials). We evaluated pub-
lished antibody non-specific binding data that was obtained using
the variable (VH and VL) regions of 137 clinical-stage antibodies
and the same antibody constant regions (IgG1 isotype, allele *01 for
heavy chain, alleles IGKC*01 and IGLC2*01 for light chain)
regardless of the actual antibody isotype (Jain et al., 2017). The
non-specific (ELISA) binding data were previously obtained by
evaluating antibody interactions with six biomolecules (cardiolipin,
keyhole limpet hemocyanin, lipopolysaccharide, single stranded
DNA, double stranded DNA and insulin). Analysis of the relation-
ship between non-specific binding and the net charge of HCDR3 or
all six CDRs revealed Spearman’s correlation coefficients that were
modest (0.20 for HCDR3 and 0.33 for all CDRs) yet highly signifi-
cant in the case of overall CDR net charge (P-value of 0.00010) and
also significant for HCDR3 net charge (P-value of 0.017).

We also noticed that those clinical-stage antibodies with high
levels of non-specific binding [values >1.9 signal/background, as

reported previously (Jain et al., 2017)] had a higher likelihood of
having positively charged CDRs. Importantly, logistic regression
reveals that increased positive CDR charge is strongly correlated
with increased probability of high levels of antibody non-specific

Fig. 2 Analysis of the impact of negatively charged and tyrosine CDR resi-

dues on antibody specificity using alanine-scanning mutagenesis. Non-

specific binding of the AF1-Fc mutants to milk proteins was evaluated as

described in Fig. 1 (100 nM antibody). The impact of replacing aspartic acid

with glutamic acid was also evaluated. The theoretical HCDR3 net charges

were calculated at pH 7.4. A two-tailed Student’s t-test was used to evaluate

statistical significance for each mutant relative to the parental AF1-Fc anti-

body [P-values <0.01 (*)]. The average values are for three independent

experiments, and the error bars are standard errors.

Fig. 3 Effect of the isoelectric point of non-specific protein reagents on anti-

body non-specific binding. (A, B) Non-specific binding (100 nM scFv-Fc) was

measured using a panel of non-antigen proteins (ovalbumin, BSA, insulin,

KLH, Rnase A, avidin and lysozyme) with a wide range of isoelectric points

(pIs of ~4.5–11). The normalized non-specific binding signals are reported as

the signal minus background (no scFv-Fc antibody) divided by the back-

ground subtracted signal for the wild-type antibody. (C) Comparison of anti-

body non-specific binding to milk proteins versus the panel of non-antigen

proteins reported in (A) and (B). The average values of non-specific binding

for six scFv-Fc antibodies (WT, 5YA, 5DE, AF1, 5DA, B2; in order of increas-

ing levels of non-specific interactions) to seven non-antigen proteins are

shown in (C). In (A) and (B), the average values are for four to six independ-

ent experiments, and the error bars are standard errors. In (C), the average

values are for three to four independent experiments, and the error bars are

standard errors. The error bar for the average non-specific binding value for

wild-type was determined by normalizing each replicate within a single

experiment by the mean and calculating the average standard error.
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interactions (P-value of 0.00042; Fig. 4A). We also confirmed this
correlation using receiver operating characteristic (ROC) curve ana-
lysis [area under the curve (AUC) of 0.73; Fig. 4B]. Although these
results were generated by grouping antibodies in terms of increments
of net charge for visualization purposes, the statistical significance is
even higher without grouping antibodies (P-value of 0.00025 and
AUC of 0.74).

We also sought to test if the overall net charge of all six antibody
CDRs is the best predictor of the risk of high antibody non-specific
interactions or if the charge of individual CDRs (such as HCDR3)
or other antibody regions [such as individual CDRs or variable (VH

or VL) domains] are better predictors of specificity (Table I).
Notably, the net charge of individual CDRs or subsets of the CDRs
from either the heavy or light chain displayed weaker correlations
(P-values of 0.0049–0.57) relative to the net charge of the entire set
of six CDRs (P-value of 0.00025). The net charges of individual
variable domains (VH and VL) and the variable framework (Fv
excluding the CDRs) also displayed much weaker correlations (P-
values of 0.011–0.41).

The fact that the net charge of the CDRs is correlated with speci-
ficity for clinical-stage antibodies suggests that the number of nega-
tively and/or positively charged CDR residues may also be
correlated with specificity. Therefore, we performed logistic regres-
sion analysis of correlations between the number of certain amino
acids in the CDRs of clinical-stage antibodies and the probability of
high levels of non-specific binding (Table II). Interestingly, there is a
strong positive correlation for increasing numbers of arginine and
lysine CDR residues and low specificity (P-value of 0.00023), while
there is a strong negative correlation for increasing numbers of
aspartic and glutamic acid residues and low specificity (P-value of
0.028). These correlations are more significant than observed for
most individual hydrophobic residues or combinations thereof. The
one notable exception is leucine, as increasing number of leucine
residues in the CDRs is positively correlated with low specificity (P-
value is 0.019). Nevertheless, these findings generally demonstrate
that CDR net charge (and the number of charged CDR residues) are
key factors that determine the specificity of diverse types of anti-
bodies, including those currently in the clinic.

Positively charged CDRs are linked to poor antibody

biophysical properties

The primary role of CDR net charge in governing antibody specifi-
city led us to evaluate if it is also important in determining antibody
biophysical properties such as self-association and aggregation
(Fig. 5). This led us to test the biophysical properties of single-chain
antibodies (scFv) with common antibody frameworks (Figs 5 and
S3). We reasoned that antibody variants with low specificity would
also have increased levels of self-association and aggregation.

Therefore, we first evaluated the conformational stability of each
antibody (scFv) variant to determine if simple stability differences
may explain any differences in their solubility and aggregation (Figs
5A and S4). Some of the antibodies displayed lower apparent

Fig. 4 CDR net charge is inversely correlated with the specificity of clinical-

stage mAbs. (A) Logistic regression analysis of the specificity of 137 clinical-

stage mAbs (approved antibody drugs or antibodies in clinical trials) as a func-

tion of CDR net charge at pH 7.4. Non-specific binding was evaluated using a

panel of six biomolecules (cardiolipin, keyhole limpet hemocyanin, lipopoly-

saccharide, single stranded DNA, double stranded DNA and insulin). Clinical-

stage mAbs were flagged if their ELISA non-specific binding signals exceed a

value of 1.9 signal/background (Jain et al., 2017). The mAbs were binned

based on their CDR net charge values, and the number of antibodies in each

bin is reported above each bar. (B) Receiver operating characteristic curve

analysis. The corresponding area under curve (AUC) value is also reported.

Table I. Relationship between the net charge of different antibody

regions and antibody specificity for clinical-stage mAbs

Antibody regions P-value Area under
curve (AUC)

Direction of relationship,
net charge vs. specificity

Fv 0.0112 0.66 −
VH 0.011 0.66 −
VL 0.41 0.57 −
Variable framework 0.12 0.59 +
CDRs 0.00025 0.74 −
Heavy CDRs 0.010 0.67 −
H1 0.22 0.54 +
H2 0.024 0.64 −
H3 0.046 0.62 −
Light CDRs 0.0049 0.70 −
L1 0.041 0.62 −
L2 0.0069 0.64 −
L3 0.57 0.60 −

Logistic regression analysis of the specificity of 137 clinical mAbs as a func-
tion of the theoretical net charge of different antibody regions at pH 7.4. Low
antibody specificity was defined as non-specific binding (ELISA) values >1.9
signal/background (Jain et al., 2017). The P-value for the coefficient of the
independent variable of the logistic regression function and the area under the
curve (AUC) for the receiver operating characteristic curves are reported. A
negative relationship between net charge and specificity means that specificity
is reduced as net charge is increased, and vice versa for the positive
relationship.
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melting temperatures (Tm* values of 65.3 ± 0.1°C and 67.9 ± 0.3°C
for A10 and B2, respectively, relative to 72.7 ± 0.1°C for wild-
type). However, the AF1 variant (5DA) had a similar stability (71.9
± 0.2°C) as wild-type (72.7 ± 0.1°C) and the parent AF1 antibody
(71.8 ± 0.3°C). We also evaluated the refolding efficiency after ther-
mal denaturation for each antibody and found that the results were
generally correlated with their specificities (Fig. S4). The high specifi-
city antibodies (AF1 and wild-type) displayed the highest levels of
refolding after thermal denaturation, while the low specificity anti-
bodies (A10 and 5DA) displayed the lowest levels of refolding.

The high levels of refolding after thermal denaturation for the
antibodies with high specificity may be due to their low propensity
to aggregate when unfolded at high temperature. To test this, we
evaluated the non-native solubility of the panel of scFv antibodies
after heating them to 65°C for 4 h and cooling them to 4°C over-
night (Figs 5B and S3). Notably, the antibodies with low specificity
(A10, B2 and 5DA) displayed the lowest solubilities, while those
with high specificity (AF1 and wild-type) displayed the highest
solubilities.

We next evaluated to what extent CDR net charge is linked to the
biophysical properties of clinical-stage antibodies. To accomplish this,
we used previously reported measurements of aggregation [accelerated
stability (AS)], self-association [affinity-capture self-interaction

nanoparticle spectroscopy (AC-SINS), clone self-interaction by bio-
layer interferometry (CSI)], hydrophobicity [hydrophobic interaction
chromatography (HIC), standup monolayer adsorption chromatog-
raphy (SMAC) and salt-gradient affinity-capture self-interaction nano-
particle spectroscopy (SGAC-SINS)], and specificity [polyspecificity
reagent (PSR), baculovirus particle (BVP), cross-interaction chromatog-
raphy (CIC) and ELISA assays] (Jain et al., 2017). We used published
limits for high levels of hydrophobicity, self-association, non-specific
interactions and aggregation for the 10 assays (Fig. 6A) to evaluate the
total number of biophysical flags for each mAb (maximum of 10
flags).

We first performed logistic regression analysis to evaluate if
increased overall CDR charge is linked to deficits in each antibody bio-
physical property (Table S1). Importantly, we find that CDR charge is
strongly linked to two other measures of non-specific interactions in
addition to the ELISA measurements. Increased CDR charge is
strongly linked to increased non-specific antibody interactions with
baculovirus particles (BVP assay, P-value of 4.3 × 10−4) and soluble
membrane proteins (PSR assay, P-value of 3.2 × 10−4). This is notable
because mAbs with high levels of non-specific binding to baculovirus
particles and soluble membrane proteins have a much higher risk of
fast antibody clearance in vivo (Hotzel et al., 2012; Kelly et al., 2015;
Dobson et al., 2016).

We also find that CDR net charge is linked to antibody self-
association (Table S1). Increased CDR net charge is associated with
increased levels of antibody self-association measured by AC-SINS
(P-value of 0.0095) and CSI (P-value of 0.010). This is significant
because increased antibody self-association is linked to poor solubil-
ity (Bethea et al., 2012; Geng et al., 2016a,b; Sule et al., 2012,
2013; Wu et al., 2015) and abnormally high viscosity (Connolly
et al., 2012; Yadav et al., 2012; Lilyestrom et al., 2013; Sharma
et al., 2014; Tessier et al., 2014; Binabaji et al., 2015; Buck et al.,
2015; Nichols et al., 2015).

Table II. Effect of specific types of CDR residues on the specificity

of clinical-stage antibodies.

Amino
acids

P-value Area under
curve (AUC)

Direction of relationship, # of
amino acids vs. specificity

A 0.50 0.53 −
C 0.75 0.51 +
D 0.027 0.63 +
E 0.56 0.56 +
F 0.66 0.52 +
G 0.66 0.52 +
H 0.045 0.58 −
I 0.84 0.51 +
K 0.17 0.58 −
L 0.019 0.63 −
M 0.85 0.50 −
N 0.35 0.56 +
P 0.67 0.51 −
Q 0.082 0.57 −
R 0.00039 0.71 −
S 0.45 0.56 +
T 0.91 0.50 −
V 0.52 0.53 +
W 0.077 0.63 +
Y 0.86 0.50 +
R, K 0.00023 0.72 −
R, K, H 0.0010 0.69 −
D, E 0.028 0.66 +
F, W 0.15 0.58 +
F, W, Y 0.73 0.53 +
I, M 0.96 0.50 +
I, M, L 0.065 0.59 −

Logistic regression analysis of the relationship between the number of each
amino acid (or combinations thereof) in the CDRs and the percentage of
clinical-stage mAbs with low specificity was performed as described in
Table I. A negative relationship between the number of residues and specificity
means that specificity is reduced as the number of residues is increased, and
vice versa for the positive relationship.

Fig. 5 Biophysical properties of single-chain antibodies with high and low spe-

cificity. (A) Apparent melting temperature (Tm
*) and (B) non-native solubility

analysis of scFv antibodies with different HCDR3 net charges and different

levels of specificity. In (B), the concentration of soluble antibody was mea-

sured after heating at 65°C for 4 h and cooling to 4°C overnight (initial anti-

body concentration of ~0.4mg/mL). Average values are reported for (A) two

or (B) three independent experiments, and the error bars are standard errors.
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To evaluate how CDR charge more generally impacts antibody
biophysical properties, we performed logistic regression analysis to
evaluate the relationship between CDR net charge and the percentage
of mAbs with <2 biophysical flags (Fig. 6 and Table S2). We found a
significant relationship between the percentage of mAbs with <2 bio-
physical flags (out of 10 possible flags) and CDR net charge (P-value
of 1.2 × 10−3; Fig. 6A). This correlation is even more significant for a
subset of four of these flags (P-value of 5.8 × 10−5 for BVP, CIC, CSI
and ELISA; Fig. 6B). We also evaluated the role of positively and
negatively charged residues on antibody biophysical properties using
the same sets of biophysical flags (Table S3). Notably, the number of
negatively charged residues (Asp and Glu) was positively correlated
with the likelihood of favorable antibody biophysical properties (P-
values of 0.0026–0.0031), while the number of positively charged resi-
dues (Arg, Lys and His) was negatively correlated with the likelihood
for favorable biophysical properties (P-values of 0.0013–0.028). These
results collectively demonstrate that CDR net charge and the number
of charged CDR residues are key determinants of the biophysical prop-
erties of antibodies, including those in clinical development.

Discussion

Our findings highlight non-intuitive differences between the impacts
of positively and negatively charged residues on antibody specificity.
Importantly, we found that high levels of negatively charged CDR
residues can promote non-specific interactions with positively
charged molecules, but these interactions are relatively modest
(Fig. 3). However, positively charged CDRs mediate high levels of
non-specific interactions to both negatively and positively charged
molecules.

We posit that these large differences in antibody specificity are
due to key molecular differences between the side chains of posi-
tively and negatively charged residues. Our results reveal that argin-
ine is much more important in mediating non-specific interactions
than lysine (Table II). Arginine is a large amino acid that can partici-
pate in hydrophobic, pseudo-aromatic and hydrogen bonding inter-
actions in addition to electrostatic interactions. The delocalized
charge of the guanidinium group – which is much different than the
more localized charge of the α-amino group for lysine – is likely part
of why arginine displays complex properties that are not explainable
based simply on its charge. It is also notable that negatively charged
amino acids appear to be better hydrated than positively charged

Fig. 6 Clinical-stage antibodies with positively charged CDRs have increased risk for poor biophysical properties. Logistic regression analysis of the relationship

between CDR net charge (pH 7.4) and the percentage of clinical-stage mAbs with <2 biophysical flags. Each mAb was assigned up to 10 biophysical flags based

on previously reported measurements of antibody specificity, self-association, hydrophobicity and aggregation (Jain et al., 2017). (A,B) Regression analysis

between CDR net charge and the percentage of clinical-stage mAbs with <2 biophysical flags using (A) ten or (B) four biophysical flags. The number of mAbs in

each bin is reported above each bar. Receiver operating characteristic curve analysis is also reported in terms of the area under the curve (AUC) values.
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amino acids (Kuntz, 1971), and the guanidinium group is one of the
most poorly hydrated ions (Mason et al., 2003, 2004). These factors
collectively suggest that positively charged amino acids – and argin-
ine in particular – mediate non-specific antibody interactions via
both electrostatic and non-electrostatic interactions.

One of the most surprising aspects of our findings is the key role
of negatively charged CDR residues in mediating high antibody
specificity. Several previous reports identified positively charged resi-
dues in antibody CDRs – and arginine in particular – as a key risk
factor for high levels of non-specific interactions (Wardemann et al.,
2003; Birtalan et al., 2008, 2010; Kelly et al., 2018; Datta-Mannan
et al., 2015a,b; Tiller et al., 2017a,b). However, our results demon-
strate that removal of negatively charged CDR residues – without
the addition or the presence of any positively charged residues – is
sufficient to induce non-specific interactions. This suggests that the
favorable contribution of negatively charged residues to antibody
specificity cannot be explained simply based on their charge.
Instead, we reason that favorable interactions of the acidic side
chains with water render negatively charged residues particularly
hydrophilic (Kuntz, 1971) and able to prevent hydrophobic interac-
tions that are favored by neighboring aromatic and hydrophobic
residues in antibody CDRs. A particularly interesting finding is that
aspartic acid is more important as compared to glutamic acid in
mediating high specificity (Table II). Aspartic acid also appears more
frequently than glutamic acid in clinical antibodies (average fraction
of 0.061 ± 0.026 and 0.018 ± 0.020 in the CDRs, respectively;
Table S3). This suggests that aspartic acid could be more important
for the favorable antibody properties required for clinical use, with
specificity being one of the most important.

Another surprising aspect of our work is the finding that CDR
charge is not only linked to antibody specificity but also to antibody
biophysical properties in general. We have previously shown that
negatively charged mutations in antibody CDRs are more effective
at preventing antibody aggregation than positively charged muta-
tions (Perchiacca et al., 2014). This is also consistent with other
observations that aggregation-resistant antibodies are enriched in
negatively charged CDR mutations (Jespers et al., 2004; Arbabi-
Ghahroudi et al., 2009; Perchiacca et al., 2011, 2012; Dudgeon
et al., 2012; Perchiacca and Tessier, 2012; Lee et al., 2016).
However, our findings reveal that positively charged CDRs are
linked to increased antibody self-association (Alam et al., 2018) in
addition to increased aggregation and reduced specificity. The fact
that increased CDR charge is linked to increased self-association is
notable because antibodies with high levels of self-association have a
much higher risk of abnormally high viscosity (Connolly et al.,
2012; Yadav et al., 2012; Lilyestrom et al., 2013; Sharma et al.,
2014; Tessier et al., 2014; Binabaji et al., 2015; Buck et al., 2015;
Nichols et al., 2015) and fast antibody clearance (Kelly et al., 2015;
Dobson et al., 2016). Indeed, several reports have established that
positively charged antibody variable regions and even positively
charged CDRs can lead to fast antibody clearance (Igawa et al.,
2010; Li et al., 2014; Sharma et al., 2014; Bumbaca Yadav et al.,
2015; Datta-Mannan et al., 2015a,b). The latter behavior is likely
due to antibody non-specific interactions with biomolecules and cells
that reduce antibody bioavailability.

Our findings also provide important guidelines for improving
therapeutic antibody development. The fact that antibody specificity
is the best biophysical predictor of antibody success in the clinic
(Jain et al., 2017) suggests that selecting or engineering antibodies
with negatively charged or weakly positively charged CDRs is
important for generating antibodies with drug-like properties. It will

also be important in the future to consider other aspects of CDR
chemical composition (e.g. number of hydrophobic and hydrophilic
residues) as well as CDR structure (e.g. solvent exposure and spatial
positioning of amino acids) in addition to the net charge to improve
predictions of antibody specificity. We expect that these efforts –

which are currently underway in our laboratory – will greatly
improve the identification and engineering of antibody candidates to
improve their specificity and likelihood of success in the clinic.

Supplementary Data

Supplementary data are available at Protein Engineering, Design & Selection
online.
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