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Abstract

Randomization statistics offer alternatives to many of the statistical methods commonly used in 

behavior analysis and the psychological sciences, more generally. These methods are more flexible 

than conventional parametric and nonparametric statistical techniques in that they make no 

assumptions about the underlying distribution of outcome variables, are relatively robust when 

applied to small-n data sets, and are generally applicable to between-groups, within-subjects, 

mixed, and single-case research designs. In the present article, we first will provide a historical 

overview of randomization methods. Next, we will discuss the properties of randomization 

statistics that may make them particularly well suited for analysis of behavior-analytic data. We 

will introduce readers to the major assumptions that undergird randomization methods, as well as 

some practical and computational considerations for their application. Finally, we will demonstrate 

how randomization statistics may be calculated for mixed and single-case research designs. 

Throughout, we will direct readers toward resources that they may find useful in developing 

randomization tests for their own data.
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Introduction

“… [S]tatistics are merely tools, and like most tools, they are morally neutral; it is 

how one uses such tools that determines whether they are good or evil, helpful or 

harmful.”

(Fisher & Lerman, 2014, p. 243).

Zimmermann, Watkins, and Poling (2015) compiled a list of all 3,084 original research 

articles published in the Journal of the Experimental Analysis of Behavior (JEAB) from its 

inception in 1958 through 2013. The authors semirandomly selected about one third of these 

articles (n = 1,048, 524 of which used only human participants, and 524 of which used only 
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nonhuman subjects) for analysis. They coded study characteristics including the studied 

species, the number and sex of participants/subjects, and the type of experimental design 

(i.e., within-subject, between-group, or mixed designs) used to address the question under 

study. Importantly for present purposes, they also collected data on whether or not these 

studies reported inferential statistics as a component of data analysis. When they regressed 

the percentage of studies in each year that reported inferential statistics onto year of 

publication, Zimmermann and colleagues found that the relation was reasonably well 

described by a linear model (i.e., R2 = .82; see also their Fig. 4) with a slope coefficient of 

1.08 (see also Foster, Jarema, & Poling, 1999, for similar findings). That is, the number of 

articles published in JEAB that included inferential statistics increased by roughly 1.08% 

each year over this time frame.

Zimmermann and colleagues’ (2015) findings demonstrate that inferential statistics have 

become common components of data analysis in behavior-analytic research. Whether this 

shift toward embracing statistical methods is a good thing or a bad thing for the science is up 

to debate (for contrasting views, interested readers may see, e.g., Branch, 1999; 2014; 

Hopkins, Cole, & Mason, 1998; Huitema, 1986; Kratochwill & Levin, 2014; Michael, 1974; 

Shadish, Hedges, & Pustejovsky, 2014). Nevertheless, there are circumstances under which 

it may be particularly beneficial for researchers to conduct statistical analyses of their 

results.

For example, though within-subject designs remain the most popular study design in 

experimental and applied analyses of behavior, between-subjects and mixed designs are 

becoming more common (see, e.g., Kyonka, in press; Zimmermann et al., 2015). On the one 

hand, these latter designs offer researchers the ability to study behavioral outcomes that may 

be affected by repeated testing (e.g., extinction learning or relapse of previously eliminated 

behavior; see Baum, 2012; Lieving & Lattal, 2003; Sweeney & Shahan, 2013; Wacker et al., 

2011) or that are not reversible within subjects (e.g., acquisition of novel skills; see Roane, 

Ringdahl, Kelley, & Glover, 2011). On the other hand, between-subjects designs are limited 

in that they introduce an additional source of uncontrolled variability (i.e., variability 

between subjects) that might complicate interpretation of between-group differences in a 

behavioral outcome (for discussion, see Charness, Gneezy, & Kuhn, 2012). Inferential 

statistics can help to clarify relations between variables while accounting for these sources 

of additional variance. Statistical methods also add to the set of tools that a researcher may 

use when making decisions about data when the functional relations between independent 

and dependent variables are not immediately clear through means of visual inspection alone 

(for discussion, see Weaver & Lloyd, 2018). Further, Huitema (1986) cogently argued that 

statistical analysis of behavior-analytic data could increase the visibility of the science to 

other disciplines (e.g., neuroscience, pharmacology, medicine) that place stronger emphasis 

on statistical outcomes when evaluating a study’s results. Finally, standards of evidence for 

empirically supported procedures rely heavily on the outcomes of meta-analyses that 

summarize the statistical effect sizes reported in a defined body of empirical investigation 

(APA Presidential Task Force on Evidence-Based Practice, 2006; Oxford Center for 

Evidenced-Based Medicine, 2011). Meta-analysis researchers have generally excluded 

behavior-analytic research from their analyses in large part due to the absence of the relevant 

statistical data required for inclusion in meta-analyses. Conducting and reporting appropriate 
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statistical analysis of behavior-analytic findings should increase the likelihood that those 

findings will be included in future meta-analyses (Fisher & Lerman, 2014).

Despite the potential utility of inferential statistics for behavioral research described above, 

the opening quote from Fisher and Lerman (2014) expresses a dimension of statistical 

methods that is important to bear in mind. Inferential statistics may help researchers 

interpret and make decisions about complex data sets, provided that the data are reasonably 

well suited for the statistical test that is applied. If the data are poorly suited for a test, 

however, the output from a statistical test may be misleading. Inasmuch, behavioral 

researchers must consider practical barriers when selecting statistical methods to apply to 

their data.

Determining how well suited a specific set of data is for a specific statistical test can be a 

challenge, as Perone (1999) noted in his critique of statistics for the behavioral sciences. In 

the case of study designs that include multiple subjects or participants, specifics of the study 

and the type of data to be analyzed will help to guide researchers toward an appropriate 

constellation of statistical methods (see, e.g., Nayak & Hazra, 2011, for a reduced decision-

making process based on these considerations). Inferential statistical methods, however, are 

packaged with assumptions that must be met (or at least not grossly violated) for the 

outcomes of those tests to be valid. For example, the t and F family of tests, two of the most 

common analytic strategies for comparing mean differences in the psychological sciences, 

require that residuals (i.e., the difference between obtained values of the dependent variable 

and values of this variable that are predicted by the statistical model) are normally 

distributed. That is, these tests are parametric methods because they assume that data are 

sampled from a population whose distribution of scores may be characterized by a fixed 

number of parameters (in the case of the normal distribution, these parameters are the mean 

and standard deviation; we will return to this issue in more detail in the “Advantages of 

Randomization” section below). It may be difficult to visually or statistically assess the 

extent to which this assumption is met with the relatively small-n sample sizes often used in 

behavior-analytic research (Geng, Wang, & Miller, 1979; Ghasemi & Zahediasl, 2012).

When single-case research designs are used, researchers’ statistical options are further 

limited. Because only a single subject or participant is observed, methods like t and F tests, 

which require samples of independent observations, are inappropriate (see Bulté & 

Onghena, 2008; Weaver & Lloyd, 2018). Further, autocorrelation between data points is a 

serious concern in single-case research designs because of the time-series nature of the data 

that they produce. That is, data points that are close together in time tend to be more highly 

correlated than data points that are temporally further apart. Autocorrelation may strongly 

bias parametric statistics (see Busk & Marascuilo, 1988; Sharpley & Alavosius, 1988; 

Wilkinson & Task Force on Statistical Inference, 1999), though sophisticated methods for 

analyzing time-series data certainly exist (see, e.g., Brockwell & Davis, 2016, for a thorough 

introduction).

Additional complications with statistical inference when applied to behavior-analytic data 

arise from their conceptual underpinnings. Sir Ronald Fisher’s (1954; 1955) general 

approach to statistical inference, which undergirds the lion’s share of modern statistical-
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significance testing (see, for discussion, Perezgonzalez, 2015), relies on estimation of 

population parameters based on sample statistics. In effect, these methods help to answer 

questions like: “Given that the experimenter drew subjects or participants from a specific 

population with mean = μ and variance = σ for the outcome of interest, what is the 

probability that the researcher randomly would have drawn a sample with scores on the 

outcome of interest as extreme or more extreme than the observed scores?” These are not 

always the types of research questions in which behavior analysts are interested (see, e.g., 

Branch, 1999). That is, behavior analysts generally direct their hypotheses toward 

demonstrating behavior change in the face of one set of contingencies relative to behavior 
under another set of contingencies, not relative to the behavior of a hypothesized population 

of individuals.

In light of these practical and conceptual limitations of popular statistical methods like t and 

F tests when applied to behavior-analytic data, alternative analysis methods are desirable. An 

increasing number of researchers have come to embrace randomization statistics (e.g., 

Adams & Anthony, 1996; Ferron & Ware, 1994; Wampold & Furlong, 1981; Weaver & 

Lloyd, 2018; for review, see Huo, Heyvaert, Van den Noortgate, & Onghena, 2014), as such 

methods may be particularly well suited for use in behavioral research. The purpose of this 

article is to introduce readers to randomization methods. We first will provide a brief 

historical overview of randomization methods. Next, we will present some of the advantages 

of randomization over other statistical methods when applied to behavioral data. We will 

describe some practical limitations of these tests, as well as the assumptions that must be 

met for their application. Finally, we will apply randomization methods to analyze 

hypothetical behavioral data sets to provide examples of their potential utility for the 

science.

A Brief History of Randomization Methods

Randomization tests are not a new statistical methodology. In fact, they are quite old, having 

been described initially by Sir Ronald Fisher in his influential 1935 text, The Design of 
Experiments. Fisher acknowledged the usefulness of testing a “wider hypothesis [relative to 

that of the t-test] which merely asserts that two series [of data] are drawn from the same 

population, without specifying that this is a normal distribution” (p. 51). He then went on to 

describe a method for testing such a hypothesis using data from an experiment conducted by 

Charles Darwin (1876). In this experiment, Darwin planted 15 pairs of corn plants, one of 

which was produced through cross pollination, and the other of which was produced through 

self-pollination. Within each pair of plants, Darwin controlled variables such as type of soil, 

time of planting, and other growing conditions. Darwin wanted to know whether pollination 

method affected the height of his mature corn plants.

The logic of Fisher’s (1935) “wider hypothesis” test was as follows. If pollination method 

had no effect on the height of Darwin’s (1876) corn plants, it should have been equally 

likely for cross-pollinated plants to be taller than self-pollinated plants within each matched 

pair as it was for cross-pollinated plants to be shorter than self-pollinated plants. This was 

the null hypothesis, H0, for Fisher’s test. Fisher reasoned that randomly switching pairs of 

plants between groups would not alter the expected value for the mean of each group under 
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the H0, so he calculated every possible rearrangement of plants between groups while 

keeping pairs of plants matched.1 He retained the matched pairs because Darwin controlled 

growing factors within pairs but these factors varied between pairs.

For each of these rearrangements, Fisher (1935) calculated absolute differences in the 

heights of plants between groups by summing the heights of all plants in each group and 

then subtracting this sum for the self-pollinated group from that of the cross-pollinated 

group. Fisher then determined the probability of obtaining a between-group height 

difference that was as or more extreme than the actual difference that Darwin (1876) 

obtained (i.e., a difference of 39.25 inches between groups, in favor of cross-pollinated 

plants being taller than self-pollinated plants). Fisher also may have examined mean 
differences between groups and calculated the probability of obtaining a mean difference 

between groups as or more extreme than the mean difference Darwin obtained (i.e., D = 2.62 

inches [where D stands for “difference”] in favor of cross-pollinated plants, SD of the 

difference = 4.72 inches)—his outcomes would have been identical. We will focus on mean 

differences below because this practice aligns with contemporary practices in randomization 

methods.

Panel A on the left side of Figure 1 shows a relative frequency distribution of mean 

differences (heights of cross-pollinated plants – heights of self-pollinated plants) from the 

rearrangements of plants between groups.2 (An empirical distribution that shows the 

frequency of outcomes derived from randomly rearranging obtained data a large number of 

times, like the one shown in Panel A, is sometimes called a “reference,” “resampling,” or 

“permutation” distribution to distinguish it from the theoretical “sampling” distribution 

germane to many contemporary statistical methods [see, e.g., Ludbrook & Dudley, 1998; Yu, 

2003]. Both of these types of distributions, however, serve a similar purpose in that they act 

as a frame of reference for researchers to determine p-values for obtained outcomes.) Of 

these possible rearrangements, Fisher (1935) observed that about 5.3% of cases produced 

differences in plant heights that were as extreme or more extreme than those observed by 

Darwin (1876). Thus, the probability of Darwin’s findings, given the data that he collected, 

was p = .053. This probability is represented by the portions of the distribution to the left 

and right of the dashed lines labeled D = −2.62 and D = 2.62 in Panel A, respectively.

As Fisher (1935) noted, this p-value is virtually identical to the outcome of a two-tailed, 

paired-samples t-test performed on Darwin’s data, t(14) = 2.15, p = .050. For illustrative 

purposes, Panel B on the right side of Figure 1 shows the probability density function (PDF) 

for t with 14 degrees of freedom. Researchers may use a PDF to determine the probability 

1Based on Fisher’s (1935) original text, it is reasonable to assume that he used a shortcut for determining the p-value for his 
randomization test. For example, he focused on one tail of the reference distribution that we show in Figure 1 and then doubled his 
estimate to calculate a two-tailed p-value because the distribution is symmetrical around the mean. He also observed that if he 
randomized plants across groups such that self-pollinated plants were taller than cross-pollinated plants in ≥ seven pairs, the difference 
in plant heights would never equal or exceed 39.25 inches in favor of cross-pollinated plants. Accordingly, he did not bother 
calculating those combinations.
2Instead of calculating every possible rearrangement of group assignments by pairs, we used a Monte Carlo resampling method to 
generate the relative-frequency distribution shown in Figure 1. During each of the 10,000 iterations of the Monte Carlo, we randomly 
assigned the members of each pair of plants to groups without regard to whether that specific rearrangement of group assignments was 
already included in the analysis. These techniques, for all intents and purposes, produce equivalent results (see Dwass, 1957). We will 
return to this consideration later.
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that an outcome would fall within a specified range of values by examining the area under 

the curve (AUC) between those values. In this case, the sum of the AUC that falls below t = 

−2.15 and above t = 2.15 gives us the p-value for our test, p = .050. Thus, the proportions of 

the PDF that are more extreme than t = −2.15 and t = 2.15 are roughly equal to the 

proportions of the empirical reference distribution in Panel A that are more extreme than D 
= −2.62 and D = 2.62.

The test that Fisher (1935) conducted is termed a “permutation test” because he compared 

obtained data to every possible rearrangement of scores between groups (see Ludbrook & 

Dudley, 1998). This early example of randomization-based data analysis set the stage for 

researchers to generalize the approach to other experimental designs, types of data, and 

purposes of analysis (see, e.g., Box & Anderson, 1955; Pesarin, 2001; Westfall & Young, 

1993). Shortly after publication of Fisher’s The Design of Experiments, for example, E. J. 

G. Pitman (1937a; 1937b; 1938) demonstrated how researchers might apply this approach to 

other relatively simple comparisons (e.g., tests of mean differences between two or more 

independent groups and the correlations between two paired sets of scores). More recently, 

researchers have extended randomization methods to describe simple and complex linear 

models (see, for discussion, Nyblom, 2015). They have also used randomization methods to 

describe simultaneous effects of multiple independent variables on a dependent variable (i.e., 

“interaction effects” in regression and analyses of variance [ANOVA]), though these tests 

are complex and statisticians have not reached clear consensus concerning best practices for 

their application (see Anderson, 2001; Anderson & Ter Braak, 2003). We will return to some 

of these analyses in the section titled “Applications to Behavior-Analytic Data” below.

To summarize, Ronald Fisher first developed randomization methods in the mid-1930s. The 

general premise of randomization methods is that, under the H0, scores from different 

groups should be interchangeable. Thus, researchers can determine the probability of 

obtaining a statistic from a given set of data by (a) repeatedly rearranging data between 

groups, (b) calculating the statistic of interest for each set of rearranged data (e.g., a mean 

difference or t-value), (c) determining how many of those statistics are as extreme or more 

extreme than the statistic obtained from an experiment, and (d) dividing that number of 

extreme statistics by the total number of statistics obtained by rearranging the data. 

Following this basic logic, randomization-based alternatives have been developed for many 

of the statistical analyses that are common in the behavioral sciences.

Advantages of Randomization

Randomization-based methods differ from other methods for drawing statistical inferences 

like the t and F family of tests in several major ways that make their application considerably 

more flexible (see Edgington & Onghena, 2007). Below, we will describe these differences. 

In so doing, we will emphasize some of the potential advantages of randomization methods 

over other inferential statistics when analyzing behavior-analytic data.

Many inferential statistical techniques require that residuals of scores on an outcome 

variable be normally distributed in a researcher’s sample. The exact reason this assumption 

exists is rather complicated, but we will provide a brief explanation (see Lumley, Diehr, 
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Emerson, & Chen, 2002, for an additional and very helpful treatment). Statistical tests like 

the t-test and ANOVA are used to determine the extremity of mean differences, and they do 

so by comparing these differences to the sampling distribution of the mean for a given 

population. The sampling distribution of the mean is exactly what it sounds like: If one were 

to draw samples of size n from the population over and over again and measure the outcome 

variable of interest in each one of those samples, the histogram of mean scores from all of 

the samples would be the sampling distribution of the mean. The problem is that researchers 

usually do not have access to a large number of samples from the overall population; they 

have only one sample of scores on an outcome variable. Fortunately, the central limit 

theorem can be applied to help researchers render an informed guess about what this 

distribution would look like. This theorem states that, as the sample size (n) increases, the 

sampling distribution of the mean on an outcome will approach normality regardless of the 

distribution of scores in the population. That is, for relatively large samples (e.g., n > 30; see 

Ghasemi & Zahediasl, 2012), it is likely that the sampling distribution of the mean, if 

empirically constructed, would be normal. With smaller sample sizes, however, it becomes 

less certain what the sampling distribution of the mean would look like. If the distribution of 

scores is normal in the population (as would likely be the case if the researcher obtains a 

sample with normally distributed residuals), then the sampling distribution of the mean will 

be normal regardless of the sample size. Thus, statistics like t- and F-tests assume normality 

of residuals in the sample because that helps to ensure that the sampling distribution of 

means is likely to be normally distributed regardless of the size of a researcher’s sample.

As Fisher (1935) alluded to in his quote above (i.e., “… without specifying that this is a 

normal distribution,” [p. 51, italics added for emphasis]), randomization tests are 

nonparametric, meaning that they do not require any distributional assumptions for the 

outcome of the test to be valid. Nonparametric tests may be particularly useful for behavior-

analytic data because the science tends to use small-n research designs. Not only is the 

normality assumption of t and F statistics particularly important with small sample sizes 

(because the sampling distribution of the mean cannot be assumed to be normal when n is 

small), but it may be difficult if not impossible to tell whether or not residuals of data within 

a sample are normally distributed with small ns. Under these circumstances, visual 

assessments of normality (e.g., plotting a histogram of residuals or a quantile–quantile [q–q] 

plot of these data) may not be particularly informative, and formal tests for normality (e.g., 

tests for skewness or kurtosis; linear regression of obtained quantiles onto quantiles from a 

hypothetical, normal distribution in a q–q plot) may be underpowered to detect deviations 

from normality. As a result, researchers may be led to believe residuals of their data are 

normally distributed when they are not, possibly leading to unreliable statistical outcomes. 

Randomization tests are nonparametric because the obtained data themselves are used to 

create an empirical reference distribution that serves the same purpose as the sampling 

distribution of the mean in parametric statistics.

Randomization tests are, of course, not the only statistical tests that are applicable to data for 

which the residuals are distributed nonnormally. For example, the Mann-Whitney U-test 

(Mann & Whitney, 1947) may be used to analyze differences between two independent 

groups, and Wilcoxon’s sign-rank test (Wilcoxon, 1945) is a common method for analyzing 

differences between two paired groups, when the normality assumption of t-tests is violated. 
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It is important to note, however, that these tests tend to be considerably less powerful than 

their parametric counterparts (Colquhoun, 1971). By “powerful,” we refer here to statistical 

power, which is the probability of rejecting the null hypothesis when it is, in fact, false (see 

Kyonka, in press, for discussion and a very helpful tutorial on statistical power with small-n 
samples). Simulation studies have demonstrated that randomization tests are often more 

powerful than other nonparametric tests and, in some cases, may be even more powerful 

than parametric statistics (see Ludbrook & Dudley, 1998; Nuzzo, 2017).

As an important aside, we alluded in the Introduction that the term parametric in statistics 

does not necessarily entail that the parametric statistical model deals with the normal 
distribution. Generalized linear models are a class of parametric statistics that was developed 

to describe data whose distributional properties are better described by a variety of 

distributions like the binomial, Poisson, and gamma (see, for review, Dunn & Smyth, 2018; 

Nelder & Wedderburn, 1972). We encourage readers to become familiar with this family of 

statistical tests, too, in the case that their data are well suited for analyses using these 

methods.

A second advantage of randomization statistics is that these methods do not require random 

sampling from a specific population. Random sampling is important for many contemporary 

statistical methods because sample statistics (e.g., sample means and standard deviations) 

are used to draw inferences about population parameters. When researchers select samples 

using methods other than random selection (e.g., selecting a sample of convenience; 

Freedman, 2010), estimates of the population parameters may be biased, or interpretation of 

statistical outcomes may be strongly limited. Fisher (1935) initially considered 

randomization tests as an alternative method for estimating population parameters based on 

a sample of data. Inasmuch, he considered that random sampling from the population was a 

requirement of randomization tests (for discussion, see Edgington & Onghena, 2007). 

Pitman (1937a; 1937b; 1938) later demonstrated that randomization tests could be used to 

draw inferences specifically about the sample without knowing anything about the 

parameters at the level of the population. Often, behavior-analytic research does not entail 

random sampling of subjects or participants from a population of interest.

In clinical settings, for example, geographic location, socioeconomic status, and disorder 

severity all play a role in determining whether participants are able to access services in the 

context of which research is conducted (see, e.g., Pickard & Ingersoll, 2016). Thus, some 

subpopulations of participants may be more likely to be included in clinical research than 

others. Inasmuch, samples of participants may not be representative of the population of 

those participants. For example, data on the treatment of severe problem behavior generated 

from samples in inpatient or day-treatment settings (e.g., Greer, Fisher, Saini, Owen, & 

Jones, 2016; Rooker, Jessel, Kurtz, & Hagopian, 2013) may differ substantially from data 

generated in routine outpatient settings (e.g., Jessel, Hanley, & Ghaemmaghami, 2016). 

Further, in laboratory research, animal subjects usually are not randomly selected from the 

population of all possible subjects. One may protest this statement by arguing that ordering, 

for example, rats from a breeder simulates random selection because (a) environmental 

variables are kept as constant as possible for all subjects prior to shipment and (b) most 

suppliers use outbreeding to keep the genotype of each rat strain as uniform as possible. 
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Startling new genetic data (see Gileta et al., 2018), however, demonstrates that the genotype 

of rat strains varies widely between popular breeders. Thus, unless researchers select their 

samples of animals from all breeders, their samples may not be representative of the entire 

population of animals. Randomization tests are an ideal alternative to statistics like t and F 
tests for analyzing data from such samples. Randomization tests help to determine the 

significance of the findings within each sample, whereas generalization to the broader 

population requires multiple replications across samples (Kazdin, 2011). To the extent that 

conventional practices in behavior analysis rely on sampling from a subset of the population, 

the generality of statistical methods that draw inferences about the population at large are 

strongly limited—they may tell the readers little more than the sample-specific inferences 

drawn using randomization statistics.

Within-subject research poses a unique challenge to the random-sampling assumption that 

exists for several popular statistical methods like regression, ANOVA, and t-tests. If the data 

to be analyzed consist of scores from the same participant across more than one time point 

(e.g., preintervention and postintervention rates of some target behavior), it is clear that these 

data points were not obtained from different, randomly sampled participants. Among other 

methods, multilevel regression models, repeated-measure ANOVA, and paired-sample t-tests 

may be used to analyze data from such designs (see, e.g., Gelman & Hill, 2007; Girden, 

1992), as may randomization tests (as we will demonstrate in the “Applications to Behavior-

Analytic Data” section below).

Randomization tests’ focus on the sample instead of the population offers an additional 

benefit to behavior analysts: The hypotheses that are tested through randomization methods 

align more closely with the research questions behavior analysts tend to ask than do those 

tested by population-based statistics. Behavior-analytic research often demonstrates 

experimental control of behavior using single-case research methods (e.g., reversal, 

multiple-baseline, and multielement designs; see Kazdin, 2011) to answer questions like, 

“Did the participant respond more or less in this condition than in the other?” or, “Was this 

treatment effective for a participant?” These questions are more concerned with data 

collected from a specific individual or group of individuals than they are about estimating 

population parameters. That is not to say that the specific hypotheses tested by 

randomization-based statistics are more appropriate than those tested by population-based 

statistics for all behavior-analytic data. Researchers more often use single-case research 

designs than group or mixed designs in behavior analysis (for discussion, see Foster et al., 

1999; Kyonka, in press; Zimmermann et al., 2015), and it is for single-case designs that 

hypotheses under randomization tests tend to be more logically consistent than those under 

other statistical tests. For studies that use group or mixed designs, however, it makes sense to 

ask whether observed group differences could have resulted from sampling error.

As we hope the above discussion illustrates, randomization statistics differ from statistical 

techniques like t and F tests in almost every respect. Randomization tests (a) do not require 

residuals of sampled data to adhere to any specific (e.g., normal) distribution, (b) are 

applicable when data violate many of the specific assumptions of other statistical techniques, 

(c) test hypotheses that are based on the obtained data without reference to their relation to 

any specific population, and (d) are flexible enough to analyze data from individual subjects/
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participants and groups of subjects/participants. Despite the strengths of randomization 

statistics described above, researchers will need to consider several technical aspects of these 

methods before using them to analyze obtained data. These are described in the following 

section.

Some Important Considerations

Randomization tests trade flexibility for computational intensiveness. For example, consider 

the permutation test that Fisher (1935) conducted on data from Darwin’s (1876) corn-

breeding experiment. For paired-sample permutation tests, there are 2n possible 

combinations of group assignments, where n is the number of pairs in the data set. In 

Fisher’s reanalysis, then, 215 = 32,768 distinct rearrangements of pairs of corn plants 

between groups contributed to the reference distribution shown in Figure 1. The fact that 

Fisher was able to determine each of these rearrangements with the technology at the time 

truly is impressive (though he technically calculated only a subset of these combinations; see 

Footnote 1 for more information). He acknowledged the difficulty he faced, though, stating 

that, “The arithmetical procedure of such an examination is tedious, and we shall only give 

the results of its application in order to show the possibility of an independent check on the 

more expeditious methods in common use [i.e., the t test]” (p. 51; see also Bradley, 1968). 

What if Darwin’s experiment used nonpaired samples of 15 corn plants apiece? When data 

in two groups or two sets of observations are independent, the reference distribution is 

created by randomly shuffling data between groups until each possible combination is 

sampled, without regard to any matching between observations. For n overall observations 

with r observations per group, there are n!/([n - r]! * r!) possible combinations. In this case, 

the reference distribution would be composed of 30!/([30 – 15]! * 15!) = 155,117,520 

possible combinations!

Calculating these many combinations by hand is prohibitive. Modern computing, however, 

allows researchers to automate these calculations to make them more tractable. Still, 

calculating all possible combinations of data from a given sample may be time intensive. 

Dwass (1957) described an approach to randomization tests that helped to address this issue. 

Instead of examining all possible combinations of data rearranged between groups, Dwass 

suggested that researchers could instead sample a large but nonexhaustive subset of these 

combinations. This method of sampling from all possible combinations is common in 

modern randomization tests because it is less computationally intensive than, and 

asymptotically equivalent to, randomization tests that use all possible combinations if the 

sample of combinations is large enough (for review, see Kabacoff, 2015; see also Hothorn, 

Hornik, van De Wiel, & Zeileis, 2008; Wheeler, 2010).

How does one know if a sample is large enough to approximate the outcome of an 

exhaustive permutation test? Generally speaking, a sample between n = 1,000 and n = 

10,000 is sufficient to obtain a precise estimate of the exact p-value that would be derived 

from a permutation test (see, e.g., Marozzi, 2004). To illustrate why this range of sample 

sizes is recommended, we sampled from possible combinations of data from Darwin’s 

(1876) corn-height experiment using Monte Carlo sampling. That is, we randomly generated 

combinations of group assignments in this experiment with replacement, meaning that it was 
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in principle possible to generate the same combination more than once. (Generating large 

samples of combinations with replacement is faster and more convenient than generating 

samples without replacement because, whenever it draws a sample, the computer does not 

need to check its memory to determine whether that particular sample had been generated 

before.) In four separate simulations, we drew samples of n = 10,000, n = 1,000, n = 100, 

and n = 10 from all possible combinations. For each of these sample sizes, we calculated the 

p-value associated with Darwin’s data by dividing the number of obtained samples with 

mean differences that were as or more extreme than the difference Darwin obtained by the 

total number of samples drawn. We repeated this process 100 times to generate 100 p-values 

for each sample size. Figure 2 shows the resulting p-values for each Monte Carlo sample 

size. For samples of n = 10,000 and n = 1,000, estimates were reasonably precise 

(range10,000: .048 - .058; range1,000: .037 - .068) and approximated the exact p-value that 

Fisher (1935) obtained in his reanalysis of the same data (i.e., p = .053; see the horizontal 

line that bisects the y-axis in Fig. 2). Obtained p-values for samples of n = 100 and n = 10, 

however, spanned ≥ an order of magnitude around the exact p-value (range100: .010 - .100; 

range10: .000 - .300). Using R software (v. 3.4.1; R Core Team, 2017), it took us an average 

of 5.49 s per iteration, range: 5.10 – 7.66 s, to calculate p-values using a Monte Carlo sample 

size of n = 10,000 while generating the data in Figure 2. Thus, interested readers may wish 

to explore Monte Carlo methods with ns between 1,000 and 10,000 for approximating exact 

tests if the number of possible combinations of their data is intractably large.

Researchers who are interested in using randomization methods also must consider the 

minimum sample sizes needed to achieve statistically meaningful p-values. Thus far, we 

have described randomization methods for mean comparisons between two independent 

groups and two matched groups. Recall that the total number of combinations for these tests 

may be calculated using the equations n!/([n! - r!] * r!), where n is the total sample size and r 
is the size of the individual groups, and 2n, where n is the number of pairs, respectively. To 

obtain a p-value of at least .05, the total number of possible combinations needs to be at least 

40. That is, if obtained data produce the most extreme possible mean difference between 

groups, then there will be only two combinations with mean differences as extreme or more 

extreme than the obtained one: the original data and the combination of the original data 

where group assignments are perfectly swapped between groups (and p = 2/40 = .05). In the 

independent-groups case, the required sample size is eight, with four subjects or participants 

per group. In the paired-groups case, the required number of pairs is six with 12 total 

observations. (For one-tailed tests, the required sample sizes for paired- and independent-

group cases are six total subjects or participants [with three per group] and five total pairs of 

observations [10 total observations], respectively. Two-tailed tests are more common, 

however, because they are more conservative than one-tailed tests.)

Finally, the logic of randomization tests requires that, under the null hypothesis, data are 

exchangeable between the groups or treatments that are being compared. Data are said to be 

exchangeable if the variance between two sets of data are independent and identically 

distributed (for discussion, see Anderson, 2001; Good, 2002). Practically, the assumption of 

exchangeability places two limits on randomization statistics. First, participants/subjects 

must be randomly assigned to groups, or experimental conditions must be presented in a 

random order, so as to control for all extraneous factors that might affect the dependent 
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variable. In the case that the independent variable under investigation is an organismic factor 

(e.g., sex, age, strain, etc.), subjects or participants clearly cannot be randomly assigned to 

groups. Under these circumstances, though, researchers must be able to assume that no other 

relevant variables moderate putative between-group differences in the dependent variable. 

Second, the variance of data from whichever groups or treatment conditions a researcher 

might like to compare must be homogenous. If variances are heterogeneous between the two 

groups or treatments, randomization tests may generate inaccurate or misleading results (see, 

for empirical examples, Boik, 1987; Huang, Xu, Calian, & Hsu, 2006). Dean and Voss 

(1999) suggested that researchers may assess whether homogeneity of variance is present in 

their data by dividing the largest group variance (i.e., variance from whichever treatment 

group demonstrates the largest amount of variability on the outcome of interest) by the 

smallest group variance: If this ratio is < 3, researchers are unlikely to violate this 

assumption. Alternatively, researchers may formally test for homogeneity of variance using 

methods like Levene’s F-test (Levene, 1960). As others have pointed out (e.g., Anderson, 

2001; Boik, 1987), the exchangeability assumption of randomization tests often is 

overlooked, much to the detriment of data analysis. Given the importance of this assumption 

for the fidelity of randomization-based statistics, we direct readers to the writings of 

Anderson (2001) and Good (2002) for thorough treatments.

Applications to Behavior-Analytic Data

In the previous sections, we provided a brief historical overview of randomization tests, 

some advantages of these tests over other statistical methods, and some of the computational 

and conceptual baggage researchers must consider when applying randomization tests to 

their data. With this context in mind, we will next provide two examples of how 

randomization tests may be used to analyze hypothetical data similar to those generated in 

behavior-analysis laboratories. We will describe two tests that examine mean differences in 

outcomes between hypothetical treatments. One will consider data from a mixed within-

subjects and between-groups design, and the second will demonstrate analysis of data from 

an individual participant.

Mixed-design Example

“Resurgence” refers to the recurrence of previously extinguished operant behavior when an 

alternative source of reinforcement is suspended or otherwise reduced in quality (for review, 

see Lattal & Wacker, 2015; Shahan & Craig, 2017). This topic of study is a hot button in 

behavior analysis at present: A quick search of Google Scholar with the terms “resurgence” 

and “behavior analysis” returned well over 500 articles and other scholarly works published 

since 2014. Accordingly, it seems appropriate to demonstrate how randomization methods 

might be applied to data from a resurgence experiment.

Typically, resurgence is studied in a three-phase arrangement. During baseline, a target 

behavior is reinforced. Next, the target behavior is extinguished while an alternative 

behavior is reinforced. Finally, alternative reinforcement is either reduced (Craig, Browning, 

Nall, Marshall, & Shahan, 2017; Craig, Browning, & Shahan, 2017; Lieving & Lattal, 2003) 

or eliminated altogether (Craig, Cunningham, Sweeney, Shahan, & Nevin, 2018; Craig & 
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Shahan, 2016; Fisher et al., 2018; Fisher et al. (in press); Leitenberg, Rawson, & Mulick, 

1975; Nevin et al., 2016). Resurgence occurs if target behavior returns in this last phase. 

Typically, researchers are most interested in comparing rates of target behavior during the 

final session of the alternative-reinforcement treatment phase (where responding often is 

lowest during treatment) and the first session of the resurgence test (where responding often 

is highest during the test).

We generated data for a hypothetical experiment that examined resurgence in two groups of 

subjects (for the sake of argument, let’s say they were rats; n = 10 in both groups): One 

group experienced a set of contingencies that we hypothesized would produce a relatively 

large resurgence effect (we will call this the “Large” group), and the other group experienced 

contingencies that we hypothesized would produce a relatively small resurgence effect (the 

“Small” group). Hypothetical data from the last session of treatment and the first session of 

the resurgence test for these groups are shown in the top two panels of Figure 3.

Visual analysis suggests our initial hypothesis might have some support: The increase in 

responding during the resurgence test tended to be higher in the Large group than in the 

Small group, but there is quite a bit of variability in both groups. How should we go about 

analyzing these data to provide a second (statistical) opinion? A mixed ANOVA with a 

within-subject factor of Phase and a between-groups factor of Group might do the trick, but 

we sampled these data from a distribution with a strong positive skew (generated using the 

“sn” package in R; Azzalini, 2018), so the distribution of response rates at each combination 

of the Phase and Group are distributed nonnormally. Because nonnormality of the outcome 

variable at any specific level of the predictor variable is equivalent to nonnormality of the 

residuals of obtained scores around predicted scores, we can be certain that the assumption 

of normality that is critical for ANOVA has been violated. To illustrate, the bottom two 

panels of Figure 3 show the distribution of response rates during the final session of the 

alternative-reinforcement treatment phase for the Large and Small groups. Even with a 

relatively small sample size of n = 10 in both groups, these histograms demonstrate that 

most of our hypothetical rats responded at a relatively low rate, but a few responded at a 

high rate (this is especially clear in the “Small” group). These data show that the assumption 

of normality has been violated to a substantial degree, and thus, an ANOVA may produce 

spurious results. By contrast, this deviation from the normality assumption will not 

adversely affect the results of a randomization-based analysis. We randomly assigned our 

hypothetical animals to groups, and the groups showed roughly equal variability between 

groups, and between time points within groups, on our dependent variable, so our data meet 

the exchangeability assumption for randomization.

To address our research question, we are most interested in the interaction between Group 

and Phase, because that will tell us whether response rates increased more in one group than 

in the other between phases. As we described above in the “A Brief History of 

Randomization Methods” section, the correct method for assessing interactions between 

independent variables in randomization tests is up for debate (see Anderson, 2001; Howell, 

2015), but for demonstrative purposes we will adopt Edgington and Onghena’s (2007) 

approach. Briefly, Edgington and Onghena suggested reshuffling data between both factors 

of the two-way ANOVA and calculating an interaction F statistic for each set of reshuffled 
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data a large number of times to create a reference distribution against which the researcher 

can compare the interaction F statistic from the original, unshuffled data. Violation of the 

assumption of normality inflates the rate of Type-I errors (i.e., of obtaining a false positive; 

rejecting the H0 when, in reality, no difference exists) for individual F statistics, but this 

should be true for each reshuffled F statistic in the reference distribution. Thus, 

randomization should control for the inflated Type-I error rate, because the resulting p-value 

is derived from comparison of the original F statistic to all of the F statistics in the reference 

distribution.

Table 1 shows the four cells for the present ANOVA. Our first step in randomizing these data 

was to reshuffle data across the within-subjects measure, Phase. As in Fisher’s (1935) 

randomization test, we did not separate measures of individual rats’ response rate during the 

treatment phase and the test phase but instead simply randomized each individual’s response 

rate between phases (e.g., we may switch scores between G1P1 and G1P2, but we will not 

switch scores between G1P1 and G2P1). Next, we reshuffled data across the between-groups 

measure, Group. To do this, we randomly distributed subjects across the two groups while 

maintaining the paring between individuals’ treatment and test response rates. After each 

randomization (n = 10,000 in total), we conducted a 2 X 2 (Group X Phase) mixed ANOVA 

to obtain an F-value for the interaction. The reference distribution of interaction F-values 

that we obtained is shown in Figure 4. To calculate the p-value for our interaction term: (a) 

we summed the number of F statistics in our reference distribution that were equal to or 

larger than the interaction F value derived from a 2 X 2 (Group X Phase) mixed ANOVA 

conducted on our obtained data, F(1, 34) = 7.62, p = .009 (see the vertical line that bisects 

the x-axis of Fig. 4), and (b) divided by 10,000 (we use a one-tailed hypothesis test here 

because F tests invariably are one-tailed tests). The resulting p-value from the randomization 

test was identical to the p-value obtained from the original ANOVA conducted on our 

obtained data to three decimal places. Thus, we may conclude that violating the normality 

assumption had a relatively minor impact on the fidelity of our test statistic, but we would 

not have known that had we not conducted the randomization-based F-test. Thus, based on 

these results, we would reject the null hypothesis of no difference and conclude that the 

difference in levels of resurgence obtained between the “Large” and “Small” groups is 

unlikely to have resulted from chance.

At this point in the analysis, it is unnecessary to test the main effects of Group or Phase 

individually. These effects would provide no information beyond what is provided by the 

interaction between them. We will, however, describe one method to test for these effects in 

a randomization framework for the sake of clarity. In a factorial ANOVA, Edgington and 

Onghena (2007) suggested to test for the effects of one factor by permuting obtained data 

across levels of that factor while holding levels of the other factor constant (this method is 

sometimes referred to as “restricted randomization between factors”).3 That is, to test for the 

main effect of Phase in the present hypothetical experiment, we randomly reassigned data 

3Researchers have developed several methods for assessing main effects in factorial ANOVA, some of which do a better job of 
controlling for Type-I error rates while maintaining statistical power than others under specific circumstances. We demonstrate 
restricted randomization of observations here because it is perhaps the simplest method to understand, as full discussion of these 
methods is outside the scope of the present article. We direct readers to Anderson (2001), Anderson and Ter Braak (2003), and Manly 
(2007) for helpful discussion.
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between the treatment phase and the test phase while maintaining group assignments for all 

subjects. For each rearrangement of data, we calculated the F statistic for the main effect of 

Phase, against which we compared the F statistic for Phase calculated for our obtained data, 

F(1, 34) = 57.73, p < .001, to obtain a randomization p-value. To test for the main effect of 

Group, we randomly assigned group labels to each subject, but we did not randomize data 

between the phases of the experiment. We then created the reference distribution by 

calculating the F-value for Group for each rearrangement of data and compared our original 

obtained F-value for Group, F(1, 34) = 9.14, p = .005, against this distribution to obtain a p-

value. The resulting p-value from the randomization test for Group was p = .043, whereas 

the p-value for the test of Phase was p < .001. This outcome for Phase was a foregone 

conclusion, because responding increased across phases for every subject in both groups, so 

no possible rearrangement of data across phases could produce a larger effect of Phase.

Single-case Example

Applied researchers and practitioners often use functional analyses (Iwata, Dorsey, Slifer, 

Bauman, & Richman, 1982/1994) to identify the environmental variables that evoke and 

reinforce participants’ problem behavior. These assessments consist of several conditions 

with a different set of contingencies in place in each. To determine whether a participant 

engages in problem behavior to gain access to attention or tangible items, a therapist 

typically withdraws his or her attention or restricts access to preferred tangibles and delivers 

attention or tangibles again only if the participant engages in problem behavior. To 

determine whether escape from demands reinforces problem behavior, a therapist typically 

delivers instructions and provides a break from instructions only if the participant engages in 

problem behavior. Functional analyses often include a control condition in which the 

purported establishing operations in the test conditions described above are absent. For 

example, a therapist typically delivers attention on a dense schedule, provides access to 

tangibles freely and continuously, and abstains from delivering instructions during the 

control condition. Applied researchers often refer to this condition as “toy play”.

Despite the utility of skilled visual assessment in determining functions of behavior from 

functional-analysis outcomes and the development of structured, formal visual-analysis 

protocols for functional analyses (e.g., Hagopian et al., 1997; Roane, Fisher, Kelley, Mevers, 

& Bouxsein, 2013; Saini, Fisher, & Retzlaff, 2018), assessment of differences in levels of 

problem behavior between conditions is not always straightforward. Figure 5, for example, 

shows aggressions per minute from a hypothetical multielement functional analysis. We 

presented attention, escape, tangible, and toy-play (or control) conditions in a randomized 

order across sessions so that each condition was arranged in five sessions with the caveat 

that each condition needed to be presented within successive four-session series. Aggression 

occurred at relatively high rates in the attention condition during the initial two sessions, but 

it occurred at rates similar to those observed in the escape condition in the remaining three 

sessions. The escape condition evoked moderate-to-high rates of aggression in three 

sessions, but relatively low rates in two sessions. Finally, aggression occurred at relatively 

low rates in the tangible condition, but it occurred at higher rates than in the toy-play 

condition in four of five sessions. Based solely on visual inspection, it is reasonably clear 

that the attention and escape conditions evoked problem behavior, but it is less clear for the 
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tangible condition. Inasmuch, for the tangible condition it is reasonable for the behavior 

analyst to ask, “How often might the observed or larger differences between the tangible and 

the toy-play conditions occur by chance?” If the observed differences between the tangible 

and toy-play conditions are unlikely to have occurred by chance, then it would be important 

for the behavior analyst to address the tangible function during treatment. In addition, with 

regard to the attention and escape conditions, it is reasonable for the behavior analyst to ask, 

“Which one of these conditions produced the more evocative effect?” If one condition 

produced more evocative effects than the other, and the differences are unlikely to have 

occurred by chance, then the behavior analyst might decide to address the more evocative 

function of problem behavior first during treatment.

Randomization analyses may provide a helpful tool in making decisions about these types of 

outcomes. Because we randomized the presentation of conditions in each series and 

variability is at least roughly proportional between the conditions that we wish to compare, 

data are exchangeable between conditions. The H0 is that the conditions of the functional 

analysis had no effect on rates of aggression. That is, the data obtained from one condition 

should be equally likely to appear in another condition. Using randomization analyses, we 

performed pairwise comparisons of aggression between the pairs of conditions about which 

we had remaining questions following visual inspection (i.e., attention vs. escape and 

tangible vs. toy play). To begin, we calculated the differences in mean rates of aggression 

between each pair of conditions (attention vs. escape: D = 1.58 aggressions per minute; 

tangible vs. toy play: D = 0.60 aggressions per minute). Next, for each pairwise comparison, 

we rearranged response rates randomly between the two conditions 10,000 times. For each 

rearrangement, we calculated the difference in the mean rates of aggression between 

conditions and used those rearranged data to create reference distributions for each pairwise 

comparison.

Figure 6 shows the reference distributions for each of these pairwise comparisons, with the 

distribution of attention—escape difference scores on the left and the distribution of the 

tangible–toy-play difference scores on the right. The vertical dashed lines that bisect the x-

axes in each panel represent the mean differences between conditions calculated from the 

original data. Out of 10,000 randomly generated samples per distribution, 1,461 samples 

produced mean differences that were as extreme as, or more extreme than the obtained mean 

difference for the comparison between the attention and escape conditions, corresponding to 

a p-value of .146. For the comparison between the tangible and toy-play conditions, we 

obtained 160 difference scores that were as or more extreme than the original, obtained 

mean difference, corresponding to a p-value of .016.

Because we conducted multiple comparisons in the examples above, we should adjust our α-

level (e.g., using the conservative Bonferroni correction, which divides the α-level by the 

number of comparisons made; α = .050 / 2 = .025). This correction holds constant the 

experiment-wise error rate. After calculating this correction, we can reasonably conclude 

that the original, obtained difference between the attention and escape conditions failed to 

meet our criterion for statistical significance and easily could have occurred by chance. 

Thus, the behavior analyst could decide which function of aggression to address first based 

on practical or other considerations rather than based on the observed differences between 
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the attention and escape conditions. By contrast, the original, obtained difference between 

the tangible and toy-play condition met our criterion for statistical significance and was 

unlikely to have occurred by chance. This finding suggests that it would be important for the 

behavior analyst to address the observed tangible function during treatment.

We generated the data for our hypothetical functional analysis by randomly sampling from 

normal distributions. Accordingly, we had no reason to be concerned about autocorrelation 

between our generated data points, though a case might be made that data in the attention 

and escape conditions tended to covary despite the random nature of the underlying process 

used to generate these data. Some authors have argued that autocorrelation between data 

points is not problematic for application of basic randomization techniques, while others 

have suggested that autocorrelation violates the assumption of exchangeability required for 

these statistics (for review, see Sierra, Solanas, & Vincenç, 2005).

The problem of autocorrelation affects certain single-case designs more so than other 

designs. As mentioned previously, data points that are closer together in a data series tend to 

show greater correlation than data points that are further apart in the series. As such, single-

case designs that rapidly alternate between comparison conditions (e.g., multielement or 

multiple-schedule designs) tend to be less susceptible to p-value inflation due to 

autocorrelation because a given data point from a given condition occurs closer in time to 

data points from different conditions than to data points from the same condition. For 

example, an attention session in a multielement functional analysis tends to occur closer in 

time to sessions from other conditions (e.g., an escape or tangible session) than to the next 

attention session. Thus, in this case, autocorrelation is likely to result in p-value deflation 

rather than inflation because autocorrelation due to the temporal proximity of data points in 

the series will decrease the observed difference between a given test condition and its 

comparison condition(s). By contrast, single-case designs that infrequently alternate between 

comparison conditions (e.g., reversal or multiple-baseline designs) tend to be more 

susceptible to p-value inflation due to autocorrelation because data points within a given 

condition tend to be closer to one another than to data points from the comparison 

condition(s). Readers should consider the potential effects of autocorrelation when choosing 

a single-case design and corresponding statistical analysis with which to evaluate their 

experimental question. In general, randomization tests are best suited for single-case designs 

that randomly and rapidly alternate experimental conditions over the course of a data series.

Conclusions

Randomization-based statistical techniques offer flexible, powerful, nonparametric 

alternatives to the statistical techniques often used in psychological research (e.g., t- and F-

tests). These methods draw inferences based on obtained data rather than hypothetical 

populations. The same basic approach can accommodate data from just about all of the 

experimental designs commonly used in behavior-analytic research, including between-

groups, within-subjects, mixed, and single-case research designs (even when there is just one 

participant). That is, outside of the sample-size requirements to make achievement of desired 

p-values analytically possible (e.g., n = 8 in independent-sample tests, with four participants 

or subjects in each of two groups; n = 6 pairs of observations for a total of 12 observations in 
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paired-sample tests), randomization tests are well suited for analysis of data from 

experiments with relatively few participants, subjects, or observations. Because of the 

advantages that randomization tests offer over their parametric and nonparametric 

counterparts, behavior analysts may wish to incorporate these methods for data analysis into 

their repertoires.

For readers who are interested in conducting randomization tests, we suggest they become 

acquainted with R software (R Core Team, 2017). This free-to-use statistical-computing 

software allows users to create flexible programs for performing these analyses. Howell 

(2015) provides an approachable overview of randomization tests for various research 

designs and provides example R code that may be helpful to readers. Furthermore, 

downloadable, user-created software may help users to conduct these analyses without 

writing custom functions. For example, the “coin” package (Hothorn et al., 2008) offers 

routines for conducting permutation tests on many types of data and for many types of 

research questions.

Our motivation for writing this article was not to imply that randomization methods always 
are preferable relative to other methods for statistically analyzing obtained behavior-analytic 

data. If collected data meet the assumptions of t- or F-tests, or their nonparametric 

counterparts, randomization may not be the most desirable method for data analysis. For 

example, Peres-Neto and Olden (2001) conducted a simulation study to compare parametric, 

nonparametric, and randomization-based methods in terms of their associated Type-I error 

rates and statistical power for various statistical questions (i.e., comparing mean differences 

between multiple groups and determining the degree of relatedness between sets of 

variables). These authors observed that, under many circumstances, randomization-based 

methods were superior to other methods in that they reduced Type-I error rates while 

maintaining high levels of statistical power. Under other circumstances, however, 

randomization methods were outperformed by their competitors. Peres-Neto and Olden 

concluded, “… although randomization tests appear to be a powerful alternative to 

parametric and classic nonparametric statistics, this is not a general rule and their 

appropriateness should be judged and compared to alternatives” (p. 85).

Unfortunately, short of conducting a simulation study to evaluate and compare Type-I error 

rates and statistical power between different tests, it may not be possible to judge which 

specific statistical method is the most appropriate for a specific set of data in an a priori 

manner. Many factors play into that determination, including the distributional properties of 

the data in question, the extent to which properties of the data violate assumptions of 

alternative statistical methods, the amount of variation in the data, and so on. Thus, we 

encourage readers to become familiar with diverse statistical methods and to view 

randomization statistics as one of many potential tools that they may use to supplement 

analysis of their data.
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Fig. 1. 
Panel A: Relative-frequency histogram showing mean differences from rearrangements of 

Darwin’s (1876) experiment on the heights of corn plants. The dashed lines labeled “D = 

−2.62” and “D = 2.62” represent the mean difference in height between plants that received 

different pollination methods that Darwin (1876) obtained. Panel B: Probability density for 

the t distribution with 14 degrees of freedom. The dashed lines labeled “t = −2.15” and “t = 

2.15” represent the two-sided t-values derived from Darwin’s data.
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Fig. 2. 
p-values from randomization tests that were generated using Monte Carlo sampling from 

possible permutations of group assignment from Darwin’s (1876) corn-height experiment. 

Individual p-values were generated using Monte Carlo samples of n = 10,000, n = 1,000, n = 

100, and n = 10. For each of these sample sizes, 100 p-values were generated. The horizontal 

line that bisects the y-axis is the exact p-value from Fisher’s (1935) reanalysis of the same 

data.
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Fig. 3. 
Top panels: Hypothetical response-rate data from the last session of an alternative-

reinforcement treatment and the first session of a resurgence test for the treatments that we 

hypothesized should produce a large amount of resurgence (left panel) and a small amount 

of resurgence (right panel). Bottom panels: Histograms showing the distribution of response 

rates from the last session of the alternative-reinforcement treatment phase for the treatments 

we hypothesized should produce a large amount of resurgence (left panel) and a small 

amount of resurgence (right panel). The bin width for these histograms is two responses per 

minute.
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Fig. 4. 
Reference distribution of F values for the interaction term in our hypothetical relapse 

experiment. The vertical line that bisects the x-axis represents F = 7.62, the resulting 

interaction F value from a 2 X 2 (Group X Phase) mixed ANOVA on the data shown in the 

top two panels of Fig. 3. The bin width for this histogram was F = 0.25.
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Fig. 5. 
Aggressive behaviors per minute from a hypothetical multielement functional analysis.
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Fig. 6. 
Reference distributions for mean differences comparing the attention and escape (left panel) 

and tangible to toy-play (right panel) conditions from the hypothetical functional analysis 

results shown in Fig. 5. The vertical dashed lines that bisect the x-axes in each panel 

represent the between-condition mean differences observed in the obtained data. The bin 

width for these histograms was D = 0.25.
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Table 1

Factorial ANOVA table for our hypothetical resurgence experiment

Phase

Group Treatment Test

Large G1P1 G1P2

Small G2P1 G2P2
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