Skip to main content
. 2019 Apr 8;10(19):5079–5084. doi: 10.1039/c8sc05391j

Table 1. Reaction optimisation for iron- and cobalt-catalysed hydrosilylation using tetrafluoroborate pre-catalyst activation a .

Inline graphic
Entry [M] Loading (mol%) Ligand Yield (%) (2a : 3a)
1 FeCl2 2 EtBIP 0
2 Fe(OTf)2 2 EtBIP 0
3 Fe(BF 4 ) 2 ·6H 2 O 2 Et BIP 87 (93:7)
4 Fe(BF4)2·6H2O 0.5 EtBIP 67
5 Fe(BF4)2·6H2O 1 EtBIP 82
6 Fe(BF4)2·6H2O 2 HBIP 0
7 Fe(BF4)2·6H2O 2 MeBIP Trace
8 Fe(BF4)2·6H2O 2 MesBIP 78 (>95 : 5)
9 Fe(BF4)2·6H2O 2 iPrBIP Trace
10 Co(BF4)2·6H2O 2 HBIP 84 (86 : 14)
11 Co(BF4)2·6H2O 2 MeBIP 72 (4 : 96)
12 Co(BF4)2·6H2O 2 MesBIP 68 (3 : 97)
13 Co(BF4)2·6H2O 2 EtBIP 82 (5 : 95)
14 Co(BF4)2·6H2O 2 iPrBIP 31 (16 : 84)
15 Co(BF 4 ) 2 ·6H 2 O 1 Et BIP 90 (8:92)

aReaction conditions: 1-octene (1.00 equiv.), phenylsilane (1.10 equiv.) and metal tetrafluoroborate (n mol%), THF (1 M), r.t., 1 h. Yields determined by 1H NMR spectroscopy of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard.