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Introduction

Vibrational spectroscopy and imaging promise molecular information that can be rapidly 

acquired without the need for specialized stains or dyes, thereby potentially simplifying and 

speeding up necessary analyses for interventions in many facets of modern day healthcare. 

The salient characteristics of vibrational spectroscopy for molecular analyses, using non-

perturbative optical measurements, and employing computational analysis of data, are 

especially useful near the point of care as assessments can be made with fewer reagents, 

under pressure of time and accuracy while not requiring extensive specialized human 

expertise. Significant technological development has occurred and many seminal proof of 

concept studies have been conducted to demonstrate the utility and vast potential of 

spectroscopic methods. Accordingly, a number of studies have focused on pushing the 

fundamental performance limits of spectroscopic methods while others have focused on 

specific problems where the use of vibrational spectroscopy promises to change the standard 

of care. Despite this impressive progress, however, the application area is still maturing and 

rapidly evolving. A vast array of potential applications continues to be assessed while others 

need further technological developments. In this review, we focus on recent developments 

that demonstrate potential for point of care impact and major trends that can lead, in turn, to 
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improved spectroscopic technology. We provide focused examples of ‘‘case studies’’ and 

major trends in spectroscopic analyses ranging from in vivo measurements to that of ex vivo 

bodily fluids to extracted and processed tissues. In each case, the uniting theme is that 

information to the clinician is enabled closer to the patient, allowing for a shorter time 

between identification of the need for analyses and availability of information that guides 

care.

Raman Spectroscopy for Intraoperative and In Vivo Diagnostics

The vast majority of current methods of assessment are slow, requiring preparation, labeling 

and human read out. Measurements of intact tissue in vivo promise the least disruption to the 

person being diagnosed, which eliminates the many steps needed in assessments. One of the 

major advantages of vibrational spectroscopy techniques for in vivo measurements, in 

addition to the molecular measurement of disease,1 is the immediacy of the diagnostic 

information that can be obtained with little or no sample preparation. This means that 

molecular diagnostic approaches without recourse to labels or stains can be available to the 

clinician at the point of care. In vivo measurements can also help guide when a sample of 

bodily fluid, a cytology (cellular) sample or a biopsy (tissue) sample are taken, either for a 

definitive diagnosis or to triage a patient into a subgroup of at risk patients for further 

analysis. Sampling is the current standard of care and the acquisition, handling and analyses 

processes of current methods can lead to a high level of inter- and intra-observer 

disagreement.2 Vibrational spectroscopy can provide an objective and rapid measure of the 

molecular composition and, coupled with multivariate analysis or machine learning 

approaches, can provide an accurate prediction of disease state. While this opportunity is 

immense, several challenges also need to be overcome to realize the potential of in vivo 

measurements.

In Vivo Raman Probes

The major technological challenges of in vivo use of vibrational spectroscopies lie in the 

limited penetration depth of mid-infrared (mid-IR) light in water rich tissues and the 

relatively weak signals from Raman scattering, which can be compromised by background 

signals from measurement systems, scattering, and/or fluorescence. Raman probes can be 

utilized as clinical tools able to provide rapid, noninvasive, real-time molecular analysis of 

disease specific changes in tissues. Clearly the target tissue location, the significance of 

spectral changes with disease and the possible access routes to the region of interest will 

vary for each clinical application considered. Most Raman applications seek to measure the 

fingerprint region of the spectrum ~400–1800 cm‒1 where the greatest abundance of 

inelastic scattering peaks from biomolecules are found. There are several challenges and 

proposed solutions to recording the data. Use of near-infrared laser illumination can 

minimize tissue fluorescence contributions in this region, but signals from the silica fibers 

can dominate fingerprint Raman spectra and need careful optical design and filtration 

strategies. For example, these signals can be subtracted but it is not possible to subtract the 

accompanying shot noise. Since the Raman effect is weak, noise may be sufficiently large to 

impact the relatively small Raman signals obtained in the ideally short time scales required 

for in vivo measurement. Silica signals in the illumination fibers are usually filtered prior to 
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the light reaching the sample, using a band pass filter and elastically scattered light from the 

sample filtered at the probe tip using a long pass edge filter or notch filter, allowing only the 

Raman signal to pass along the collection fibers to the spectrometer, thus minimizing any 

further signal contamination.

An alternative method has been explored for filtering the elastically scattered laser light 

from the collection fibers and thus minimizing the induction of background signal from 

fibers. This uses in-line fiber Bragg gratings (FBG) to reject/reflect the laser light in the 

collection path. A Raman probe was built consisting of one excitation fiber and six multicore 

single-mode fibers (19 cores) with inscribed FBGs as collection fibers.3 A more simple 

approach to overcome this problem is to use only the high wavenumber region of the 

spectrum, reducing the impact of the background from the fibers and allowing for simpler 

and cheaper unfiltered probes.4 However, the limited spectral features in this region 2400–

4000 cm−1 may limit the diagnostic capability of the system to extreme pathologies such as 

invasive cancer versus normal healthy tissues. For instrumentation, there is always a trade-

off between the magnitude of signal recorded, the time required and the cost of hardware to 

do the same. This range presents opportunities for spectroscopists to devise solutions that 

provide measurements in an efficient and accurate manner.

In addition to design and trade-off considerations of instrumentation, the samples provide 

another class of challenges. One of the most significant requirements of in vivo Raman 

systems relates to the specific sampling volume of the clinical application and sampling 

method. Near-infrared (NIR) light is highly scattered and minimally absorbed in tissue, and 

therefore optical designs that do not restrict light collection to the surface scattered photons 

can result in deep signal collection, which may confound results. An example of this is when 

no beam steering or focusing is used in hollow organ endoscopic fiber probes. The relevant 

diagnostic signal for dysplastic (early cancerous) lesions may originate from the surface 

100–200 μm in organs such as the esophagus or bladder, and any deeper signals may contain 

contributions from, for example, normal cell division and adipose tissue on the outer organ 

surface.5 It is not a trivial process to build a complex Raman probe for use down a working 

channel of an endoscope, particularly when one considers the total diameter should be less 

than 2–3 mm and these contain lenses and filters requiring careful alignment and packaging. 

A recent review provides more detail on the strategies to optimize in vivo Raman 

measurements with Raman probes.6

An important consideration for in vivo measurements is the need to minimize 

instrumentation size such that the subjects being measured are inconvenienced the least and 

smaller portions of the body can also be addressed. Miniaturization considerations lead to 

the prospect of Raman needle probes enabling rapid analysis of disease specific molecular 

changes in deeper tissues such as lymph nodes, breast and prostate. A smart Raman needle 

probe has been developed and tested for potential in vivo and ex vivo use, capable of 

measuring tissue Raman molecular tissue signals and demonstrating spectral differences 

between metastatic and non-metastatic nodes in <1–2 seconds down a hypodermic needle.7 

Further developments have led to a hand-held device containing the key optical components 

coupled to disposable needle probe tips.8 Initial ex vivo feasibility testing of the technique 

was performed on excised head and neck lymph nodes from 62 patients undergoing surgery, 
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covering all pathologies observed in this sequential case mix, including reactive, lymphomas 

and secondary cancers. Initial results show reasonable performance with an area under the 

receiver operator curve of 0.83 for malignant versus non-malignant nodes.

Deep Raman Approaches—Beyond accessing disease specific molecular signals using 

fiber probes, the rapidly developing technique of deep Raman spectroscopy is emerging as a 

powerful in vivo tool. Early studies, in pioneering the field of deep Raman spectroscopy for 

biomedical applications, have established the basic feasibility of recovering Raman signals 

(both native and exogenous) from depths of several centimeters beneath the surface of 

animal tissues. This is, by around two orders of magnitude, deeper than achievable with 

conventional approaches such as confocal Raman microscopy. Deep Raman sampling 

involves the use of either transmission (TRS) illumination and collection geometries, or 

spatially offset Raman spectroscopy (SORS), whereby illumination and collection points are 

spatially separated on the outer surface of the tissue.9–11 Initial work has involved the study 

of signals from substances such as those found in calcified tissues, whereby the signal is 

distinct from that found in soft tissues. Clinically relevant concentrations of calcifications 

have been detected to depths of up to 40 mm in animal tissue phantoms (i.e., at near 

clinically relevant depths; X-ray mammographic screening compression ranges from 1.9 to 5 

cm thick) demonstrating the basic viability of scanning human breasts.12 This penetration 

depth was accomplished by dramatically increasing the Raman photon gathering rates (by 

around 100 times) when compared with the first TRS Raman system used.13 This indicates 

the feasibility of using TRS for noninvasive analysis of breast tissues in vivo.

In Vivo Application Examples

Skin.: The most common cancers are found in the skin, the largest and most accessible 

organ in the body. Numerous studies have explored the Raman analysis of skin in vivo. 

Lieber et al used a Raman fiber probe to measure lesions from non-melanoma skin cancers 

and demonstrated 100% sensitivity and 91% specificity in discriminating these lesions from 

normal tissues in this small study.14 A much larger study (over 1000 cases), using a hand 

held Raman probe measuring spectra in less than 1 s, was able to identify malignant 

melanoma lesions with high sensitivity >90% but low specificity, ranging between 15% and 

54%, when discriminating malignant melanoma from non-melanoma pigmented lesions and 

seborrheic keratosis.15 A combination of both Raman and optical coherence tomographic 

(OCT) imaging has been explored to provide both tissue architectural features and 

biochemical signatures from the same locations in skin. The system uses independent light 

sources 785 nm and 1300 nm detection systems for Raman and OCT respectively and shows 

some promise for distinguishing basal cell carcinomas from surrounding normal skin.

Bone.: Pioneering work by Matousek and Morris in developing SORS16 has enabled the 

possibility of measuring bone composition in vivo.17 These developments have mostly been 

focused on the perspective analysis of osteoporosis, although other conditions are also being 

explored. Esmonde-White et al., showed that when measuring bone composition with 

Raman spectroscopy, that dicalcium phosphate dihydrate and uncarbonated apatite were 

found to be associated with infected bone as opposed to carbonated calcium hydroxyapatite 

in healthy bone.18 This indicated that an in vivo measure of bone composition could provide 
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a measure of infection. Figure 1 shows an in vivo SORS measurement using a handheld 

SORS probe (built in house, Stone lab) from the knuckle in 1 s.

Endoscopic Disease Detection in Hollow Organs—The gastrointestinal tract 

includes organs (esophagus, stomach, colon) that develop many of the most significant 

cancers with high incidence, mortality and often a slow genesis. This allows for the 

possibility of early detection and effective treatment. However, current methods of sampling 

and identifying microscopic lesions are limited.2 Early work by Shim et al.19 showed some 

potential, but insufficient signal to noise was obtained for early diagnosis of malignancies. 

The team of Stone et al., have been devoted to developing and testing a confocal probe able 

to measure signals from only the surface 100–200 μm of the esophageal mucosa,20,21 shown 

to be the optimum depth for identification of early dysplastic changes leading to cancers.22 

Seven hundred and ninety-eight, one second Raman probe spectra were acquired from 673 

esophageal tissue samples from 62 patients. Acquisition times between 5 s and 0.1 s per 

spectrum were evaluated. Principal component fed linear discriminant analysis was used to 

calculate probe accuracy by reference to a consensus histopathological ‘‘gold standard’’ 

diagnosis. All results were statistically cross-validated based on characteristic spectral 

signatures. High-grade dysplasia and adenocarcinoma could be discriminated from Barrett’s 

esophagus, low-grade dysplasia, and normal squamous esophagus with a sensitivity of 86% 

and a specificity of 88%. The ability to detect early superficial mucosal disease, including 

discrimination between low-grade and high-grade dysplasia (HGD), was also demonstrated 

despite short, clinically applicable (1 s) spectral acquisition times. However, enhanced 

diagnostic accuracy was demonstrated when using 5 s acquisition times; the detection rate of 

HGD–adenocarcinoma remained 86%, but the specificity was greatly improved at 98%.20

Huang et al. have demonstrated various applications of in vivo Raman diagnostics, 

particularly in the gastrointestinal tract.23,24 They have been exploring different probe 

configurations to provide diagnostic signals from the lining of hollow organs such as the 

oesophagus.25 These multifiber probes have been shown to be efficient in terms of light 

collection, and ongoing work has enabled more specific sampling of diagnostically relevant 

surface signals. Following on from early work by Stone et al. demonstrating Raman 

discrimination of dysplasias and cancers in the larynx,26 Lin et al. have also recently 

demonstrated in vivo diagnosis of laryngeal carcinomas.27 In lung cancer diagnostics, a 

bronchoscope based on white light and autofluorescence was integrated with a Raman probe 

system to explore the value of Raman in improving the specificity of pre-neoplastic lesion 

detection.28 White light and autofluorescence images allowed identification of suspicious 

lesions, areas from which Raman spectra were measured with acquisition times of 1 s. The 

authors showed that sensitivity of 96% and a specificity of 91% for discrimination of pre-

neoplastic lesions (leave-one-out cross-validations) by developing multivariate statistical 

models.

Intraoperative Raman Analysis—Raman measurements have been proposed by a 

number of teams for intraoperative analysis to provide the surgeon with a real-time measure 

of tumor margin analysis or metastatic lesions such as sentinel lymph nodes. The field of 

Raman spectroscopy for cancer detection and cancer surgery guidance has recently been 
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reviewed by Santos et al., demonstrating real progress towards clinical translation of these 

techniques and adoption by the medical community, as well as highlighting challenges.29 A 

sequence of studies have shown that Raman spectroscopy can accurately identify metastatic 

invasion in lymph nodes from the axilla, mediastinum, and head and neck (H&N) using 

Raman microscopic mapping of the cut surface of the nodes.30–32 NIR Raman has been 

demonstrated to identify the pathology of swollen lymph nodes from the head and neck. The 

collected Raman spectra can clearly be separated into those from reactive nodes (swollen 

from reaction to infection), primary malignancies (lymphomas) and secondary malignancies 

(metastatic squamous cell carcinomas and adenocarcinomas) with 90% sensitivity and 86% 

specificity.33

This performance has been reproduced in axillary nodes during breast surgery, using a low-

cost commercially available, portable probe-based Raman system to measure the molecular 

fingerprint of the excised sentinel lymph nodes (SLN) as shown in Figure 2. Greater that 

85% sensitivity and 96% specificity was achieved for identification of metastatic nodes. This 

study was limited by the sample volume measured (using the off the shelf probe), which led 

to a small number of micrometastases (lesions smaller than 1 mm) being missed. 

Customized sampling of larger volumes is expected to improve this performance further. 

The performance of non-optimized Raman in the breast SLN feasibility study versus other 

intra-operative results (Table I) showed Raman measurements to be equivalent to the 

molecular assay approaches, but they require no tissue destruction (allowing for follow up 

histopathology). Furthermore, Raman provided more rapid results and could be applied in 

vivo.34

Margin Analysis—Raman spectroscopy has also been proposed for detection of tumor 

margins during breast cancer surgery, both in vivo and ex vivo. A handheld Raman probe 

was developed for in vivo collection of single-point Raman spectra during surgery.42 This 

was tested in nine patients undergoing partial mastectomy procedures providing tissue 

spectra at each measurement point in 1 s. Spectral data was fit with basis spectra from tissue 

components to provide biochemical profiling.43 From a clinical perspective this approach is 

unlikely to yield sufficiently rapid sampling of all margin locations in vivo. Extensions of 

this work utilizing the relatively new approach of SORS to sample up to 2 mm beneath the 

resected sample surface has enabled an intraoperative approach measuring margins on ex 

vivo tissue to be explored.44

Another potentially important intraoperative application is Mohs surgery, whereby basal cell 

skin cancers are excised in a slice by slice manner until no tumor is found on 

histopathological assessment. This is a particularly time consuming and costly process. The 

use of wide field autofluorescence imaging of skin tissues to enable rapid identification of 

regions of concern for localized Raman measurements during Mohs surgery shows great 

promise for enabling dermatological surgeons to obtain an accurate measure of basal cell 

carcinoma margins in the operating theatre, rather than waiting for pathological analysis.45 

The approach could provide a particularly valuable adjunct to current techniques. In the field 

of oral cancer, Barroso et al.46 have demonstrated discrimination between oral cancer and 

healthy tissue based on water content of freshly excised tongue specimens, determined by 
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Raman spectroscopy in the high wavenumber region. This dramatic signature difference can 

be used to determine the location of the tumor border in oral cancer surgery.47

There has been a recent burst of activity in the exploration of Raman as a tool to support 

brain conserving cancer surgery. Identification of tumor margins is critical to minimize the 

potential for recurrence, and this is particularly difficult for gliomas, which have poorly 

defined margins. The benefit of minimizing the amount of tissue removed is obvious, 

particularly in the case of brain surgery, and therefore the additional guidance of a 

spectroscopic probe to detect invasive brain cancer in situ in real time in patients is 

potentially invaluable. Jerym et al. demonstrated the use of a handheld contact fiber optic 

Raman spectroscopy probe to distinguish brain cancer (glioma) from normal brain in situ 

with sensitivities and specificities exceeding 90%.48 In a study of 35 patients, Vaqas et al. 

similarly deployed Raman spectroscopy to analyze tissue at the brain surface, en route to the 

tumor, in superficial and deep tumor zones and resection margins in vivo during surgery, 

demonstrating that, in comparison to matched core biopsy samples verified by routine 

histopathology, meningiomas, and metastases, as well as low- and high-grade gliomas could 

be identified with high accuracy.49 These and other recent developments of applications of 

Raman based spectroscopy for improving the accuracy of brain tumor surgery have been 

reviewed by Hollon et al.50

Summary and Outlook for In Vivo Measurements—Although in vivo Raman shows 

great promise and many positive results, nearly all studies to date are statistically under 

powered. This is often due to the constraints of running studies at single centers with limited 

patients numbers and funding. A step change is needed to ensure sufficiently large numbers 

of patients can be recruited to build diagnostic models able to describe the majority of the 

variance in the population of interest as well as to test them. Furthermore, it is vital that 

more than one pathologist, ideally at least three is used to provide a better than gold standard 

‘‘ground truth’’ to ensure that inter- and intra-observer differences in pathology do not 

confound the results. Note also the additional value of molecular spectroscopic to go beyond 

replicating a measure of the gold standard or immunohistochemical markers. It has a huge 

potential to provide a genuine measure of likely prognosis for the patient from the first 

measurements. Crow et al. showed bladder cancer surface measurements were indicative of 

the stage as well as grade of disease, i.e., the level of invasion into the surrounding organ as 

well as the cancerous nature if the individuals cells being probed.51 Kendall et al., showed 

differences in high grade dysplasia signals at first presentation between those progressing 

early and late to invasive adenocarcinoma.52 Leiber et al., showed in organotypic skin tissue 

raft cultures that Raman could distinguish the presence of sarcoma fibroblast cells in regions 

adjacent to the sampled volume, when compared to normal fibroblast cells.53 Furthermore, 

Singh et al. demonstrated malignancy associated changes in the buccal mucosa probed by 

Raman in at risk patient groups from tobacco exposure.54 In summary, Raman spectral 

measurements show a high potential for specific applications and new areas of application 

can emerge with the practical measurement technologies. Together, these applications not 

only provide a benefit in providing currently known diagnostic information but can also 

provide new means of understanding disease progression and risk in the future.
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Raman Spectroscopy and Imaging for Ex Vivo Samples

Raman spectroscopy is a highly valuable tool regarding the analysis of biological samples, 

providing detailed insight into their chemical composition. In addition, due to its 

nondestructive nature and speed, Raman spectroscopy has been recognized as promising 

technique in medical diagnostics for many years, as detailed for in vivo measurements in the 

previous section. Over the last years, increased efforts have also been made towards 

establishing Raman spectroscopy also in point-of-care diagnostics, where the demands in 

terms of robustness, user friendly handling and cost efficiency are even higher. A 

particularly relevant area in point-of-care applications is the diagnosis of infectious diseases. 

Not only will the patients directly benefit from a rapid diagnosis, because an appropriate 

medication can be administered in a timely manner, but also a responsible management of 

antibiotics is enabled. Since the occurrence of antibiotic resistances increases at an alarming 

rate and the concern of approaching a post-antibiotic era respectively grows, the strict 

practice of antibiotic stewardship is long overdue. However, the corresponding measures can 

only be efficiently realized, if fast and reliable tests are widely available for determining the 

cause of infection and possible resistances.

To illustrate the potential for point of care applications, this section will focus on recent 

developments in applying Raman spectroscopy for diagnostics of infectious diseases. As 

depicted in Figure 3, Raman spectroscopy offers various options for addressing this task. 

Special attention will be paid to the investigation of easily obtainable body fluids, such as 

urine, blood, saliva or sputum, as they are the most suitable sample types in point-of-care 

assays in contrast to cerebrospinal fluid55–57 or bronchoalveolar lavage, which require 

invasive procedures. Analyzing highly complex samples like body fluids using Raman 

spectroscopy entails certain challenges: depending on the assay more or less complex 

sample preparation strategies need to be applied and statistical analysis of the acquired data 

often is inevitable. Another core theme is the identification of antibiotic resistances, since 

this information is vital for the treating physician and highly significant for containing the 

unnecessary and problematic use of antimicrobial drugs.

Detection of Pathogens in Urine Samples

Urinary tract infections (UTI) are a very common disease, especially among women. Often 

their progression is harmless and easily treatable. However, serious complications can arise, 

if no appropriate medication is given or if the immune system of the patient is otherwise 

compromised.58 Bacterial cell concentrations of urine samples from patients with UTI can 

range from 102 to 105 cells/ml.59 Due to the complex chemical composition of urine60 a 

sample preparation strategy before the Raman spectroscopic investigation of the pathogens 

is generally required in order to prevent the Raman active compounds of the urine matrix to 

interfere with the bacterial spectra. Most commonly, centrifugation is employed in order to 

separate the bacterial cells from the sample matrix. Furthermore, washing steps with buffers 

follow, so that residual contaminants can be removed from the cells. Sometimes a filtration 

step is included for eliminating possible eukaryotic cells such as leukocytes or epithelial 

cells prior to the centrifugation procedure. The isolated bacteria can be either investigated as 

bulk sample or as single cells. As illustrated in Figure 4, each method has unique advantages 
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that can help in different analytical situations, from measurements of single cells to colonies, 

as well as trade-offs in terms of preparation of samples and time until which results may be 

available.

Several exciting innovations have been made in this area. Schroeder et al. introduced a lab-

on-a-disc platform, which enables a convenient enrichment of bacterial cells from urine 

samples.61 After a short pre-treatment step, involving filtration and volume reduction, the 

sample is transferred into the microfluidic disc, which is then placed on a rotator. Due to the 

centrifugal forces, the bacterial cells are collected in micrometer-sized wells. The Raman 

spectroscopic investigation of the bacterial cells in bulk mode can be conducted directly in 

the disc platform (Figure 4b). The applicability of the system was demonstrated by 

analyzing samples of patients with significant bacteriuria (105 CFU/ml or higher) caused by 

Escherichia coli or Enterococcus faecalis. The complete procedure from sample preparation 

to result required about 70 min, which is a great improvement compared to culture based 

identification. Neugebauer and coworkers developed a dielectrophoresis (DEP) chip that 

allows concentrating bacterial cells in liquid samples.62 Subsequently, Raman spectra of the 

cell cloud can be recorded. The DEP chip was successfully tested with cultured bacteria as 

well as with actual patients’ urine samples with confirmed UTI. An unambiguous 

identification of E. coli and E. faecalis was achieved within only 35 min. In contrast to the 

previously mentioned studies Kloss et al. developed a centrifugation based sample 

preparation routine optimized for Raman microspectroscopic investigations of single cells 

(Figure 4a).63 In order to directly identify the bacteria responsible for the infection a 

database with single cell spectra of eleven different pathogens, relevant for UTIs, was 

established. Several patient samples were accordingly analyzed, among them also samples 

from patients that had received a course of antibiotics. All samples were correctly identified 

within approximately 2 h. The proposed method allows analyzing samples with a 

concentration of 103 CFU/ml and higher.

Premasiri et al. employed surface enhanced Raman spectroscopy (SERS) for investigating 

UTI relevant bacteria spiked into urine samples after several centrifugation and washing 

steps.64 The SERS substrate with Au nanoparticles, providing a strong enhancement of the 

Raman signal from the bacterial cells, enabled them to incorporate a portable Raman 

microscope in their system. Catala et al. also chose SERS as detection method for 

identifying and quantifying Staphylococcus aureus in urine samples, blood and other body 

fluids.65 They modified Ag nanoparticles with Raman reporter molecules as well as with 

specific capture probes (antibodies and aptamers) for S. aureus. The biorecognition elements 

cause the SERS encoded particles to accumulate on the surface of the S. aureus cells, 

resulting in a strong increase of the SERS signal of the Raman reporter. For quantification, a 

microfluidic device was developed in which the SERS signal is continuously monitored. 

This approach allowed detecting cell concentrations of 15 CFU/ml and lower within 20 min.

Detection of Pathogens in Blood Samples

In terms of complexity, blood is an even more challenging sample matrix. The main 

components are blood plasma and the formed elements, which comprise erythrocytes, 

leukocytes and platelets. The most abundant molecules, found in the plasma, are various 
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proteins, but enzymes, hormones, amino acids, nutrients as well waste products are present 

as well. Furthermore, it has to be considered, that gases like oxygen, carbon dioxide and 

nitrogen are dissolved in the plasma. Detecting pathogens directly in the whole blood 

matrix, which contains billions of blood cells, is extremely difficult, since quite often there 

are only 10 CFU/ml or fewer bacteria present. Nevertheless, there is an urgent need for 

methods that allow rapidly diagnosing life threatening conditions such as sepsis, because 

nowadays the standard approach is still relying on time consuming blood cultures. In the last 

years, major efforts have been made to establish sample preparation strategies for blood, 

which enable using Raman spectroscopy as a diagnostic tool for sepsis or bacteremia.

Boardman et al. developed a preprocessing routine for whole blood that concentrates viable 

microorganisms from a 10 ml sample to a 200 µl volume.66 They performed a selective lysis 

step for the blood cells and used a centrifugal concentration device for enrichment. They 

were able to recover various bacterial species as well as C. albicans from whole blood 

samples with excellent yields of 55 % and higher. The content of pathogens in the blood 

samples was either 2 or 10 CFU/ml, which represents a relevant concentration range for 

sepsis or bacteremia. Prior to the SERS measurements, an incubation step is performed to 

obtain enough cells for the spectroscopic investigation. The authors successfully 

demonstrated, by investigating several spiked samples, that their combination of sample 

preparation and SERS based analysis allows a sensitive and specific identification of 

bacteria within 7 h. The introduced sample preparation method might be highly useful for 

other spectroscopic and non-spectroscopic detection methods.

Ngo et al. also developed a SERS assay for analyzing whole blood samples.67 However, they 

aimed at a nucleic based identification of the malaria parasite Plasmodium falsiparum. 

Remarkably, they were able to detect the pathogen RNA without using a nucleic acid 

extraction protocol or amplification step. By employing magnetic beads as platform for a 

hybridization assay with SERS nanoparticle modified oligonucleotides as reporter probes, 

they achieved a limit of detection of 200 fM with synthetic target DNA. Further Raman 

based studies of blood samples concerning the diagnosis of malaria have been reported.68,69 

Chen et al. found that SERS spectra of malaria infected red blood cells (RBC) show 

different features than uninfected cells and also that the stages of infection can be 

differentiated according to the SERS spectra of the investigated cells. Kozicki et al.69 

performed a detailed Raman based analysis of the early ring stage of RBCs from malaria 

patients. They were able to observe the chemical and structural changes resulting from the 

parasite infection in the Raman spectra, even though the hemogram did not show any 

changes in the RBC parameters in the investigated early stage.

Blood serum and plasma are also frequently used in routine clinical diagnostics and can 

provide valuable information about a patient’s condition. Neugebauer et al. analyzed blood 

plasma from ICU patients either with systemic inflammatory response syndrome (SIRS) or 

sepsis using Raman spectroscopy.70 They were able to distinguish between SIRS and sepsis 

with 80% accuracy, which is very promising, because no distinct sepsis biomarker is known 

so far. Kamińska developed a SERS immunoassay for detecting interleukin 8 (IL-8), a 

cytokine associated with inflammation, in blood plasma and improved the limit of detection 

compared to a conventional enzyme linked immunosorbent assay (ELISA).71 Bonifacio et 
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al. conducted an extensive study with blood plasma and serum and in order to find the 

optimum experimental conditions for reproducible SERS spectra.72 For example, they found 

that the anticoagulants ethylenediaminetetraacetic acid (EDTA) and citrate have a much 

stronger influence on the spectra than heparin. Tatarkovič et al. compiled an experimental 

procedure for minimizing the fluorescent background in Raman and Raman optical activity 

(ROA) spectra.73 Furthermore, the capabilities of Raman spectroscopy in diagnosing viral 

infections from blood serum have been explored. Khan et al. were able to differentiate 

between dengue virus infected and uninfected samples with 85% diagnostic accuracy and 

compared the performance of standard ELISAs to the Raman spectroscopic approach.74,75 

Anwar at al. were able to detect biochemical changes in blood serum associated with 

hepatitis B and C.76

Detection of Pathogens in Other Body Fluids

Sputum and saliva belong to the category of easily obtainable samples for point-of-care 

diagnostics. Kloss et al. established a method for isolating intact single bacterial cells from 

sputum samples, which involves filtration as well as centrifugation steps, for subsequent 

Raman spectroscopic investigations. A statistical model for classifying pathogens relevant 

for lower respiratory tract infection was built. Validation with an independent data set 

yielded a correct identification rate of 97.4%.77 Gonchukov et al. identified carotenoids as 

biomarkers for periodontitis and were able to specifically detect them in dried saliva samples 

from periodontitis patients via resonance Raman spectroscopy.78 Ghebremedhin et al. 

employed SERS for verifying bacterial presence in wound effluent samples.79

Identifying Antibiotic Resistance

Nowadays, the identification of the bacterial species alone is no longer sufficient and further 

information about antibiotic resistances is required. This need clearly has been recognized 

by the Raman spectroscopic community and various approaches have been published. 

Assmann et al. studied the effects of vancomycin on a sensitive E. faecalis strain using 

Raman microspectroscopy, while Kang et al. were able to detect carbapenemase activity in 

the New Delhi metalloproteinase (NDM) producing E. coli strain using SERS.80,81 

Schroeder et al. designed a dielectrophoretic chip, which allows Raman spectroscopy 

monitoring of the phenotypic changes in resistant and sensitive strains of E. coli induced by 

the antibiotic ciprofloxacin.82 Based on a classification model the identification 

ciprofloxacin-resistant E. coli is possible within 3.5 h. Kirchhoff et al. demonstrated that 

Raman spectroscopy is even capable of determining the minimal inhibitory concentration 

(MIC) of ciprofloxacin.83 By combining dielectrophoretic enrichment and statistical analysis 

of the bulk spectra, they were able to determine the MIC for various clinical E. coli strains. 

Dekter at al. conducted an extensive study for examining the effects of various antibiotics on 

the Raman spectra of eight different sepsis relevant pathogens.84 They further demonstrated 

that the antibiotic susceptibility detection using Raman spectroscopy also succeeds for 

bacteria isolated from spiked blood culture samples. Premasiri et al. reported a SERS based 

method enabling a strain specific differentiation of pathogens directly isolated from urine 

samples.85 Their study included diverse resistant and sensitive E. coli strains, which could 

be unambiguously classified according to their specific SERS signature. Novelli-Rousseau et 

al. investigated the influence of different antibiotics on the Raman signature of susceptible 
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and resistant E. coli strains.86 They were able to identify a signature in the Raman spectra 

induced by the effect of the antibiotics. Based on the acquired spectra they successfully 

trained a classifier for detecting antibiotic susceptibility on a single cell level. Within this 

context, the work of Mathey et al. might be of interest.87 They found that the laser 

irradiation used in Raman spectroscopic investigations of micro-colonies does cause some 

membrane damage, however, the colonies still kept their ability to grow and thus remain 

available for further antimicrobial susceptibility testing (Figure 4c).

Summary and Outlook for Ex Vivo Measurements

Impressive progress has been made towards implementing Raman spectroscopy in medical 

diagnostics and designing assays suitable for point-of-care applications in recent years. The 

importance of sample preparation is increasingly appreciated and more studies are published 

addressing the complete chain of analysis. Even though often preliminary experiments are 

performed with buffer as sample matrix, researchers frequently spike actual body fluids with 

cultivated bacteria in order to simulate the patient’s samples as realistically as possible. 

Table II provides an overview of the different options for sample preparation depending on 

the sample matrix. Another encouraging development is the fact, that even for highly 

complex matrices such as blood, efficient sample preparation strategies, which also take the 

clinical relevant concentration range into account, have been reported. However, there are 

still some obstacles that need to be overcome before Raman spectroscopy can be employed 

in routine point-of-care diagnostics. Although well working sample preparation strategies 

have been realized, in most cases they involve multiple devices and various manual handling 

steps, so that they only can be performed in a specialized laboratory. For on-site application, 

an ideally complete automation of the respective protocols is desirable. In principle, this 

need already has been recognized and efforts have been already made towards this goal. For 

example, handheld Raman setups are available and have been integrated in the analysis of 

highly complex samples. In addition, in terms of sample preparation many of the proposed 

approaches have been automated to some degree and clearly possess great potential for 

further automation and miniaturization. With these anticipated advances, Raman 

spectroscopy will become a valuable tool for routine on-site analysis and point-of-care 

applications in near future.

Point-of-Care Applications of Infrared Spectroscopy and Imaging

Fourier transform infrared (FT-IR) and discrete frequency IR (DF-IR) imaging using 

quantum cascade laser (QCL) and other approaches offers tremendous potential in the field 

of point-of-care medical diagnosis. While Raman imaging has focused on both in vivo and 

ex vivo approaches, the complementary ability of IR spectroscopy lies in to screening a field 

of cells from a blood smear or tissue section based on the cells intrinsic molecular 

phenotype. This represents a potentially significant step forward compared to conventional 

hemotoxylin and eosin (H&E) and immune-chemical staining methods. Early studies 

combining FT-IR mapping and multivariate data analysis showed the potential of the 

technique to identify cancerous cell types in tissue sections.88,89 Complementary to Raman 

imaging to investigate breast90,91 and fiber optic devices to detect cervical cancer,92 IR 

analyses can be coupled multimodally using multivariate data analysis as we have recently 
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shown.93 The advent of quantum cascade laser (QCL) microscopes has enabled rapid 

discrete wavenumber imaging of biological materials.94,95 This has been particular useful in 

rapid imaging of large tissue sections and applications to colorectal,96 colon,97 and breast98 

cancer. In this section, we highlight some recent advances and applications in vibrational 

imaging modalities applied to point-of-care diagnosis from biofluids to single cells and 

tissues. While we focus on applications of IR imaging, we also present complementary 

examples in Raman imaging to illustrate the areas where each may be applied.

Infrared Imaging of Biofluids

Spectroscopy is eminently suited to the analysis of biofluids. Infrared bands can be related to 

different constituents of the metabolome, proteome, and lipidome of biofluids such as urine,
99 whole blood,100 saliva,101 or cerebrospinal fluid (CSF).102 The acquisition of infrared 

spectra can be performed in a few minutes without the need for complex sample, making 

this technique a suitable tool for the point-of-care (POC) analysis. Due to the linearity of 

concentration and infrared absorbance bands (Beer–Lambert law), the technique can be used 

for quantification of clinical parameters103 in biological liquid104 and gas samples.105 In 

addition, by comparing spectra from control and infected/treated sets, spectral biomarkers 

can be obtained for the investigation and diagnoses of disease using a fast and simple 

portable infrared spectrometer. The challenge remains in extracting the important spectral 

marker bands from other sources of variation.106 The use of imaging techniques for the 

analysis of biofluids is somewhat limited in the POC context. Hitherto, the preferred choice 

is more cost effective and compact single point attenuated total reflection (ATR) or 

transmission devices, which measure the bulk of the sample and do not provide any spatial 

resolution. Nevertheless, researchers have been investigating recently the integration of 

imaging as supporting tools in the POC analysis. Hughes et al.107 applied FT-IR imaging for 

the assessment of the reproducibility of dry films of biofluids using transmission and ATR 

measurements. Their results indicated that the bulk measurements of dry films of serum are 

affected by inconsistencies in the deposition and drying of the sample. The authors 

demonstrated that FT-IR imaging was a suitable technique for studying these depositions,. 

They also found that the irreproducibility was sample dependent. It was shown that the 10–

100 KDa extract had an irregular distribution with cracks at the center of the film. This can 

contribute to undesirable effects such as scattering and a lack in consistency throughout the 

dried film. In contrast, films obtained from the >100 KDa extract showed a uniform shape 

and presented less irregularities.

One of the most important sources of unevenness in dry films is the so-called ‘‘coffee ring 

effect’’.108 When a liquid dries, a ring-like deposit forms around the center of the drop.109 

Molecules with different molecular masses and polarity migrate to the periphery at different 

ratios, such that the composition of the periphery and the center may be different. Recently, 

Choi et al.110 have investigated the dynamic process that lead to ring formation using bovine 

gamma globulin and bovine serum albumin. They used infrared hyperspectral images and 

proposed an energy-based kinetic model. Results indicated that there are differences 

between the dynamics of the evaporation globular and non-globular proteins, provoking 

segregation patterns in the edge of the dry film. Finally, the use of infrared imaging as a tool 

for fast serum analysis has also been recently explored by Hughes et al.111 Whereas the 
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imaging configuration cannot compete with ATR and transmission bulk analysis in terms of 

compatibility, the authors investigated the use of hyperspectral images as a high throughput 

method for acquiring the spectra of several samples from a single image. Because the aim of 

the work was to provide a fast POC, discrete frequencies IR (DF-IR) using a QCL laser was 

employed. This enabled the acquisition of different frequencies of light, making possible to 

perform diagnostic models using just a few variables, which reduces considerably the 

acquisition time. They used a microdispenser to create dry films deposition of approximately 

130 µm in diameter. In total, 56 different serum samples were deposited on a sample 

substrate and could be measured in a 2 × 2 mosaic image. Although, the topography of the 

deposition was irregular, the results reported a relative good set of standard deviation values 

of 0.6, 5.1 and 15.0% for datasets containing 199, 14, and nine variables, respectively. In 

summary, the use of vibrational spectroscopy imaging techniques in the POC analysis it is 

not ideal because of the size and cost of the current instruments. However, the introduction 

of new technologies such as DF-IR based on QCL may allow in the future the fast analysis 

of biofluids in the POC context.

FT-IR Imaging Applied to Single Cell Analysis for Point-of-Care Analysis

Fourier transform infrared imaging has not only been successfully applied to analyze tissue 

sections, but also for single cell analysis. However, this application appears more 

challenging due to the limited spatial resolution of this technique. This drawback can be 

overcome by application of a synchrotron light source.112 Although not suited to POC this 

methodology has been applied for the single cell analysis of Plasmodium falciparum 
infected red blood cells. The different stages of the Plasmodium life cycle could be 

discriminated by their IR absorbance in the CH-stretching region (3100–2800 cm−1) using 

PCA.113 In a later study, an FPA-FT-IR instrument with a thermal light source was used for 

the detection of red blood cells infected with P. falciparum in the trophozoite stage.114 The 

same setup was used in a multimodal approach in combination with Raman imaging to 

locate the parasite in the red blood cell, based on characteristic spectral features, such as an 

axial carboxyl ligand band from hemozoin at 1211 cm−1.115 Another approach to overcome 

the limited spatial resolution of IR imaging is the combination with atomic force microscopy 

(AFM), which has been applied for single cell analysis of P. falciparum infected red blood 

cells116 and bacteria.117,118 While this approach is technically challenging for POC it does 

provide a method to obtain diagnostically useful subcellular information that could be used 

for prognostic indicators.

Recently FT-IR imaging has been applied for stem cell research.119–123. The unmet clinical 

need addressed at the core of this research was the quality control of stem cells injected for 

regenerative medicine practice, with the danger that unidentified pluripotent cells present in 

the injected aliquot of cells could form into cancerous growths in the body.124 Conventional 

approaches for the discrimination of pluripotent cells from their differentiated progeny are 

either destructive or require the addition of fluorescence labeled antibodies to cell surface 

receptors, which compromise cell viability, promoting interest in new spectroscopic 

approaches that do not rely on contrast agents. Infrared imaging was used on cell 

monolayers produced by cell centrifugation, with the pixels size set to approximate the size 

of individual stem cells and quality control routines used to reject spectra where cells were 
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clumped or missing, resulting in the acquisition of spectra that could be treated as if they 

were from single cells (Figure 5).120 Both human embryonic and reprogramed stem cells 

differentiated to early commitment states could be discriminated from their pluripotent 

progenitor cells with excellent sensitivity and sensitivity using this approach, based on 

changes in spectral bands from lipids, proteins, carbohydrates and nucleic acids. The 

discrimination ability of spectroscopy for early differentiation changes in the stem cells was 

confirmed by changes in gene expression that was observed before registration of any 

change in cell surface markers.124–127 Similarly, changes in the differentiation states of 

multipotent cells have also been reported. For example, mesenchymal stem cells 

differentiated towards a chondrogenic lineage could be discriminated based on changes in 

amide III band (1255–1215 cm−1) and C–O stretching band (1200–900 cm−1) absorbances 

resulting from the formation of collagen and aggrecan.114

All this work with stem cells involved dried cellular deposits posing a barrier to translation 

of IR spectroscopic methods for the quality control of stem cells used in regenerative 

medicine therapies. Since water causes a strong IR background, the investigation of living 

cells in their natural environment using IR imaging represents a challenge. Here, 

microfluidic approaches that control the thickness of the water layer might provide remedy.
128,129 Moreover, the water penetration issue by IR light may be overcome using Quantum 

Cascade Laser infrared sources, which can even penetrate skin to distances up to 50–100 

µm, opening up the possibility of live cell imaging in the near future.130

FT-IR Imaging for Point-of-Care Diagnosis of Tissue Sections

Fourier transform infrared (FT-IR) imaging has been applied in a diagnostic context for a 

variety of tissues based on the biochemical fingerprint of the cells that constitute the tissue 

section. Studies in this space have focused on biopsy tissues with no papers applying the 

technique directly on patients. The potential of the technology to look at histological 

sections of excised tissue has been exploited by utilizing multivariate methods to generate 

false-colour maps based on spectral similarity. Characterization of skin sections or 

mineralized tissue such as bone has been described. Bone quality was for example assessed 

by FT-IR and Raman imaging by Kimura-Suda et al., by observing the PO4
3− band between 

1200–900 cm−1, which is affected by changes in the calcium phosphate composition and 

indicates bone maturity.131 In another study, the collagen quality in bones was established by 

the investigation of IR bands around 1770–1570 and 1250–1100 cm−1 that correlate to 

osseous non-enzymatic cross-links.132 Moreover, FT-IR imaging in combination with partial 

least squares regression (PLSR) has been shown to be able to predict the collagen and elastin 

content in aorta membranes and the collagen maturity by the ratio of IR band intensities at 

1660 and 1690 cm−1, this way prognosticating the risk for abdominal aortic aneurisms.133

Cancer causes one in six deaths worldwide, however, improved management including quick 

and easy screening tools could help preventing millions of deaths each year.134 Cancerous 

tissue can be identified from normal using FT-IR imaging methods. FT-IR imaging was for 

example used in several studies for the diagnosis of breast cancer.135–138 To overcome long 

measurement times, several recent studies focus on the optimization of this method based on 

only a few discrete frequencies.139,140 A study by Verdonck et al.138 implements the 
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microenvironment of breast cancer cells by discriminating between tumor and normal 

phenotypes of breast endothelial cells that are either adjacent or remotely located to the 

tumor. While tumor tissue could be discriminated from normal tissue based on amide I and 

amide II bands and nucleic acid phosphate vibrations around 1210–1050 cm−1 using 

principal component analysis (PCA), adjacent and remote tissue was distinguished by PLS-

DA based on bands at 1450 and 1000 cm−1.138

Multimodal Vibrational Imaging

There is now a wide range of available techniques for the chemical imaging of biological 

samples, including X-ray fluorescence (XRF), mass spectrometry imaging (MSI), laser 

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and vibrational 

techniques such as infrared and Raman spectroscopy. Each technique focuses on a different 

part of the cell such as the metallome, proteome, lipidome and metabolome, such that each 

provides only a part of the picture. Hence, samples can be measured by more than one 

modality, providing hopefully a more holistic picture of the cellular phenotype. Recently, 

there have been attempts to integrate Infrared and Raman images from red blood cells and 

algae in an extended hyperspectral image where every pixel contains both infrared and 

Raman spectra. Correlation of information obtained by the different techniques through data 

fusion has been demonstrated to provide more information than the sum of the parts, with 

information obtained by the infrared and Raman improving band assignments.88 Figure 6 

shows the cluster map (Figure 6a) of a Micrasterias algal cell (see visible image on Figure 

6c). Figure 6b and d show the average spectra from both infrared and Raman spectrometers. 

The correlation of modalities was especially useful when investigating lipids and 

carbohydrates. They show similar bands corresponding to C–H and C–O stretching bonds, 

but lipids are generally more active in Raman than carbohydrates, and this fact can be used 

to distinguish between the two images of the compounds. Another example of the 

integration of infrared and Raman imaging was presented by Lash et al.141 In this study the 

authors combined both vibrational modalities with MALDI-TOF to study hamster brain 

tissue. The analysis of the three modalities using two-dimensional correlation spectroscopy 

(2D-COS) enabled the investigation of auto and heterospectral correlations, which assisted 

the band assignment.

Raman Imaging of Tissue

Raman spectroscopy-based imaging of tissues has been broadly applied in the context of 

spectral histopathology, with tissue alterations identified on the basis of molecular changes, 

in a noninvasive and histopathologist-independent matter. Multiple examples of ex vivo RS-

based detection of tissue abnormalities can be found in the literature, including the use of 

conventional Raman spectroscopy,142 as well SERS,142,143 Stimulated Raman spectroscopy 

(SRS),144,145 and coherent anti-Stokes Raman spectroscopy (CARS).146 In particular, the 

narrowband coherent techniques, such as CARS and SRS offer the ability for high speed 

imaging, with video rate acquisition times.144–146 RS-based spectral histopathology has 

proven to be useful for a great variety of tissue pathologies ranging from cancer45,143 or 

fibrosis,147 to detection of heterotopic ossification,148 and even the presence of malaria 

parasites in the spleen.149 As Raman spectroscopy is applicable for live, unfixed, and 

hydrated samples, prompting more and more attempts towards adaptation of RS-based 
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spectral histopathology in vivo, in the form of Raman-assisted surgeries. This is of particular 

importance for the case of tumor resections, as they remain the main approach in cancer 

therapy, with the outcome directly depending on the ability for precise and complete 

removal of malignant tissue. The potential for RS-based precise determination of tumor 

margins in real time was shown first by Haka et al. using Raman spectra collected in vivo, 

during partial mastectomy.43 Since conventional Raman spectroscopy has a depth limitation, 

an approach based on spatially offset Raman spectroscopy (SORS), enabling to probe deep 

tissue (0.5–2 mm below the surface), was shown to have high sensitivity (95%) and 

specificity (100%) for breast tumor margin assessment.44 Kircher et al. demonstrated a the 

capability of SERS-based tumor margin determination performed in vivo, in a murine model 

during resection.150 More recently, an intraoperative application of a RS-based, label-free 

cancer detection system for human glioma was shown.151 St-Arnaud et al. developed a non-

contact mesoscopic Raman imaging probe with a wide field of view (3.5 × 4.0 mm), 

enabling hyperspectral imaging of soft tissues ex vivo, with a potential for assisted-surgery 

application.152 The well proven ex vivo ability of RS based imaging to detect various tissue 

abnormalities, matching (and often exceeding) the capabilities of gold standard 

histopathology, together with recent rapid technological developments aimed at real-time in 

vivo applications create a strong base for practical, intraoperative use of RS imaging in 

clinics in the future.

Raman Imaging for Single Cell Analysis

Raman spectroscopy is continuously becoming more popular in the context of potential 

clinical applications for single cell analysis. This is primarily due to the fact that it offers the 

ability to obtain biochemical information from living cells in a label-free, noninvasive 

manner.153 The technique requires no fixation or desiccation opening up a broad range of 

possibilities for in vivo applications. However, the fact that spontaneous Raman scattering is 

a week effect (only approximately 1 × 108 of photons are scattered non-elastically154) 

results in long acquisition time and/or need for usage of relatively high power, unfavorable 

for biological materials.153,154 The long data acquisition time together with lack of 

standardized, robust and reliable protocols for user-friendly data analysis are the main 

factors currently limiting the transition of RS to the clinics.153 Nevertheless, in the recent 

decades multiple improvements in the instrumentation and data analysis software have 

largely overcome these limitations. The applications of single cell Raman imaging, 

particularly from the last decade, are becoming closer to the real clinical implementation.
155–166 RS-based single cell imaging is especially widely utilized in cancer related studies.
155–159 The ability of RS to differentiate between normal as cancerous cells has been 

demonstrated.155 More recently, surface enhanced Raman spectroscopy (SERS) was used 

for imaging cancer markers as well as for cell discrimination.156,157 The SERS technique is 

gaining particular popularity as it provides a substantial enhancement of signal, thus 

increasing the sensitivity and enabling faster data acquisition times.156–159 The approach has 

been applied for in vivo cancer detection, although with focus on the single spectra rather 

than imaging.158 MacLaughlin et al. demonstrated a SERS-based approach for detection of 

malignant B cells, by simultaneous use of three nanoparticle tags as labels of surface 

proteins, showing the potential of SERS imaging to detect leukaemia. Nanoparticle-

mediated Raman imaging of cells, aimed at POC diagnosis, was recently demonstrated by 
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Cho et al., who combined Raman active nanoprobes (RAN) with microfluidic chip to 

process blood samples and identify circulating cancer stem cells as well as tumor cells.159

Aside from cancer applications, RS-based diagnostic approach is continuously explored with 

respect to other diseases. Since Wood et al. demonstrated the ability to detect Plasmodium 
falciparum directly in infected red blood cells,160 several researchers have utilized Raman 

spectroscopy for malaria studies.161,162 In particular, the ability of resonance Raman 

spectroscopy combined with multivariate data analysis for fast parasite detection was shown, 

indication also the potential of this approach to identify low-pigmented forms (such as the 

early trophozoite stage) (Figure 7).166 Recently, Brückner et al. demonstrated a new Raman 

imaging setup enabling an automated hemozoin detection in early ring stages of 

Plasmodium falciparum, with the acquisition time of 10 s.165

The ability to probe the macromolecular architecture of living oocytes using 3D Raman 

imaging was demonstrated by Heraud et al.,164 opening the way towards noninvasive 

comprehensive oocyte phenotyping (Figure 8). The research demonstrated the advantages of 

imaging living cells as opposed to fixed ones, showing both morphological changes in the 

three dimensional architecture as well as chemical changes when the oocytes were aldehyde 

fixed. Indeed, an in vivo oocyte marker band was identified observed only in living cells 

(Figure 8). The work leads the way towards assessment of oocyte competency in the context 

of assisted reproductive technologies.

Summary and Outlook for IR Imaging Measurements

The application of FT-IR, QCL, and Raman imaging at point-of-care is still in its infancy. 

While technological advancements have been made, clinicians and pathologists must drive 

the translation of the technology to the clinic. It is only through their collaboration and 

ability to get ethical clearance to enable clinical trials of the technology that can be applied 

to patients presenting at hospitals and medical centers. It is clear that the images generated 

by these technologies are diagnostically useful but the challenge remains to batch process 

tissue sections and analyze the enormous data sets in a timely manner. The approach works 

best if a simple question is been addressed like collagen versus no collagen in FT-IR images 

where there are distinct marker bands that can be easily discerned from other tissue types. 

Different tissue densities, substrate contributions, tissue processing artifacts can lead to 

erroneous modeling especially when the difference between the molecular phenotype of the 

cells are similar. In FT-IR imaging, the closest to point-of-care translation is the Diem group 

who have been applying the technology to discriminate benign from malignant lung 

tumours.167,168 The detailed images show the potential of the technique to identify 

individual cell types. More recently Bhargava et al.169 demonstrated accurate subtyping 

from molecular properties of epithelial cells and the microenvironment using high-definition 

Fourier transform infrared spectroscopic imaging combined with machine learning 

algorithms. The advent of Raman 2D imaging in light-sheet microscopy offers the potential 

for 2D and 3D imaging of tissues and cells in rapid time170 and combination IR imaging 

systems are commercially just around the corner with the that can achieve sub-micron 

spatial resolution IR imaging and spectroscopy. For example, the commercial Mirage system 

works on the principle of photothermal IR spectroscopy (PT-IR) providing transmission 
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quality FT-IR spectra, even in reflection mode and thus sample thickness is longer an issue. 

The system may soon be coupled to a Raman system providing the first fully integrated 

infrared/Raman imaging system ideal for cell and tissue point-of-care imaging.

Data Analysis and Understanding

Use of any spectroscopy technique for rapid and accessible decision making relies on two 

critical aspects: First, the data must be consistent, reproducible, and quantitative with the 

disease state. Second, algorithms that interpret the data to provide recognition of a 

physiologic state must be robust and provide rapid assessment. While sampling for 

homogeneous liquids and films is well established, here we focus on rapid analysis from 

complex, morphologically heterogeneous materials, discuss how recorded data may be 

affected by the sampling geometry, and show how fundamental progress in spectroscopy is 

leading to better understanding of such effects. We then summarize available mathematical 

methods that provide powerful capabilities for relating recorded data to physiologic 

conditions. We emphasize the interplay between understanding recorded data and using it. 

We anticipate that this will be a core area of study for spectroscopists focused on the 

fundamentals, yet a critical area of understanding needed for applied spectroscopists. We 

review the two areas and emphasize recent developments next.

Fundamental Theory

The underlying material property that we estimate from an absorbance measurement is the 

refractive index. The refractive index of an absorbing sample is a complex number and the 

real and imaginary parts of this complex number each have physical significance. The real 

part of the refractive index of a material determines how light propagates through the 

medium (most famously, by attenuating the speed of light). In comparison, the imaginary 

part determines how light is attenuated in the medium, which is proportional to the measured 

absorbance. IR spectroscopy of optically homogeneous samples has traditionally been 

performed by passing light through them (in transmission sampling geometry) and 

measuring the attenuation. Beer’s Law171 then predicts concentration readily from the 

recorded absorption spectrum. This paradigm has been the central tenet of analysis in IR 

spectroscopy and forms the basis of most analyses.

When a sample consists of multiple chemical constituents that are spatially distributed, maps 

of chemical composition are more useful and local application of Beer’s law for every pixel 

offers a sensitivity due to the spatial localization as well as a specificity for any changes 

observed. Ideally, we want to find the absorption spectrum at each point on a sample and 

infer chemical composition from absorbance. Such a map is most commonly obtained by 

coupling a microscope to an FT-IR or discrete frequency IR (DF-IR) spectrometer, resulting 

in IR spectroscopic imaging. However, it is now being increasingly recognized that that the 

absorption spectra measured in samples consisting of a spatial distribution of multiple 

chemical constituents is different from the spectra of the individual chemicals in a spatially 

homogenous sample. While tissues are naturally heterogeneous,172–174 even the spectral 

analysis of serum or fluid samples is now being measured in microscopy formats since 

deposited samples are heterogeneous. Understanding spectroscopic imaging data requires us 
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to understand the causes of such spectral differences. This, in turn, requires an understanding 

of light–matter interaction at the sample as well as the data collection mechanism.

Spectra of Chemically Diverse Samples.—The problem of finding accurate 

absorption spectra of samples with multiple chemical constituents is identical to finding the 

refractive index variation across the sample at different wavenumbers, i.e., the refractive 

index profile at different spatial locations. However, there is a complication. Whenever there 

is a variation in the imaginary refractive index, there is usually a corresponding change in 

the real part of the refractive index. This variation in real refractive index causes scattering. 

When light scatters, the light distribution measured at the detector is changed. A reduction in 

measured intensity can be misinterpreted as being due to absorption although light is just 

redirected due to scattering. Since the real refractive index has a wavenumber dependence, 

scattering is also wavenumber dependent and the measured spectra are different from what 

spectroscopists would expect from the absorbance of individual chemical constituents. The 

profile of scattered light also depends on the optics, especially the image formation lens. Put 

simply, the measured spectrum not only depends on intrinsic absorbance, but also on the 

shape of an object as well as the optics used. In order to understand these effects and 

consequent spectral changes further, we need a detailed model of light–matter interaction at 

the sample. Note that the real and imaginary parts of refractive index are not independent 

variables. They are connected through the well-known Kramers–Kronig relations.175 Using 

this relation, it might be possible to uncouple absorbance from the real refractive index of a 

substance, i.e., the inverse problem. The first step in this process is to model and predict the 

measured spectra given the refractive index distribution of a sample, i.e., the forward 

problem.

Methods to Predict and Mitigate Sample Effects

There are several models to understand light–matter interaction depending on the nature of 

light and assumptions about the nature of the sample. Two models that are useful in 

spectroscopic imaging of organic materials are discussed here. Our goal in modeling light–

matter interaction in the mid-IR is to understand the relation between the morphology within 

an object and its spectrum. Samples where such effects are seen and well recognized range 

from simple geometric objects like spheres to multiphase polymer samples176 to single 

cells177,178 and complicated tissues.179

Spectra of Layered Samples.—A good model for many organic samples is to think of 

them as consisting of multiple layers of known thicknesses and different refractive indices 

(Figure 9). We first assume that the layers are homogeneous180 and then generalize by 

making the layers heterogeneous.181–183 This model is useful in understanding slices of 

tissue placed on a BaF2 slide, for example. When the sample consists of multiple 

homogenous layers, we first trace the propagation of one plane wave as it travels through 

different layers of the sample. We do so by setting up the boundary conditions at each layer 

using Fresnel equations184 and solving jointly for the electric field in each layer. When a 

focused light beam is incident on this layered sample, we decompose the focused field into 

its constituent plane waves (incident at different angles) through an angular spectrum 

decomposition.185 We simply add the electric field contributions at each point due to the 
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different plane waves to obtain the light distribution in a sample due to a focused beam of 

light. Light exiting the last boundary is what we measure. Our simulations give us this 

output light distribution and therefore predict our measurement. Note that the refractive 

index of each layer can be complex. We perform these simulations at each spectral 

wavenumber and can predict the full measured spectrum.

When the sample consists of one or more heterogenous layers, we use coupled wave 

theory181 to solve for the boundary conditions. The fundamental idea behind this approach is 

to decompose a heterogenous layer into its Fourier series. Crudely speaking, each layer is 

thought of as a combination of sinusoidal ‘‘optical gratings’’ of different lines per mm i.e., 

‘‘frequency’’. We know that a grating deflects light proportional to its frequency. A 

combination of different gratings deflects one plane wave into multiple plane waves 

traveling in different directions. This happens at each layer. We setup up the boundary 

conditions for each of these waves just as with the homogenous layer case. We solve the 

electric and magnetic field jointly to find out the distribution of light inside the sample. 

Light exiting the last layer reaches the detector and gives our measurement. This is done at 

different wavenumbers for the same sample and, thus, a spectrum is obtained for a sample 

that not only absorbs light but also scatters it. Absorption spectra are distorted in predictable 

ways depending on the shape of the sample and its refractive index. In layered samples, 

there are two important effects. The thickness of the sample results in a sinusoidal baseline 

variation in the sample that depends on sample thickness. The larger the thickness relative to 

the light’s wavelength, the larger182 this distortion. Light scattering is especially prominent 

at the edge of a sample. Figure 3 shows how the focused light field is distorted at the edge of 

a layered sample. Consequently, there is a large change in the baseline as the green spectrum 

in this figure indicates. Moreover, such baseline changes result in shifts in spectral peaks, 

which can 2.5 cm−1 or larger181 in some cases. Mitigation of these effects can be conducted 

by using several approaches, as discussed later.

Spectra of Spherical Objects.—Another useful model for understanding spectral 

distortions in heterogenous samples is to express the sample as a combination of multiple 

spherical objects each consisting of a single chemical constituent. Such approximations are 

useful in modeling cell nuclei, for example. In order to predict spectra using this model, we 

calculate the effects of one plane wave on a sphere whose complex refractive index is 

known. This can be done using classical Mie theory.187,188 In our implementation for exact 

understanding of the effect of spherical geometry, we again decompose the incident light 

into a sum of plane waves, find the electric field emitted from the sample for each plane 

wave and add the contributions of each incident plane wave to find the final output field. 

These calculations are repeated at a series of wavenumbers in order to obtain spectral data.

Figure 10 shows spectral distortions due to scattering from spherical objects. The imaginary 

refractive index (red) shown in Figure 10a is the ideal spectrum that we would expect from 

PMMA. However, when we measure a spectrum from PMMA spheres of 2.5 µm and 5 µm 

radii, the spectra have significant distortions that are caused by scattering. These effects can 

be large, but predictable as shown in Figure 10b. In order to arrive at the ‘‘true’’ absorbance 

spectrum, there are a few iterative algorithms187,189 that have been proposed. These involve 

first getting an estimate of the sphere radius, subtracting a baseline from data based on our 
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prediction model and iterating till the prediction model and data converge. These methods 

work well if the assumptions of the model, especially regarding the spherical nature of the 

sample, corresponds to the experiment. A spherical model for scattering is used extensively 

as a model for single pixels from biological materials. Other shapes, for example, cylindrical 

objects have also been analyzed190 as models for fibers or fungi. An interesting result is that 

as a collection of spheres increasingly fills volume, the spectra converge to a ‘‘steady state’’ 

spectrum, alluding to an effective medium model.187,191–193 Together, a vast majority of 

samples can be modeled as spheres, collections of spheres or cylinders offering a menu of 

approaches to model real life objects.

Modeling of Instrumentation and Image Formation

While the above discussion focused on the effects of the sample, another important aspect of 

understanding spectral data from spectroscopic imaging is the relation between light exiting 

the sample focal plane and that recorded by the detector. This process involves light 

propagation through the entire instrument. A complete model of an instrument in order to 

understand the relation between the sample and data has been presented.194 This approach 

does not require any adjustable parameters and the rigorous approach can be used for 

simulation of different optical configurations. Here, light is propagated as an 

electromagnetic wave through the components of the optical system. Each optical 

component is represented by an operator that modifies the electric field. We build the system 

through a concatenation of operators. An advantage of this modeling approach is that there 

is a one-to-one correspondence between building the theory and building the instrument. 

Replacing one optical component in the instrument by another is the same as replacing the 

corresponding operator by another with the rest of the components being unchanged. This 

approach makes it simple to understand how data changes when an optical component is 

changed. A key insight from this study194 was that it was possible to obtain higher 

resolution spectroscopic images from the commercial instruments at that time by making 

small changes. Moreover, the model suggests that there are several ways of realizing this 

improvement. One of the simplest schemes involves replacing optical components in the 

path of light between the sample and detector by more appropriately designed ones. 

Modeling and increased availability of different designs has now led to a proliferation in the 

types of lenses and optical configurations186,195–200 used for imaging.

Image Formation.—Mid-IR light has a large wavelength range and the highest possible 

resolution that can be obtained from an FT-IR imaging instrument is determined by the 

diffraction limit.175 However, an appropriate design of the microscope is important in order 

to realize diffraction-limited resolution. Digitization and sampling of the image plays a key 

role in achieving diffraction limited resolution and the effective resolution obtained by a 

digital microscope is not only constrained by the wavenumber and numerical aperture (NA), 

but also by the digitization parameters of the detector array. This is determined by the design 

parameters of the optics between the sample and detector array. Using our instrument model, 

we create plots of design parameters for varying, pixel size, collector NA and wavenumber. 

An optimal design point is chosen based on the pixel size and NA for the highest 

wavenumber of interest in terms of spectroscopy. Another consequence of this modeling 

exercise is an understanding of the difference between FT-IR imaging (incoherent light) and 
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imaging using QCLs (coherent light). The imaging system transfer functions are different in 

the two cases as detailed in the paper. Moreover, this results in strong fringes at the edges of 

samples in QCL based imaging systems. Such fringing artifacts are evident in measured 

data201 and schemes to reduce these fringes have been proposed.202 With newer designs, 

exceptional quality imaging at high spatial detail over the entire spectral region or the 

fingerprint region is now becoming common.203–210 As the number of optical configurations 

increase that combine novel means of illumination, light collection and detection, the role of 

modeling is likely to become more important. We emphasize strongly that understanding 

optical design for image formation is critical, but so is understanding the effect each design 

may have on the recorded spectrum. This is a somewhat underdeveloped area in the field of 

spectroscopy but offers rich opportunity and critical need as subtle changes in the spectra are 

increasing analyzed by complex mathematical algorithms and instruments with exceptional 

performance to measure very small changes are becoming increasingly available 169,211–213

Chemometric Techniques for Point-of-Care Applications

The quantification and classification of constituents in a sample can be particularly 

challenging given the molecular complexity seen in biological samples. In addition, the 

spatial heterogeneity of tissue samples ensures that all pixels are composed of an indefinite 

number of mixed spectral components. Finally, tissue samples are highly heterogeneous, 

exhibiting tremendous variation in total molecular concentration. Thus, the spectrum from a 

biological sample is generally treated as a ‘‘fingerprint’’ rather than as a specific molecular 

spectrum. While the Beer–Lambert law is still invoked to determine quantitative 

contributions, there is no guarantee that the total concentration or path length is constant for 

all pixels. The spectral histology community has generally elected to ignore path length as a 

variable, since the variability of fluid or tissue preparation results in the number of 

molecules encountered correlating poorly with underlying composition. It is therefore 

generally accepted to work with spectral ratios, rather than relying on raw spectra. The 

selection of these spectral ratios varies with application, however normalization to the 

Amide I protein absorbance (~1650 cm−1) is common as this is often the dominant band in 

biological spectra.203 This modification enforces a uniform concentration at each pixel. 

Another common technique is to use derivatives that are less sensitive to changes in 

intensities, while others yet use band shapes and ratios of carefully curated features.

Traditional Chemometric Techniques

Infrared spectra acquired from biomedical samples take on several properties that make the 

selection of individual molecular bands difficult. First, tissue samples are spatially diverse 

with morphological units varying from nanoscale to larger, resulting in pixels composed of a 

mixture of distinct molecular components that subtly vary across the image. Second, 

biological spectra exhibit a similar overall shape, making variations across a sample subtle 

and difficult to manually determine. For example, consider a set of spectra collected from a 

diverse variety of unrelated tissue types (FIGURE). Note that these spectra exhibit a 

common overall shape, rather similar to a Matrigel mixture,214 composed of a gelatinous 

protein commonly used as a substrate for cellular culture. The spectral components 

necessary to differentiate between cell types are subtle when compared to this dominant 
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signal, requiring computational methods to identify and extract. Assuming that the 

absorption spectrum at each pixel forms a linear combination of constituent spectra, the 

segmentation of individual biological components is often seen as a blind source separation 

problem.215,216 This type of problem can be tackled with a variety of methods, with several 

common techniques described in this section.

Principal component analysis (PCA) is one of the most basic feature extraction techniques, 

taking advantage of the variance of features within a population of biological spectra 

X ∈ ℝN × B, where N is the number of spectra and B the number of band measurements. This 

method identifies the orthogonal spectral components that vary from the mean spectrum µ, 

which characterizes a common biological absorbance signal (FIGURE). A set of loading 

vectors L ∈ ℝB × B sorted in order of variance. A score can then be calculated for a spectrum 

x:

s = L x − μ (1)

in which every value in s specifies the proportion of the corresponding orthogonal 

component from L is present in x. Since the variance is calculated globally and the loading 

vectors are orthogonal, it is highly unlikely that PCA captures unique or useful spectral 

features within L. However, if we are willing to specify a threshold such that any loading 

vector accounting for less than ϵ of the total variance is noise, PCA provides us with a useful 

tool for noise removal and dimension reduction.217 While many commercial instrumentation 

and software packages utilize PCA for noise removal and dimension reduction, selection of 

the threshold ϵ is largely subjective. While most publications select ϵ based on the 

percentage of the variance captured in L, this does not differentiate between signal or noise. 

In addition, a loading vector that captures less variance than the noise does not make that 

loading useless. This method remains one of the most common means of analyzing spectra, 

especially taking advantage of the information content of the full spectrum, but also being 

susceptible to artifacts arising from changes in optical configurations and sampling 

discussed previously. Further, interpretation of predictive signals is difficult.

Independent component analysis (ICA) provides a more robust approach for identifying 

spectral components by searching for independent components embedded within X. This 

method identifies a set of independent components A ∈ ℝB × B that are optimized for linear 

independence, such that the concentration c of each component can be identified by a basis 

projection:

c = A x − μ (2)

While the use of ICA is generally accepted in the spectroscopic community, its strength lies 

in separating a relatively small number of independent signals embedded in a high-

dimensional (spectral) space. However, ICA relies on two underlying assumptions: first, 

each spectrum is a weighted linear sum of individual component spectra and, second, 

individual component spectra are statistically independent. The second feature is not 
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generally satisfied in hyperspectral imaging modalities218 and is particularly uncertain in 

biological samples, where a discrete number of components is difficult to characterize.

Clustering methods are some of the more common unsupervised approaches for identifying 

biological subtypes within a sample include hierarchical and k-means clustering. In both 

cases, the goal is to identify a set of clusters containing spectra that minimize within-cluster 

variance. The k-means problem requires that the number of clusters k be known a priori. 

However, most applications expect to over-segment the image, incorporating a final 

supervised step of cluster merging. Hierarchical clustering219 offers a more comprehensive 

option that can be performed without a priori assumptions on the number of clusters. HCA 

performs an exhaustive search, often providing high-quality results for biomedical 

images89,220 at multiple scales.221 However this requires an exhaustive search that is often 

too computationally complex for large images. An alternative to both approaches that is used 

in the remote sensing community is a Gaussian mixture model (GMM). This method can be 

used in both supervised and unsupervised modes, and provides a probabilistic posterior 

membership value that is often more desirable for downstream image analysis.

Vertex component analysis (VCA) is a more recent technique specifically designed for 

hyperspectral images. Both PCA and ICA assume that the constituent spectra are statistically 

independent. An alternative approach is to define every spectrum in terms of a barycentric 

coordinate system within a simplex bounded by component spectra.222 This method allows 

for statistically dependent component spectra, however the resulting simplex (1) is 

computationally complex to calculate and (2) requires that the number of constituent 

components—specifying the number of edges in the simplex—be known a priori. VCA 

addresses the issue of computational complexity by calculating the optimal simplex using a 

greedy approach.218 This approach is useful because it can offer a reasonable reconstruction 

of component spectra as well as concentrations per pixel.223,224

Supervised Approaches

In a complex pathology with several chemical constituents changing spatially due to cell 

type change as well as chemical changes within cells, such as a tumor biopsy (Figure 11), 

unsupervised approaches may be susceptible to finding changes that arise from either factor 

or a complicated convolution of spectral and spatial factors. The information desired for 

care, however, is well defined. For inputs into care, the cellular composition and discrete 

disease states are typically needed and these are well-defined clinically. Supervised learning 

methods allow for more robust classification of samples into these types of classes (tissue 

cell identity and disease) by allowing a user to submit annotated example spectra associated 

with known types. These techniques are more robust if the user has a priori understanding of 

how the sample is structured, particularly when pixels exhibiting distinct spectra are known 

to be associated with the same tissue type (ex. cytoplasm versus nuclei).225

Naïve Bayes classification is one of the simplest supervised methods for placing spectra into 

discrete categories. This method relies on a set of representative samples to establish a 

probability distribution for each feature, such as an individual wavelength or PCA score. 

Bayesian classifiers can be trained quickly for preliminary results, and were some of the first 

techniques used for classification of tissue biopsies imaged using FT-IR microscopy.226,227 
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The major limitation for this type of classifier is often characterized as its assumption that all 

input features are independent. While this assumption is rarely true, these classifiers are 

routinely used for preliminary classification results owing to their speed and simplicity.

Random forests (RFs) are one of the more robust techniques for classifying spectra, and are 

often applied to unprocessed data. This technique relies on randomly sampling spectral 

features and using these to generate a set of decision trees that vote on the correct 

classification. The key advantage of an RF is its ability to readily represent multimodal 

distribution, which can commonly occur if a single class contains multiple chemical 

components. In addition, training can be performed rapidly because of the Monte Carlo 

approach used to sample the spectrum. These methods can be applied quickly to large data 

sets without dimension reduction.204,228–230 The major disadvantage of an RF is the 

resulting classifier size, which is dependent on the training set size and modality of the data. 

For biological samples, high-performance classifiers can require gigabytes of space.

Support vector machines (SVMs) are common in hyperspectral classification. SVMs attempt 

to draw an optimal boundary separating classes by maximizing its distance from 

neighboring training samples. While the traditional SVM approach use a linear boundary, 

the common use of a kernel trick to compute dot products in high-dimensional spaces 

provide a more robust, and computationally intensive, algorithm for nonlinear boundaries. 

SVMs utilizing a radial basis function (RBF) kernel231 are considered one of the highest-

performing classification algorithms currently available for hyperspectral data.

Emerging Machine Learning Approaches

Pattern recognition is an extremely active area of research, particularly with the more recent 

exploration of deep learning methods. Hyperspectral imaging in general, and biomedical 

spectroscopy in particular, can readily benefit from recent research in several areas. In this 

section, we will discuss several potential applications in both feature selection and 

classification. While classification has always been a prominent goal in biomedical 

spectroscopy, the area of feature selection is becoming more important with the availability 

of discrete frequency imaging techniques232 that can dramatically reduce image acquisition 

time into the realm of clinical feasibility.

Feature selection reduces a data set by selecting a critical subset of features optimal for 

classification. In contrast to feature extraction techniques, such as PCA, ICA, and VCA, 

feature selection uses an untransformed subset of the original data. In the case of biomedical 

spectroscopy, these are individual wavelengths or can be combinations of wavelengths. 

Careful feature selection and use of limited features in predictions actually enabled the first 

large scale study in tissue classification with IR imaging.226 Recent work on feature 

selection,233 and dimension reduction in general, has focused on taking advantage of 

sparsity.234 In the area of vibrational spectroscopy, it is well known that bands contain 

redundant information. The individual bands between 1600–1700 cm−1 describing amide I 

are highly correlated. This certainly does not imply that the bands are completely 

redundant–in fact a significant body of work is focused on deconvolving information within 

this region. However, the additional information encoded within this region may not be 

necessary to solve a desired classification problem. One of the most basic sparsity-based 
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feature selection algorithms is the least absolute shrinkage and selection operator (LASSO).
235 LASSO is in a class of ℓ1 optimization problems that integrate the minimization of the 

absolute sum of the coefficients into the cost function:

β ε = argmin
β

1
nY − Xβ2

2 − εβ1 (3)

where X is the matrix of training spectra, Y is the desired output value for the associated 

spectrum, β is the coefficient or weight of each feature, and ϵ is an input parameter that 

defines the sparsity of the desired feature set. LASSO forms the basis for many common 

feature selection methods in hyperspectral imaging,236 with promising applications in 

biomedical infrared spectroscopy.237 The two major disadvantages of this method with 

respect to hyperspectral imaging are (1) its limitation to linear fitting, which is often too 

simple for complex biomedical samples, and (2) the somewhat arbitrary selection of a single 

feature from a highly correlated group.

Alternative methods include minimum redundancy maximum relevance (mRMR)238 feature 

selection, which focuses on selecting features by using a greedy approach. The major 

limitation here lies in the use of the greedy algorithm, which starts with a single optimal 

feature that correlates well with the desired classification variable and iteratively adds 

features until the desired number is selected. The general disadvantage to of greedy 

approaches is that they can get caught in local minima, particularly with high-dimensional 

data sets such as those produced using FT-IR imaging. Some of the most promising 

approaches incorporate random sampling and Monte Carlo techniques. Randomized 

methods, such as genetic algorithms,140,205 provide three major advantages over systematic 

and greedy approaches. First, they reduce the chance of getting caught in local minima by 

relying on random sampling in combination with optimization, allowing them to be used 

with more complex cost functions. Second, Monte Carlo methods are well known to scale 

favorably to high-dimensional data. Third, randomized techniques are often highly parallel, 

allowing them to be readily optimized on future data parallel hardware architectures. The 

major cost of these techniques comes in the form of computational horsepower. However, 

the availability of highly parallel consumer-grade hardware such as graphics processing 

units (GPUs) may remove these constraints in the near future. Deep learning methods239,240 

have been an extremely active area of research, and their performance on image 

classification and identification tasks has been extraordinary.241 In particular, deep 

convolutional neural networks (CNNs)242 provide a structured method for extracting spatial 

features using large training sets. CNNs operate by training a set of correlational filter banks 

that are applied iteratively to an image, allowing the hierarchical extraction of spatial 

features. These features become increasingly abstract, and are ultimately input into a 

traditional classifier, most frequently a fully connected artificial neural network (ANN) 

(Figure 12). While CNNs have seen increasing use in remote sensing,243–245 their current 

use in vibrational spectroscopy has been limited.246
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Rapid Computing for Spectral Analysis

Several biomedical applications, such as tissue histology, collect spatially resolved spectral 

images at resolutions comparable to traditional histology. Commercially available infrared 

imaging systems can achieve pixel sizes less than 2 µm, amounting to four million spectra in 

a 1 mm × 1 mm tissue microarray (TMA) core. A spectral resolution of 8 cm−1 in the range 

of 800–4000 cm2 and 32-bit floating point precision would result in over 6 GB of data. An 

image of an entire histology slide would require over 3 TB. Managing data at this magnitude 

requires a specialized toolset, while new imaging techniques can be used to reduce data size. 

These are obviously critical to developing techniques that can be used at the point of care. It 

is interesting to note that computing and storage capabilities have grown considerably over 

the past two decades, enabling faster and better analyses but also increasing the 

infrastructure need to deliver results in a robust manner for point of care applications.

Reducing Acquired and Analyzed Data

Recent research instruments and commercial imaging systems utilize tunable quantum 

cascade lasers (QCLs)95,247,248 which provide significantly higher signal strength for larger 

focal plane array (FPA) detectors, improving acquisition time of hyperspectral data sets.206 

In addition, these instruments allow selective discrete frequency infrared (DF-IR) imaging at 

specified wavelengths, significantly reducing acquisition time and data size. The DF-IR 

approach provides the potential for clinical applicability at the point of care, provided that 

the appropriate wavelengths are known a priori. In practice, one would expect the 

appropriate wavelengths to be selected for optimal clinical viability (diagnosis, prognosis, 

prediction, etc.). For complex biological samples, this will likely require full spectral 

imaging to identify the necessary bands using feature selection.140 Recent advances in 

compressive sensing, such as single-pixel imaging,249 also offer opportunities to speed 

image acquisition. These approaches have been used in other imaging domains250 and are 

beginning to find application in hyperspectral image acquisition.251 We believe that a major 

direction for spectroscopists will lie in using their expertise to understand biological spectra, 

assess which data need to be acquired with the interpretation of classification algorithms and 

help design instruments that optimally record the data for routine applications in care.

Multiprocessor Approaches and Software

Another increasingly useful array of tools are software applications that can manage and 

process terabyte-scale hyperspectral images. Current tools integrated into Matlab and Python 

are limited by memory size. The most common commercial tools include ENVI and IDL 

(Harris Geospatial), which provide algorithms that are optimized for asynchronous 

processing and data streaming from secondary storage. Programming toolkits such as 

SIproc252 provide open-source alternatives, but minimal user interfaces often hinder 

adoption by the broader community but provide the potential for integration into other 

excellent data mining toolkits such as Orange.253 Custom software that integrates 

instrumentation, protocols needed for application(s) and visualization for interpretation by 

non-spectroscopists is also likely to be a major direction.
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Visualization and Integration with Clinical Knowledge

Visualization plays a key role in translating hyperspectral data into a format useful for 

clinicians. Most existing publications rely on color-mapping classes and clusters alongside 

adjacent stained histology. Interactive methods may provide some assistance254 to end-users. 

Other alternatives involve digital staining, using machine learning to directly map 

hyperspectral images to patterns histologists are currently trained to interpret.255 However, 

many classifiers provide information that cannot be captured using these methods, such as 

posterior probabilities of class membership and estimated concentration percentages. 

Visualization of processed hyperspectral data is likely a rich area for future research. While 

spectroscopists focused on spectral properties of individual molecules to establish the 

fundamentals of the field of study, application for point of care in biological domains will 

require an understanding of both the origins and limits of accuracy of the signal related to 

biomedical knowledge as well as a deep integration with analysis and visualization tools.

Summary and Outlook for IR Imaging Measurements

A fundamental understanding of the effect of sampling and measurement configurations on 

the spectra of samples is a strongly emerging and highly relevant area. Together with 

biomedical understanding, effective development of practical protocols for point of care 

analysis can be developed. The advances in artificial intelligence and computational 

hardware open new opportunities for spectroscopy to be applied to problems in human 

health, with a special focus on leveraging the high dimensional analytic capability of 

emerging methods as well as advances in hardware to achieve near real-time analyses that 

are needed for point of care applications.

Conclusion

Point of care determinations from vibrational spectroscopy have shown great promise. 

Several trends become clear from studies conducted thus far. First, the application of 

vibrational spectroscopy can alter the standard of care by providing rapid and accurate 

assessments. By providing new information and reducing the number of steps or time 

required for analyses, the value offered by vibrational spectroscopic techniques is now well 

demonstrated. Second, the need is to develop economical and practical technology from the 

proof of concept studies as well as partnerships with users such that the techniques can be 

translated. The use of computer algorithms can greatly aid in this direction by providing 

quantitative information in an easy to use format (images or predictive numbers indicating 

risk). Finally, the need for high quality data for rapid assessments is driving spectroscopists 

to a greater understanding of the origins of signals recorded and their limitations. This 

interplay between fundamental developments and practical technology for new applications 

will provide higher performance, cost effective designs and computation integrated tools that 

vastly outperform those in use at the point of care as well as those used by spectroscopists.
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Figure 1. 
Measurement of SORS spectrum of the knuckle using 830 nm illumination and a hand held 

SORS probe. Peaks show hydroxyapatite of bone, and protein peaks. Collection time 1 s per 

spectrum. Unpublished data from N. Stone labs.
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Figure 2. 
Sentinel lymph node identified using radiotracer and blue dye during surgery, the excised 

node is placed on the end of a Raman handheld probe and the spectra measured show clear 

differences between infiltrated and non-infiltrated (metastatic) nodes.
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Figure 3. 
Schematic display of different approaches for detecting infectious diseases using Raman 

spectroscopy.
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Figure 4. 
Schematic display of different modes for investigating bacterial cells using Raman 

spectroscopy.

Pahlow et al. Page 46

Appl Spectrosc. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Analysis of undifferentiated and differentiated human embryonic stem cells (hESCs) using 

IR imaging. (a) hESCs cytospun onto a MirrIR coated slide, overlayed with a colored grid 

showing the area of the slide imaged by the FPA. Each colored pixel represents the area of 

the slide (11 µm × 11 µm projection onto sample plane) where a single FT-IR spectrum was 

acquired. The color scale indicates the absorbance of the amide I protein band, used as an 

indication of total spectral absorbance by the sample. Arrows indicate areas of low 

absorbance (blue) where there were no cells, or where cells overlapped, and where 
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absorbance is high (red). Scale bar, 100 µm. (b) The same FPA image grid as shown in (a) at 

full optical opacity. (c) Spectral quality testing rejects spectra that are too high or low in 

absorbance. Black areas indicate where spectra have been rejected from the dataset, 

including those areas indicated by the arrows in (a). (d) The spectral data set for hESCs in 

one experiment (n = 192), following quality testing, but prior to spectral pre-processing. The 

two prominent amide I and II protein bands at ~ 1650 and 1540 cm−1, respectively, are 

indicated. (e) Average spectra from the experiment in (d), for hESCs (n = 192), cells treated 

with cytokines BMP4/Act A for four days (n = 137), and those with the cytokine FGF for 

four days (n = 132). Prominent bands in the spectra have been assigned to functional group 

vibrations and corresponding macromolecular classes. (f) Histograms showing mean 

integrated areas for prominent lipid and glycogen bands (asterisked at 2920 and 1155 cm−1 

in panel (e) in normalized second derivative spectra from the experiment in (d). The 

difference between the means of areas for both bands was significantly different between 

hESCs and differentiated progeny in this experiment (p < 0.001, by ANOVA). Error bars 

indicate standard errors of the means (hESC, n = 192; BMP4/Act A, n = 137; FGF2, n = 

132).
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Figure 6. 
UHCA of the multimodal image of a single Micrasterias algal cell. (a) Custer image. (b) 

Average infrared spectra of each class. (c) Visible image. (d) Raman average spectra of each 

class. Reproduced with permission from Perez-Guaita et al.93 Copyright 2017 Elsevier.
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Figure 7. 
(a) Visible micrograph of infected RBCs demonstrating the partial darkfield effect, 

visualizing haemozoin deposits. (b) Chemical map generated by integrating the region 

between 1680 and 1620 cm−1. (c) Map of distribution of classes obtained using 

unsupervised hierarchical cluster analysis (UHCA), using the D-values distance algorithm 

for the 1700–1300 cm−1 range for five clusters. (c) UHCA map generated using the 

Euclidean distance algorithm for the 1700–1300 cm−1 range for five clusters. (e) Mean 

spectra corresponding to classes presented in (d). The purple labels correspond to bands 

Pahlow et al. Page 50

Appl Spectrosc. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mainly associated with haemozoin while the black labels are characteristic hemoglobin 

bands. (f) Mean spectra corresponding to classes presented in (e). The spectra show 

characteristic bands of hemoglobin, but not haemozoin.
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Figure 8. 
A photomicrograph of (a) functional and (b) fixed oocytes investigated with the use of air 

objective (100 x/0.90 NA) in the MII stages; Integration Raman maps of a specific bands 

were obtained with 532 nm laser wavelength and with a sampling density of 1 µm (maximal 

spatial resolution equal to 0.33 µm); K-means clustering (KMC) results with the eight main 

classes were presented with average spectrum for each class. In (a) we have additionally 

presented the zoom-in of the spectral region which corresponds to the ‘‘band of life’’27 for 

the single spectra extracted from the nucleic acids class. The Raman intensities in the region 

of 300–1900 cm−1 were scaled by factor of two comparing to CH-stretching region and 

lower region below 300 cm−1. A spectral class corresponding to substrate signal observed 

surrounding the oocytes was removed from the image (black pixels).
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Figure 9. 
(a) The electric field distribution in a focused light beam incident of a layered sample. (b) 

The field is distorted significantly at the edge of a layered sample. The edge is indicated by 

the vertical, blue dashed line.186 (c) Spectral distortions due to edge effects is presented. 

When light is focused onto an edge, there is significant baseline variation as indicated by the 

green spectrum. This edge effect reduces as one moves away from the edge as the indicated 

by the black spectrum.182
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Figure 10. 
(a) The real and imaginary parts of the refractive index of PMMA are shown. (b) Spectral 

distortions from PMMA spheres of two different radii are presented along with the ‘‘ideal’’ 

spectrum (in black), which would be expected if PMMA was not spherical.189
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Figure 11. 
Bone and breast cancer histology classified using unsupervised and supervised machine 

learning. (a) Histological biopsies showing bone marrow fibrosis are shown, including a raw 

intensity map of the Amide I band and the resulting k-means classification results (k = 4). 

(b) Breast tumor biopsies (invasive ductal carcinoma) from a tissue microarray classified 

using a Bayesian classifier. Cancer relevant tissue types (epithelium, collagen, blood) were 

labeled in normal biopsies, and even simple classification methods can characterize tissues 

with high spatial variations, which is a common trait for tumor biopsies.
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Figure 12. 
Convolutional neural networks decompose spatial features into hierarchical structures for 

classification. A small spatial region (including spectra) is selected as input. The network 

applies a series of pre-learned convolutional filters to identify a hierarchy of spatial features. 

The final layer is used for classification, providing a posterior probability for any cell type. 

Once the spatial features are learned, they can alternatively be used as input to more 

traditional classifiers, such as support vector machines

Pahlow et al. Page 56

Appl Spectrosc. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pahlow et al. Page 57

Table I.

Performance of range of intraoperative techniques versus nondestructive Raman measurements near patient.

Technique Sensitivity Specificity

Frozen section analysis35 57–76% 99%

Touch imprint cytology36,37 33–81% 95–99%

Molecular assays38–41 87–96% 92–97%

Single point Raman probe29 85–94% 96–99%
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