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Abstract

Changes in large-scale brain networks that accompany mild traumatic brain injury (mTBI) were 

investigated using functional magnetic resonance imaging (fMRI) during the N-back working 

memory task at two cognitive loads (1-back and 2-back). Thirty mTBI patients were examined 

during the chronic stage of injury and compared to 28 control participants. Demographics and 

behavioral performance were matched across groups. Due to the diffuse nature of injury, we 

hypothesized that there would be an imbalance in the communication between task-positive and 

Default Mode Network (DMN) regions in the context of effortful task execution. Specifically, a 

graph-theoretic measure of modularity was used to quantify the extent to which groups of brain 

regions tended to segregate into task-positive and DMN sub-networks. Relative to controls, mTBI 

patients showed reduced segregation between the DMN and task-positive networks, but increased 

functional connectivity within the DMN regions during the more cognitively demanding 2-back 

task. Together, our findings reveal that patients exhibit alterations in the communication between 

and within neural networks during a cognitively demanding task. These findings reveal altered 

processes that persist through the chronic stage of injury, highlighting the need for longitudinal 

research to map the neural recovery of mTBI patients.
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Introduction

Traumatic brain injury (TBI) is one of the most prevalent neurological disorders in the 

United States with a yearly incidence as high as 5 per 1000 people [Bazarian et al., 2005]. 

Mild TBI (mTBI) which is characterized by a Glasgow Coma Score (GCS) of 13–15 

accounts for approximately 75% of reported cases of TBI [Faul et al., 2010]. In addition to 

the high incidence of civilian cases, mTBI has been referred to as the “signature injury” of 

the recent military conflicts in Iraq and Afghanistan due to the high number of soldiers 

experiencing blast-related head injuries [DePalma and S. W. Hoffman, 2016]. MTBI patients 

who do not present with robust radiological deficits but experience symptoms represent a 

unique clinical challenge, and methods that characterize functional disruptions may be 

particularly attractive. An even greater challenge is to understand the long-term brain 

sequelae for these individuals with only subtle behavioral impairments but persistent 

symptom complaints. Not only are post-concussive symptoms varied, including sensory, 

somatic, cognitive, and neuropsychological dimensions [Dischinger et al., 2009], but there is 

a significant overlap with symptoms associated with post-traumatic stress disorder (PTDS) 

[Stein and T. W. McAllister, 2009]. Therefore, the ability to objectively characterize 

functional brain disruptions is important in distinguishing alterations linked to head injury 

from those associated with comorbid neuropsychological disorders, as well for the 

development of personalized clinical interventions for such patients.

Brain data are increasingly investigated at the network level [Pessoa, 2014; Power et al., 

2011; Rubinov and O. Sporns, 2010]. A commonly investigated network is the Default 

Mode Network (DMN), which comprises regions with reduced activity during task-related 

conditions but increased activity during “rest” conditions [Fox et al., 2005; Greicius et al., 

2003; Raichle et al., 2001]. In contrast, numerous regions are recruited during externally 

directed behavior [Fox et al., 2005]. It has been shown that these two networks are anti-

correlated at rest [Fox et al., 2005]. Reductions in functional connectivity have been reported 

in mTBI patients within the DMN [Iraji et al., 2014; Johnson et al., 2012; Mayer et al., 2011; 

Zhou et al., 2012] and within the task-positive network [Mayer et al., 2011; Shumskaya et 

al., 2012]. However, increased functional connectivity between the DMN and task-positive 

regions during resting conditions has also been observed at various stages following head 

injury [Mayer et al., 2011; Sours et al., 2013; Sours et al., 2015]; see [Mayer et al., 2015] for 

a comprehensive review of current literature). The latter findings suggest an imbalance in the 

communication during resting conditions between the internally directed, task-negative 

regions, and the externally directed task-positive regions following TBI.

With few exceptions [Bonnelle et al., 2011; Caeyenberghs et al., 2012; Caeyenberghs et al., 

2013; van der Horn et al., 2015] previous studies addressing functional connectivity 

following TBI have relied on probing the brain during rest. Resting state data can be easily 

acquired in the acute stage of TBI when the clinical condition of the patient may limit the 

ability to obtain task-related data. However, resting state functional data likely provide 

researchers with a limited understanding of alterations in processing when the brain is 

cognitively challenged.
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The interpretation of existing studies of functional connectivity in mTBI is also difficult, 

because several of them targeted individuals with severe TBI or included TBI patients with a 

range of severities [Bonnelle et al., 2011; Bonnelle et al., 2012; Caeyenberghs et al., 2012; 

Hillary et al., 2011; Marquez de la Plata et al., 2011; Rigon et al., 2016; Sharp et al., 2011] 

making inferences regarding milder injuries problematic. Furthermore, previous studies have 

included patients at substantially different stages of recovery after injury (e.g., 3 to 73 

months) [Bonnelle et al., 2012; Sharp et al., 2011]. Finally, whereas some studies have 

investigated functional connectivity during task states, the behavioral performance across 

groups was variable, leading to potential confounds in between-group comparisons 

[Bonnelle et al., 2012; Caeyenberghs et al., 2012; Caeyenberghs et al., 2013; van der Horn et 

al., 2015].

Taken together, while advances have been made in understanding changes in brain systems 

following TBI through examining resting-state functional connectivity, important gaps 

remain in our knowledge of alterations in network-level properties during cognitive 

processes. In particular, since mTBI involves relatively minor and subtle injuries, it is 

conceivable that deficits in network-level processing only become evident when the patient 

is cognitively taxed. Here, we sought to investigate changes in large-scale brain networks 

following mTBI while addressing the problems noted above. Guided by our previous work 

showing alterations in between-network connectivity during resting state conditions [Sours 

et al., 2013; Sours et al., 2015], as well as the diffuse and heterogeneous nature of injury, we 

hypothesized that, relative to controls, participants with mTBI would exhibit decreased 
segregation between DMN and task-positive networks – i.e., reduced network antagonism – 

in the context of effortful task execution. Our central goal was to characterize changes in 

between-network segregation in chronic mTBI patients as a function of cognitive demands 

during a working memory task.

Materials and Methods

Participants

Thirty mTBI patients were included in the analysis (22 males, age 45.9 +/−16.9 years). 

MTBI patients were recruited from the R. Adam Cowley Shock Trauma Center at the 

University of Maryland Medical Center, and included in this study based upon an admission 

GCS of 13–15, and (i) a positive clinical CT or (ii) a mechanism of injury consistent with 

trauma and reported loss of consciousness or post-traumatic amnesia. Patients were screened 

and excluded for history of neurological disorders, psychological disorders (with the 

exception of a history of depression or anxiety disorders), seizure disorders, history of 

previous brain injury requiring hospitalization, and contraindications to MRI. Patients were 

scanned during the chronic stage of injury (on average 210 days after injury, range 141–302 

days). Results were compared to a group of 28 neurologically intact controls (18 males, 

mean age 40.0 +/− 18.9 years) who were recruited from the local population. Mechanisms of 

injury included 6 motor vehicle accidents, 14 falls, 7 assaults, and 3 hits with blunt objects. 

Due to our inclusion criteria, our dataset consists of both complicated (positive admission 

CT) and uncomplicated mTBI patients (negative admission CT); twelve patients (40%) had 

positive admission CT scans. Patient and control demographics and clinical details are 
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shown in Table 1. The study was approved by the University of Maryland, Baltimore, 

Institutional Review Board and written informed consent was obtained from all participants.

Scanning Protocol and MRI Acquisition

Imaging was performed using a 3T Siemens Tim Trio Scanner (Siemens Medical Solutions; 

Erlangen, Germany) using a 12-channel receiver-only head coil. During each visit, the 

imaging session included two functional scans (T2*-weighted images using single-shot EPI: 

TE = 30 ms, TR =2300 ms, FOV = 230 mm, resolution = 96 × 96, 36 4-mm thick axial 

slices) while the participants performed a cognitive task, and a high-resolution structural 

scan (T1-weighted-MPRAGE: TE = 3.44 ms, TR = 2250ms, TI = 900ms, flip angle = 9°, 

resolution = 256 × 256 × 96, FOV = 22 cm, slice thickness= 1.5mm).

N-back Paradigm

Participants were shown a stream of letters and were asked to detect if the letter matched the 

previously presented letter (1-back condition), or if the letter matched the one presented two 

letters before (2-back condition) (Figure 1). Training was performed outside of the scanner 

prior to scanning to ensure that all participants had a full understanding of the task. The task 

was presented inside the scanner using Eprime 2.0 software (Psychology Software Tools, 

Pittsburgh, PA). The 1-back condition was always performed prior to the 2-back condition. 

Each “run” consisted of 5 blocks of one of the task conditions (i.e., 1-back or 2-back); each 

block lasted 48.3 seconds and was followed by 23 seconds of fixation. Prior to the beginning 

of the first block, 11.5 seconds (5 TRs) of instructions about the task were provided to the 

participant. The task consisted of the presentation of a sequence of letters, each of which 

was presented for 1.8 seconds followed by a 0.5 second inter-stimulus interval. Participants 

responded with a two-button MR compatible response box. Accuracy and average reaction 

time for correct responses were calculated for each condition. In addition, the standard 

sensitivity index (d’) was calculated [Green and J. A. Swets, 1966; Macmillan and C. D. 

Creelman, 2005; Rossi et al., 2016].

We required a minimum level of accuracy to ensure that we only analyzed data from 

participants who earnestly attempted to complete the task. The cutoffs were 85% for 1-back 

and 75% for 2-back, which were chosen as rough indicators of “attentive performance”. For 

instance, the 1-back task is rather easy and performance is frequently 90% or better; the 2-

back task is more challenging and performance is frequently above 80% [Chen et al., 2012]. 

Because experimental runs contained a single task condition, to maximize the data available 

for analysis, the cutoffs were applied per run, not by subject (thus, for instance, a given 

participant could contribute data for the 2-back, but not be considered for the 1-back 

condition). The resulting datasets in the final analysis included 55 runs for the 1-back 

condition (27 control; 28 chronic mTBI), and 64 runs for the 2-back condition (27 control; 

27 chronic mTBI).

Behavioral Assessment

The level of cognitive functioning was assessed by administering the Military Acute 

Concussion Evaluation (MACE) to each participant [McCrea et al., 2000]. Four controls and 

one mTBI patient did not complete the MACE. Self-reported symptoms were collected 
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using the Modified Rivermead Post Concussive Questionnaire (RPQ) [King et al., 1995]. 

The RPQ asks participants to rate a series of 22 common post-concussive symptoms on a 

scale of 0 (not experienced at all) to 4 (a severe problem). The sum of the ratings on all of 

the symptoms is reported (Table 1).

Behavioral Data Analysis

Independent t-tests were used to assess the differences in demographic characteristics and 

behavioral scores between the control and patient groups (Table 1).

Group-Level Model

Group analysis was performed with a linear mixed model comprised of two fixed effects 

factors (task difficulty and group condition) and their interaction. Linear mixed models 

correctly account for correlated data (here, participants with data for both conditions), while 

not requiring that all “data cells” be filled (here, participants who only completed one of the 

tasks), and constitute a powerful extension of general linear models [Pinheiro and D. M. 

Bates, 2000]. In the analysis, subject was used as a random factor, with difficulty varying 

within subject. We used the lmer function of the lmerTest package [Alexandra Kuznetsova et 

al., 2014], which is an extension of the lme4 package [Bates et al., 2014]. As per default, 

factor levels were encoded as simple treatment contrasts (1-back was the reference group for 

task difficulty while controls were the reference group for condition). A positive estimate for 

the effect of difficulty would thus indicate that the dependent variable is on average greater 

at 2-back compared to 1-back. A positive estimate for the effect of group condition similarly 

indicates that the dependent variable was generally higher for the patient group compared to 

the control group.

Functional MRI Analysis

Preprocessing—Preprocessing was performed with tools primarily from the AFNI 

software package [Cox, 1996]. Skull stripping was completed using the SPM toolbox except 

for one dataset that required FSL’s Brain Extraction Tool (BET) [Smith, 2002] to achieve 

appropriate quality. Volumes were slice-time corrected using Fourier interpolation such that 

all slices were aligned to the first acquisition slice. Six-parameter rigid-body motion 

correction was performed with Fourier interpolation, spatially registering all volumes to the 

last functional volume which was acquired closest in time to the high-resolution anatomical 

scan [Cox and A. Jesmanowicz, 1999]. Each subject’s high-resolution T1-MPRAGE 

anatomical volume was spatially registered to the “TT_N27” template (in Talairach space, 

[Talairach and P. Tournoux, 1988]) using a 12-parameter affine transformation. The spatial 

registration for each subject was visually inspected to ensure accuracy. This same 

transformation was then applied to the functional data so that all data were in standard space 

and resampled to 2 mm isotropic voxels. All volumes were spatially smoothed using a 

Gaussian filter (6 mm FWHM). Finally, the signal intensity of each voxel was scaled to a 

mean of 100 (separately for each run), which allowed the interpretation of the estimated 

regression coefficients in terms of percent signal change. Excessive motion volumes (1 mm 

or higher frame-to-frame displacement) were censored from analysis. Only voxels with a 

25% or higher likelihood of being gray matter were considered for further analysis (utilizing 

Sours et al. Page 5

Brain Imaging Behav. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the “TT_N27_GW” atlas available in AFNI [Eickhoff et al., 2005]). Finally, the first 5 

volumes were excluded per run (accounting for scanner equilibrium effects, and as the 

instruction period was of no interest).

Activation Analysis—Each participant’s fMRI data were analyzed using multiple linear 

regression within AFNI. The design matrix contained 19 regressors: a box-car covering the 

entire block period and 18 nuisance regressors: 6 motion regressors; 6 motion derivative 

regressors; 4 slow-drift regressors (constant, linear, quadratic, and cubic terms); and 2 

transient regressors to model block onsets and block offsets (1 sec duration each). The box-

car and the transient regressors were convolved with a model of the canonical hemodynamic 

response [Cohen, 1997]. Regression coefficients associated with the box-car regressor were 

tested in a voxelwise manner as described above (see Group-Level Model section).

Network Analysis

Node Definition—The voxelwise main effect of task difficulty including all participants 

(mTBI and control) was used to define a space of voxels within which peak activations and 

deactivations in frontal, parietal, and DMN regions (the latter based on sites exhibiting 

deactivation) were used to determine the center of spherical ROIs (Figure 2). Note that the 

procedure does not introduce circularity because activations and correlations (used for 

network analysis) are orthogonal measures. Each ROI was a 6-mm radius sphere comprising 

voxels with a 25% or higher likelihood of being gray matter (utilizing the “TT_N27_GW” 

atlas available in AFNI [Eickhoff et al., 2005]). We focused on frontal, parietal and DMN 

regions (Table 2) to test the specific hypothesis that interactions between task-positive and 

DMN regions engaged during effortful tasks are altered in mTBI patients. Whereas 

performance of working memory tasks involves a broad set of cortical regions, parietal and 

frontal regions may be involved in somewhat different processes [D’Esposito, 2007; Pessoa 

et al., 2002; Pessoa and L. G. Ungerleider, 2004]. Therefore, we opted to divide the task 

positive regions into frontal and parietal regions.

Edge Definition—For each ROI, the average residual time series across voxels within the 

ROI was extracted. The residual time series consisted of the fMRI data once all specified 

regressors were accounted for. A correlation matrix was then computed and consisted of the 

pairwise correlations between all pairs of ROIs. Using residualized time series data is 

important to avoid potential correlations of no interest due to the predictable task structure. 

In particular, block onsets and offsets could have artifactually inflated correlations at these 

time points simply due to correlated large increases and decreases of activation (for related 

strategies, please refer to [Fox et al., 2007]). We used a robust measure of correlation to 

mitigate the potential impact of “extreme” points that frequently distort non-robust measures 

of linear association. To find the robust correlation of two time series, we first calculated 

their z-scores. The standardized series were then fit to a linear model via iteratively 

reweighted least squares, a process that down-weights potential outliers. Pearson’s 

correlation coefficient was finally calculated for the reweighted series. We made use of the 

Robust Linear Models module of the Python package “statsmodels” [Seabold and J. 

Perktold, 2010].
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Modularity Analysis—To probe the segregation of the task-positive and DMN networks, 

we computed the graph theory metric called modularity (see [Newman, 2010] for a complete 

description of network models). For weighted networks, the modularity, Q, of a given set of 

group assignments for a graph is based on the total weight of connections found within the 

assigned communities versus the total weight of connections predicted in a random graph 

with equivalent degree distribution. Note that the computation of modularity employed here 

considered negative weights in addition to positive weights [Gomez et al., 2009; Rubinov 

and O. Sporns, 2011]; thus, negative weights were not set to zero. See [Balenzuela et al., 

2010] for a similar application of modularity.

By considering task-positive (frontal plus parietal) ROIs and DMN ROIs as two separate 

communities (in other words, communities were assumed, and not computed via community 

detection), we computed modularity as a function of task difficulty and group. High 

modularity indicates clearly separable sub-networks (here, task-positive and DMN), with 

relatively strong functional connectivity within each sub-network and relatively weak 

functional connectivity between sub-networks. Statistical analysis of modularity employed 

the same approach as the voxelwise analysis (see Group-Level Model section). Effect sizes 

were calculated based on a method to obtain R2 from generalized linear mixed-effects 

models [Nakagawa and Holger Schielzeth, 2013]. We provide the so-called conditional 

effect size (reflecting overall model fit) and the marginal effect size which reflects the 

proportion of variance explained by the fixed factors (namely, the interaction of average 

connectivity with cognitive load; see Table 4). The latter refers to the fixed-effects variance 

divided by the total variance explained by the model and residual variance.

Results

Behavioral Results

No significant differences were detected between mTBI and control participants in age 

(p=0.445) or education (p=0.250). A summary of demographic and clinical information is 

provided in Table 1. Accuracy, mean reaction time of correct responses, and d’ were not 

significantly different between the mTBI group and the control group for both task 

conditions (1-back and 2-back) (p values > 0.5; Table 1). There was no significant difference 

in the MACE between the control group and mTBI patients (p=0.881) (Table 1).

Network Modularity Analysis

We investigated how the network-level property of modularity (Q) was altered as a function 

of task difficulty (1-back vs. 2-back) and group condition (control vs mTBI) by focusing on 

the changing relationships among task-positive (frontal and parietal) and task-negative 

regions. Note that our objective was to characterize potential differences in modularity by 

assuming two communities of brain regions (task positive and task negative); thus 

modularity was not used to “discover” the networks. The pairwise robust correlation 

between all pairs of ROIs was determined and connectivity matrices created. Higher values 

of Q indicated that task-positive and DMN regions tended to segregate more strongly into 

separate communities. We detected a significant interaction between task difficulty and 
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group condition; in contrast to the control group, mTBI patients responded to the more 

demanding task with decreased modularity (Figure 3; for statistical values, see Table 3).

These initial findings were further characterized by inspecting the underlying changes in 

average connectivity (also called “strength”) within and between subdivisions of ROIs 

(frontal and parietal ROIs that were task-positive and the remaining DMN ROIs): increases 

within task-positive regions, increases within the DMN regions, or decreases between the 

task-positive and DMN regions may underlie the observed increase in modularity. Based on 

average correlation matrices for each group (mTBI and control) for the 1-back condition and 

the 2-back condition, subtractions of the correlation matrices were computed, including a 

subtraction between the mTBI and the control group for each condition to visualize 

differences (Figure 4), and a 2-back minus 1-back subtraction to examine the influence of 

cognitive load on the correlation structure (Figure 5). While some differences in within- and 

between-network connectivity between groups were noted during the 1-back condition 

(Figure 4), more substantial differences were observed during the more cognitively 

challenging 2-back condition (Figure 5). During the 2-back condition (Figure 4), there was 

greater connectivity within the DMN regions (see green outlines) as well as between DMN 

regions and task-positive regions in the mTBI group compared to the controls (see white 

outlines). With respect to the effect of task condition (Figure 5), for control participants, the 

2-back minus the 1-back subtraction revealed a few strengthened connections (involving 

mainly frontal regions, such as the frontal eye fields and middle frontal gyrus) when 

difficulty increased, while decreased connectivity was found elsewhere. A markedly 

different pattern was observed for patients who exhibited an overall increase in both within 

network and between network connectivity across both DMN and task-positive regions 

(Figure 5).

To quantify potential differences in connectivity noted in the context of Figures 4 and 5, for 

every participant, we determined the average pairwise connectivity within the frontal, 

parietal, and DMN clusters of ROIs, as well as the average pairwise connectivity between 
parietal and frontal, between frontal and DMN, and between parietal and DMN clusters of 

ROIs (Figure 6). We tested task difficulty by group interactions by using the same group-

level analysis employed previously. Interactions were detected within both the parietal and 

the DMN clusters, as well as between frontal and DMN clusters (see Table 4 for complete 

results). The latter finding of increased between-network connectivity (which survived 

correction for multiple comparisons) likely contributed to the reduction in modularity 

observed in mTBI patients during the 2-back task (the higher the between-network 

connectivity, the lower the modularity). These findings suggest that the effect of increasing 

cognitive demands on both within- and between-network connectivity is altered in the mTBI 

participants compared to control participants.

Discussion

In our study, mTBI patients showed marked changes in how a demanding cognitive task 

engages large-scale networks despite equated behavioral performance. At a broad level, 

healthy controls responded to higher cognitive loads with increased segregation between 

DMN and task-positive regions, while mTBI instead showed decreased segregation. This can 

Sours et al. Page 8

Brain Imaging Behav. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be explained primarily by a distinct increase in connectivity between task-positive and DMN 

regions as shown by patients in response to increasing difficulty, where controls typically 

showed reduced communication between these two networks. At a finer subdivision of these 

networks, we also found differences within parietal and DMN regions. Patients 

demonstrated strengthening communication within these areas for increased task difficulty, 

whereas controls (if anything) demonstrated weakened connections. Next, we discuss the 

implications of our findings in the context of understanding the effect of mTBI on large-

scale neural network changes.

Several groups have described alterations in functional connectivity following mTBI; 

however, groups investigating functional connectivity in mild TBI populations have focused 

on resting-state scans [Johnson et al., 2012; Mayer et al., 2011; Sours et al., 2013; Stevens et 

al., 2012; Zhou et al., 2012]. Probing functional connectivity during task states complements 

that collected during the resting-state in important ways, due to alterations in network 

interactions during task execution. Furthermore, the possibility of considering the functional 

relationship between multiple pairs of regions simultaneously is provided by graph-theoretic 

methods [Newman, 2010]. Recent reports have employed network analysis to investigate 

resting-state functional connectivity [Han et al., 2013; Messe et al., 2013; Pandit et al., 

2013]. Whereas these methods have been employed in the general neuroimaging literature 

mostly during resting conditions, they can also reveal important network-level interactions 

during task execution [Kinnison et al., 2012; McMenamin et al., 2014; Najafi et al., 2016]. 

Specifically, here we employed modularity as a measure of the degree of segregation 

between DMN and task-positive networks across task conditions in a chronic mTBI 

population.

DMN and task-positive networks are found to be anti-correlated at rest [Fox et al., 2005], 

therefore exhibiting segregation. During rest, increased functional connectivity between 

DMN task-positive networks has been associated with reduced performance during working 

memory [Hampson et al., 2010; Sala-Llonch et al., 2012]. During effortful task execution, 

reduced anti-correlation (or increased functional connectivity) between networks is 

associated with increased reaction time on specific trials [Prado and D. H. Weissman, 2011] 

as well as increased intra-individual variability [Kelly et al., 2008]. Moreover, a direct link 

between working memory performance and between-network functional connectivity was 

shown in a control population, where increased functional connectivity between the DMN 

and task-positive networks during an N-back working memory task was associated with 

reduced task performance [Sala-Llonch et al., 2012] thus indicating evidence that the ability 

to adequately separate internally directed focus and externally directed cognitive demands 

may be important for efficient task performance. Whereas previous work in healthy 

participants suggests greater segregation with increasing cognitive load [Newton et al., 

2011], in the present study an opposite trend was observed for chronic mTBI patients who 

displayed reduced segregation with increasing task difficulty (Figure 3). Perhaps due to the 

diffuse but subtle neuronal damage, mTBI patients are unable to enhance the segregation of 

internally focused attention and external goal directed processes in the face of increased 

cognitive demands. This altered network communication may be a contributing factor in the 

cognitive post-concussive symptoms that many mTBI patients experience, including those 

involving sustained attention [Bonnelle et al., 2011], memory [McAllister et al., 2006; 
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McDowell et al., 1997; Miotto et al., 2010], and cognitive fatigue [Johansson et al., 2009; 

Ponsford, 2013].

Interestingly, in our study, we also observed that functional connectivity within the DMN 

regions increased with increasing task difficulty in the chronic mTBI patients but not 

controls. Previous studies in healthy participants have reported that increased functional 

connectivity within the DMN was associated with better cognitive performance during 

working memory tasks [Hampson et al., 2006]. While this initially appears contradictory, it 

should be noted that hyper-connectivity within DMN regions has been reported following 

severe TBI during resting conditions [Hillary et al., 2014; Sharp et al., 2011]. In addition, 

reduced deactivation of DMN regions has been noted during tasks in severe [Bonnelle et al., 

2011; Sharp et al., 2011] and mild [Dean et al., 2015; Mayer et al., 2012] TBI populations, 

providing evidence for an imbalance between internally and externally directed neural 

networks. Furthermore, greater deactivation of the DMN has been reported in mTBI patients 

without persistent symptoms compared to those with persistent symptoms [van der Horn et 

al., 2015] suggesting this imbalance may be associated with post concussive symptom 

severity. Taken in this context, our findings raise the possibility that the increased 

connectivity within the DMN observed in the chronic mTBI patients could be viewed as an 

altered mechanism to partially counteract the reduced segregation between networks. In 

addition, previous reports have noted over-recruitment of regions associated with the task-

positive network in mTBI during the N-back task at higher cognitive loads (possibly to 

maintain performance at the level of controls) [McAllister et al., 1999; McAllister et al., 

2001; Smits et al., 2009; Wylie et al., 2015]. Therefore, increased connectivity within DMN 

regions may be linked to a compensatory mechanism employed by mTBI patients in order to 

adequately perform the task when cognitively challenged.

Overall, further work using increasingly challenging cognitive tasks and more extensive 

neuropsychological testing is needed to further investigate these findings and their 

association with behavioral performance. For example, for the 2-back condition, although 

we did not detect a significant group effect, mTBI patients tended to perform slightly worse 

than control participants. This pattern was more evident for the d’ measure, which may be a 

more sensitive measure of subtle cognitive deficits than accuracy in this population. It is thus 

possible that subtle deficits could be picked up with additional behavioral assessments.

Currently, there is controversy in the field regarding the extent of functional recovery of 

neural networks in mTBI patients at the chronic stage of injury. Some groups have provided 

evidence of recovery, whereas others have noted persistent functional alterations in the 

chronic stage [Han et al., 2016; Witt et al., 2010] especially in those patients with persistent 

symptoms [Dean et al., 2015; Sours et al., 2015]. Our results revealed changes in working 

memory-based network interactions persisting into the chronic stage of injury. Nevertheless, 

additional research is needed in the acute stage after injury to examine immediate network 

level changes, as well as longitudinal data to directly assess the changes in network 

measures throughout the course of recovery. A more comprehensive understanding of 

compensatory changes in neural network communication is needed in order to aid clinicians 

in predicting long-term patient outcomes and administering cognitive interventions to 

improve these outcomes.
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In conclusion, our findings provide evidence of network level adaptations in the 

communication between brain networks in mTBI patients that are dependent on cognitive 

load. Specifically, the reduced segregation at the chronic stage of injury was linked to 

increased communication between networks in response to escalating task difficulty in 

mTBI patients. These results extend previous findings suggesting an imbalance in the 

communication between DMN and task-positive networks in mTBI patients during resting-

state conditions [Mayer et al., 2011; Sours et al., 2013; Sours et al., 2015] demonstrating that 

this imbalance is present, if not exaggerated, during effortful task execution. Finally, our 

results reveal that changes in network interactions persist into the chronic stage of injury, 

highlighting the need of further longitudinal research to adequately map the neural recovery 

of mTBI patients.
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Figure 1: 
N-back working memory paradigm. Participants were shown a stream of letters and were 

asked to determine if the letter they saw matched the previous letter (1-back condition; not 

shown); or if the letter they say matched two letters before (2-back condition).
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Figure 2: 
Nodes used in the graph-theoretical analysis. Visualization of task-positive (parietal and 

frontal) and DMN regions of interest (ROIs) used in the modularity analysis. Parietal ROIs 

are shown in red, frontal ROIs are shown in yellow, and default ROIs are shown in turquoise. 

ROI generation was restricted to those voxels that showed a significant main effect of task 

difficulty. ROIs are displayed on a surface projection of the TT_N27 template of the AFNI 

package.
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Figure 3: 
Results from graph-theoretical analysis. Segregation values as assessed by the graph-

theoretic measure of modularity (Q), illustrating the interaction pattern between task 
difficulty and group conditions. For each group, the difference between the 2-back and 1-

back is shown by violin plots. The violin shows a smoothed estimate of the distribution; the 

red line shows the mean; the red circle shows the median; the wider rectangle shows the 

inter-quantile range; the thinner rectangle shows 1.5 times the inter-quantile range (as long 

as it contains data points); the white circles show the actual data points.
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Figure 4: 
Average correlation matrices illustrating both within and between network connectivity 

values for the subtraction of the mTBI group minus the control group for the 1-back 

condition (left) and the 2-back condition (right). During the 2-back condition, there was 

greater connectivity within the DMN regions (green outlines) as well as between DMN 

regions and task-positive regions (see white outlines) in the mTBI group compared to 

controls.
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Figure 5: 
Average correlation matrices illustrating both within and between network connectivity 

values for the subtraction of the 2-back condition minus the 1-back condition for the mTBI 

group (left) and the control group (right). The black boundaries separate the parietal, frontal, 

and default clusters (from top of matrix to bottom of matrix respectively).
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Figure 6: 
Average within- and between-cluster functional connectivity was used to illustrate the 

interaction pattern between task difficulty and group conditions. Interactions between task 
difficulty and group conditions are noted with “*” (p<0.05, uncorrected) and “**” (p<0.05, 

Bonferroni corrected for multiple comparisons). For each group, the difference between the 

2-back and 1-back is shown by violin plots. The violin shows a smoothed estimate of the 

distribution; the red line shows the mean; the red circle shows the median; the wider 

rectangle shows the inter-quantile range; the thinner rectangle shows 1.5 times the inter-

quantile range (as long as it contains data points); the white circles show the actual data 

points.
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Table 1:

Demographics and Behavior

Mild TBI
Mean (SD)

Control
Mean (SD)

P-value

DEMOGRAPHICS

N 30 28 NA

Age 45.0 (16.9) 40.0 (18.8) 0.445

Education 14.3 (3.0) 15.5 (2.2) 0.250

GCS 14.7 (1.0) NA NA

Time since Injury (days) 210 (37) NA NA

Mechanism of Injury NA NA

 Fall 14 (47%)

 Assault 7 (23%)

 MVC 6 (20%)

 Hit with blunt object 3 (10%)

Positive CT 12 (40%) NA NA

BEHAVIOR

1-Bk RT (ms) 719.8 (130.3) 687.7 (137.0) 0.366

1-Bk ACC 93.2 (4.1) 92.9 (5.9) 0.852

1-Bk d’ 3.20 (0.48) 3.23 (0.53) 0.840

2-Bk RT (ms) 900.5 (154.4) 873.0 (168.8) 0.518

2-Bk ACC 83.8 (10.8) 87.9 (8.8) 0.121

2-Bk d’ 2.40 (0.91) 2.80 (0.87) 0.093

MACE 26.2 (2.7) 26.1 (3.0) 0.881

RPQ Total 17.6 (16.2) NA NA
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Table 2:

ROI Coordinates

Region Abbreviation Group X Y Z

TASK POSITIVE

Inferior parietal sulcus left InfParSul_L Parietal 29 65 48

Inferior parietal lobule left InfParLob_L Parietal 39 47 48

Precuneus left PreCun_L Parietal 5 67 46

Inferior parietal sulcus right InfParSul_R Parietal −27 67 48

Inferior parietal lobule right InfParLob_R Parietal −45 47 42

Precuneus right PreCun_R Parietal −7 67 50

Medial premotor (SMA) left MedPreSma_L Frontal 5 −11 50

Medial premotor (SMA) right MedPreSma_R Frontal −5 −17 47

Frontal eye field left FroEyeFie_L Frontal 23 1 51

Frontal eye field right FroEyeFie_R Frontal −25 −11 51

Anterior Insula left AntIns_L Frontal 29 −23 8

Anterior Insula right AntIns_R Frontal −35 −17 12

Inferior frontal junction left InfFroJun_L Frontal 45 −3 40

Inferior frontal junction right InfFroJun_R Frontal −46 −9 33

Middle frontal gyrus left MidFroGyr_L Frontal 49 −19 36

Middle frontal gyrus right MidFroGyr_R Frontal −49 −21 34

Superior frontal gyrus left SupFroGyr_L Frontal 45 −47 12

Superior frontal gyrus right SupFroGyr_R Frontal −41 −43 25

TASK NEGATIVE

Posterior cingulate cortex left PosCinCor_L Default 3 45 32

Mid cingulate cortex left MidCinCor_L Default 5 3 40

Mid cingulate cortex right MidCinCor_R Default −4 5 37

Ventro medial prefrontal cortex VenMedPreCor Default 7 −45 6

Medial prefrontal cortex MedPreCor Default 1 −57 20

Middle temporal gyrus left MidTemGyr_L Default 43 61 22

Middle temporal gyrus right MidTemGyr_R Default −39 69 10
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Table 3:

Modularity

Estimate Std Error t p-value

Group 0.019 0.042 0.328 0.744

Difficulty 0.097 0.058 2.189 0.033

Interaction −0.140 0.063 −2.218 0.031
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Table 4:

Interaction of Average Connectivity with Cognitive Load

Estimate Std Error t p-value Conditional Effect Size Marginal Effect Size

WITHIN NETWORK

Parietal 0.0656 0.0291 2.256 0.028 74.8% 2.9%

Frontal 0.0365 0.0269 1.355 0.181 71.8% 3.4%

DMN 0.0716 0.0255 2.804 0.007 77.7% 3.2%

BETWEEN NETWORK

Parietal-Frontal 0.0019 0.0274 0.069 0.945 68.4% 0.3%

Parietal - DMN 0.0541 0.0299 1.181 0.076 76.0% 3.8%

Frontal - DMN 0.0774 0.0259 2.993 0.004 77.8% 6.5%
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