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Abstract

While cancer is commonly described as “a disease of the genes”, it is also a disease of 

metabolism. Indeed, carcinogenesis and malignancy are highly associated with metabolic re-

programming, and there is clinical evidence that interrupting a cancer’s metabolic program can 

improve patients’ outcomes. Notably, many of the metabolic adaptations observed in cancer are 

similar to the same perturbations observed in diabetic patients. For example, metformin is 

commonly used to reduce hyperglycemia in diabetic patients, and has been demonstrated to reduce 

cancer incidence. Treatment with PI3K inhibitors can induce hyperinsulinemia, which can blunt 

therapeutic efficacy if unchecked. While commonalities between metabolism in cancer and 

diabetes have been extensively reviewed, here we examine a less explored and emergent 

convergence between diabetic and cancer metabolism: the generation of lactic acid and subsequent 

acidification of the surrounding microenvironment. Extracellular lactic acidosis is integral in 

disease manifestation and is a negative prognostic in both disease states. In tumors, this results in 

important sequela for cancer progression including increased invasion and metastasis, as well as 

inhibition of immune surveillance. In diabetes, acidosis impacts the ability of insulin to bind to its 

receptor, leading to peripheral resistance and an exacerbation of symptoms. Thus, acidosis may be 

a relevant therapeutic target, and we describe three approaches for targeting: buffers, 

nanomedicine, and proton pump inhibitors.
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Introduction

Acid-Base Balance

“The constancy of the internal environment (Milieu intérieur) is the condition for free and 

independent life” was noted by Claude Bernard in his Cahier Rouge in 1851 (translated to 

English in 19671). While he certainly envisioned that this included pH homeostasis, it was 

not until 1909 that Sørensen developed the pH scale and the pH meter, and Henderson 

contemporaneously developed equations (later elaborated by Hasselbach) to describe the 

relationships between acids and conjugate bases2. Since that time, the measurement of pH, 

especially applied to biological fluids, has been a fundamental component of modern 

medicine. Indeed the study of acid-base balance is currently an entire field of physiology, the 

review of which is beyond the scope and intent of the current chapter. However, there are a 

few fundamental observations (Table 1) that must be accommodated within any investigation 

of acid-base balance. In humans, arterial and venous bloods have a pH of 7.35–7.4 and 7.20–

7.35, respectively. In the steady state, catabolism is oxidative, resulting in the conversion of 

fats (hydrocarbons), and carbohydrates (alcohols) into carbonic or keto acids. Although 

body pH is strictly regulated, several diseases besides cancer and diabetes involve significant 

excursions of intracellular (pHi) or extracellular (pHe) pH. For example, MELAS 

(mitochondrial myopathy, encephalopathy with lactic acidosis and stroke-like episodes) and 

epilepsy are both associated with a decrease in brain cell pHi3. In epilepsy, correction of pH 

balance has been shown to ameliorate episodic seizures in some patients4. Musculoskeletal 

and cardiac function are intimately coupled to pHi homeostasis5. Low pH is associated with 

inflammation and pain (nociception) as well6, and this is of paramount importance for both 

cancer and type II diabetes patients, because both inflammation and pain have a central role 

in the clinical manifestation of these diseases. This effect appears to have a pathogenetic 

mechanism for pain in the increased nociception due to the tissue acidosis7. As far as 

inflammation is concerned, a low pHe is related to the persistence of the inflammatory 

response and is interconnected with the sensitivity to pain9. Very often the symptoms may 

represent a central part of the disease, particularly when the disease become chronic. 

Primary nociceptors are acid stimulated ion channels, ASICs and hence, low pH has a key 

role in the transition from acute to chronic pain8. As we describe below, acidosis plays a 

major role in both cancer and diabetes, which share many pathways in common.

Measurement of intra- and extracellular pH, and its correlations with disease, is an 

extremely active area of research, because there is a compelling need for robust, accurate, 

and clinically-translatable methods of measuring pH in-vivo. Such technologies can be used 

as diagnostic, predictive, and/or response biomarkers, have been comprehensively reviewed 

elsewhere13. Of note, a recent study has shown that the MRI technique called chemical 

exchange saturation transfer, CEST, has recently been used to measure pH in a small set of 

human patients9.

Metabolic Commonalities of Diabetes and Cancer.

Epidemiological evidence indicate that patients with type 2 diabetes (T2D), especially those 

with metabolic syndrome of dyslipidemia, hyperinsulinemia, and hyperglycemia have 

increased risk of developing cancers of the GI tract (liver, pancreas, colon, and rectum), as 
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well as breast, endometrium, and bladder10,11. Recent meta-analyses have indicated that the 

most convincing risk of T2D patients to develop a cancer is with colorectal cancer, and that, 

although there is a trend, the association was weaker for pancreatic, endometrial, 

hepatocellular and gallbladder carcinoma12,13. Epidemiological studies have shown that 

numerous risk factors are shared by diabetes and several cancer sites. Primary among these 

are obesity and smoking status, but also includes low physical activity and alcohol 

consumption. Pathophysiological mechanisms implicated in the association between T2D 

and cancer have been proposed for colorectal, pancreas and liver cancers. These include the 

T2D microenvironment, as represented by advanced glycation end-products, chronic local 

inflammation, hyperlipidemia, extracellular matrix disorders and altered microbiota that 

could predispose the development of colorectal cancer. However, despite the strong 

epidemiological evidence, the mechanisms of this association between diabetes and cancer 

are not understood.

The major sub-type of T2D is peripheral insulin resistance associated with obesity and 

central adiposity, leading to hyperinsulinemia and chronic inflammation, both of which have 

potential to exacerbate cancer risk. Hyperinsulinemia with hyperglycemia also contributes to 

accumulation of keto-acids, leading to chronic systemic metabolic acidosis, which is 

compensated by reducing HCO3
- and reduced interstitial buffering capacity, making 

interstitial pH more fragile. Hyperinsulinemia is also associated with increased circulating 

levels of insulin-like growth factor-1 (IGF1), which is a potent mitogenic factor for 

neoplastic epithelial cells16. Binding of IGF1 to its receptor triggers activation of the PI3K 

→ Akt → mTOR pathway, inducing metabolic activation and mitogenesis14.

The impact of activating these pathways on acid production is exacerbated by mitochondrial 

dysfunction, which is commonly observed in both T2D and cancers through activation of 

oncogenes or inactivation of tumor suppressors15,16. In cancer cells, mitochondria are one of 

the main signaling targets for oncogenic and tumor suppressors, resulting in reprogramming 

of cellular metabolism. This signaling process leads to dysfunctional shapes (fragmentation/

fission) of mitochondria mediated by activation/upregulation of dynamin-related protein 1 

(DRP1), matching the metabolic demands of the tumor cells17,18. Notably, T2D-associated 

hyperglycemia leads to the increased production of mitochondrial ROS, causing 

mitochondrial fragmentation/fission via activation/upregulation of a fission protein, 

dynamin-related protein 1 (DRP1), and downregulation of mitofusin 2 (Mfn2). Increased 

fragmentation/fission of mitochondria is linked to various types of symptoms observed in 

T2D including insulin resistance19. Although further information is required to clarify the 

role of mitochondrial fragmentation and fission in the symptoms observed inT2D and 

cancer, both T2D and cancer are associated with high proton production rates due to 

mitochondrial dysfunction.

However the most important common feature between cancer and diabetes is the increased 

reliance on glucose fermentation. The continuous glucose fermentation can lead to lactate 

production and a significant local acidosis in both diabetic peripheral tissues and in tumors. 

Acidosis is exacerbated if combined with decreased perfusion, which can be a consequence 

of inflammation, peripheral vascular resistance, or dysangiogenesis, all common syndromes 

in cancer and diabetes. There is significant evidence, presented below, that this local acidosis 
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in cancer, can promote tissue remodeling, local invasion, metastasis, and inhibition of 

immune surveillance. In diabetes, local and systemic acidosis reduces insulin’s affinity for 

its receptor, exacerbating the spiral of peripheral insulin resistance. Consequently, targeting 

acidosis would be an important therapeutic approach in both T2D and cancer, as discussed 

below.

A common pathway observed in both cancers and diabetes is the phosphatidyl inositol-4,5-

bisphosphate 3-kinase, PI3K, cascade, resulting in production of inositoltris-phosphate, IP3, 

which is a potent activator of Ca2+ release from intracellular stores. Chronic activation of the 

inositol phosphate cascade can occur in either the PI3K catalytic subunit alpha, PIK3CA, or 

inactivation mutations of the phosphatase and tensin homolog, PTEN, gene, are among the 

most commonly observed metabolically-associated alterations in cancers20. Hence 

pharmacological inhibition of PI3K is an attractive pan-cancer therapeutic target. PI3K 

inhibitors have been in clinical trials, and clinical benefit has been reported in a phase I 

setting21,22. In these trials, however grade 3 or higher fasting hyperglycemia was a common 

(>30%) and sometimes limiting adverse event. As the PI3K enzyme is also responsible for 

insulin signal transduction, it was hypothesized that its inhibition would lead to blunting of 

the insulin signal (mimicking T2D), leading to hyperglycemia and hyperinsulinemia. This 

was recently investigated pre-clinically, where it was shown that the hyperinsulinemia could 

suppresses the effectiveness of PI3K inhibition in mouse models23. Further, suppressing the 

hyperglycemia/hyperinsulinemia response, most notably by a ketogenic diet, reduced levels 

of phosphorylated insulin receptor, pAkt and pS6 and could re-sensitize tumors to PI3K 

inhibition. This illustrates the close interplay in the metabolism of cancer and diabetes.

Tumor Acidity

Solid tumors, regardless of cancer type, are characterized as being highly heterogeneous, at 

the genomic, anatomic, physiologic and metabolic levels. The proximal cause of this 

heterogeneity is the “chaotic” and abnormal tumor vasculature, which leads to different 

microenvironments with different perfusion characteristics24. These perfusion deficits select 

for cells that express metabolic phenotypes that are most fit in these different environments, 

and these metabolic phenotypes are ultimately under control of the epigenetic and genetic 

landscape.

A common metabolic phenotype observed in solid tumors is elevated rates of fermentative 

glycolysis, i.e. the non-oxidative conversion of glucose to lactic acid. While this can be 

induced as an adaptive response to poor oxygenation (the “Pasteur Effect”), a remarkable 

century-old observation is that this glycolytic phenotype can be hardwired, and thus cancers 

ferment glucose, even in the presence of adequate oxygen (the “Warburg Effect”). This 

glycolytic switch likely occurs early in cancers, during the avascular phase of carcinoma in-

situ, CIS25, wherein cancer cells that express this phenotype are more likely to survive than 

ones who do not26. Although the mechanism and drivers of aerobic glycolysis are still 

debated, it is an unequivocal fact that tumors produce copious amounts of non-oxidized 

acids as result of elevated glucose fermentation27. In combination with perfusion deficits, 

this results in the accumulation of acids in the extracellular environment and an acidic tumor 

pH, with values as low as pH 6.528-31.
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An acidic microenvironment strongly influences cancer progression32,33. Although it is 

initiated early in carcinogenesis, this phenotype is retained as cancers become locally 

invasive, a process known as “niche engineering”. Acidosis promotes tumor progression by 

stimulating invasion and metastasis 26,32,34,35, can be toxic to normal cells and mediate 

degradation and remodeling of the extracellular matrix 36, can elevate angiogenesis through 

the release of VEGF37, and can inhibit immune surveillance by inducing T-cell stasis38.

An acidic environment has also been shown to induce genomic instability and is an 

evolutionary selection force for aggressive clones of cells that are acid-adapted, leading to 

genomic diversity 33. Further, the metabolic adaptations to acidity can result in large changes 

in the epigenome39. As acidity is evident in early cancers, it can be inferred that this 

contributes to intratumoral genetic heterogeneity40–43, which is a proximal cause of 

malignance and resistance44. In addition to genetic heterogeneity, it has been shown in 

imaging studies that tumors are also physiologically and anatomically heterogeneous and 

that this is related to poor prognoses 45–47. This can be quantified by converting medical 

images to mineable data (“radiomics”) of entire tumors46,48–50 or definable sub-regions in 

tumors with specific combinations of perfusion, cell density, and extracellular matrix 

(ECM)51,52. Notably, invasive edges of tumors have habitats that are physiologically distinct 

from the tumor cores, and the larger the differences, the worse the prognosis 53.

At the microscopic level, invasive edges are complex mixtures of multiple cell types, 

including cancer cells, fibroblasts and immune cells. The tumor cells at the invading edge 

have distinct protein expression patterns, compared to those in the tumor cores54,55. 

Specifically, cells at the edge are more proliferative, less apoptotic, and have increased 

expression of GLUT-1 and CA-IX relative to the tumor cells in the core. The membrane 

bound exofacial CA-IX is notable as it has a much lower pKa (<6.5) compared to other 

carbonic anhydrases CA-XII (7.1) and thus, CA-IX is more active at low pH 56,57, and acts 

to acidify the tumor-stroma interface58. Intravital microscopy shows that invading tumors 

secrete acid into their surrounding stroma36,59, which induces ECM remodeling and local 

invasion, driven by increased lysosomal turnover, the release of cathepsins, collagen re-

organization and the release of inflammatory cytokines by stromal fibroblasts 60–64.

Another important sequelae of acid release into the stroma is immune evasion through 

inhibition of T-cell activation or induction of a macrophage phenotypic switch 38,65,66. 

Microenvironmental acidosis reduces the effector function of tumor infiltrating lymphocytes 

(TIL), with reduced secretion of IL-2, up-regulation of CD25, and activation of STA5/ERK 

signaling67–69. Recently it has been shown that acidic pH blocks the activation and anti-

tumor functions of T-cells via inhibition of interferon-gamma translation and that this is 

associated with metabolic changes65.

Microenvironmental acidity is also involved in an increased rate of endosomal-lysosomal 

trafficking64,70, and increased release of extracellular vesicles (EVs) by tumor cells 71,72. 

This might be due to a need to eliminate waste, including excess acid 73. It is thus 

conceivable that cancer cells under the pressure of a very harsh microenvironment need to 

eliminate more toxic byproducts and one mechanism at their disposal is to use extracellular 

elimination through exosomes or vesicles. One example is the elimination of 
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chemotherapeutics through exosomes74, thus participating to chemoresistance. However, the 

increased release of exosomes in in vitro acidic condition has been recently related to the in 
vivo condition comparing plasmatic exosomes from cancer patients to both healthy donors 

and patients with benign tumors. It is believed that exosomes may have a key role in tumor 

metastasis in both setting the metastatic niche and transforming stem cells contained in 

target organs75,76

Acidosis in Diabetes.

T2D is associated with mitochondrial dysfunction, altering the distribution of acid load15. 

Mitochondrial dysfunction observed in T2D leads patients to produce large amounts of lactic 

acid, due to loss of function of the TCA cycle, which contributes to a lowering of the 

interstitial fluid pH (Fig. 1). Additionally, systemic acid load can be exacerbated by intake of 

high amounts of protein, measured as potential renal acid load, PRAL, and net endogenous 

acid production, NEAP 77,78. In large meta-analyses, dietary acid load was strongly 

positively correlated with incidence of T2D, especially in women79,80. Further, in diabetes, 

due to this mitochondrial dysfunction and a lack of blood glucose, keto-acids such as beta-

hydroxybutyric acid 81 are abundant and further contribute to acidosis 82. These ketone 

bodies are consumed in extra-hepatic muscle and brain for ATP synthesis 83. Thus, patients 

suffering from T2D with relatively normal function of hepatic mitochondria associated with 

no glucose availability show lowered pH in the interstitial fluid due to a large amount of 

ketone bodies produced from free fatty acids in addition to lactic acid.

Acidity is one of the most important therapeutic targets for diabetes mellitus 84. In diabetes, 

the chronic compensated metabolic acidosis is systemic rather than regional, as seen in 

cancer. Compensation results in loss of HCO3
- buffering, which makes the interstitial pH 

more fragile. One consequence of the low extracellular low pH observed in diabetes mellitus 

is that it reduces the binding affinity of insulin to its receptor, exacerbating peripheral insulin 

resistance 85. Insulin resistance is one of the most essentially important symptoms observed 

in type 2 diabetes mellitus: patients of type 2 diabetes mellitus with insulin resistance 

develop hypertension, one of the most typical clinical symptoms frequently observed as 

cardiovascular disorders 86–91. Insulin resistance also leads to hyper-insulinemia, and 

develops vascular dysfunction, hyper-activation of sympathetic nerves, and renal failure; 

resulting in hypertension 91–97. Many researchers have been trying to develop various types 

of drugs for treatment of T2D such as sulfonylurea, biguanide, glucosidase inhibitors, 

thiazolidine, dipeptidyl-peptidase (PPD) IV inhibitors, and sodium/glucose co-transporter 2 

(SGLT2) inhibitors based on the premise that reducing blood sugar levels can ameliorate 

many of the sequelae of T2D, with no significant results and needing new treatment 

approaches. The continuous hyperglycemia caused by the insulin-resistance-induced poor 

uptake of glucose into cells such as skeletal muscles, adipocytes, and hepatocytes stimulates 

insulin secretion from pancreatic β-cells98–104. Thus, continuous hyperglycemia exhausts 

pancreatic β-cells, resulting in development of dysfunction and damage. Indeed, reduction of 

blood sugar levels through, e.g. a ketogenic diet, prevents continuous hyper-secretion of 

insulin. As mentioned above, the fundamental prevention and treatment of T2D should be 

developed based on the idea of reducing insulin resistance. We hypothesize that insulin 

resistance is in part caused by lowered interstitial fluid pH observed in T2D105 and lowered 
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interstitial (extracellular) fluid pH reduces the binding affinity of insulin to its receptor 85. 

Therefore, as a fundamental prevention and treatment for T2D, we propose to develop 

methods to maintain the interstitial fluid pH to normal levels, which is also a goal of cancer 

treatments.

Targeting Acidity

Numerous groups are working to develop therapeutic approaches to inhibit or target tumor 

acidity. These approaches can be divided into (1) direct approaches using oral buffers, diet, 

or targeted agents to raise tumor pH, (2) developing agents that sequester into cells that are 

in an acidic microenvironment; or (3) developing or repurposing acid-activated agents, such 

as proton pump inhibitors, PPIs.

Direct Targeting.—The most direct approach to neutralize tumor acidity is the 

administration of oral buffers, such as NaHCO3. In animal models oral buffers, such as 

sodium bicarbonate, specifically increase tumor pH without affecting systemic pH balance, 

and potently inhibits experimental or spontaneous metastases 106–109. Indeed, a 

commercially available mix of bicarbonate and carbonate salts (i.e. BasenPulver, Pascoe 

Germany) was able to control melanoma growth consistent with a buffering effect at both 

tumor and systemic level 110. These responses are due to buffer effects rather than to 

bicarbonate per se, as other buffers also work 111,112. Further, effects are also manifest in 

genetically engineered mouse cancer models (GEMMs). For example, in the TRAMP 

prostate model, the initiation of buffer therapy at 4 weeks of age prevents emergence of 

cancer113, but if administered after 10 weeks (after tumors are extracapsular), it has no effect 

on the primary tumors, but completely inhibits metastases114,115. As discussed below, 

despite the promising pre-clinical results, it is difficult to translate buffer therapy to the 

clinic. Recently, Another method to directly inhibit tissue acidity is through application of 

urease enzyme, which converts urea to 2 NH4
+ and 1 HCO3

-, producing a net local increase 

in pH. L-DOS47 is a Jack Bean urease targeted to CEACAM6 antigen116. An alternative 

agent to directly raise pH is TRC101, which is an oral non-digested nanoparticle that 

increases systemic buffering by absorbing HCl from the gut, leading to compensated 

metabolic alkalosis. This has been tested in successful clinical trials in patients with chronic 

kidney disease117.

Ion Trapping.—In normal tissues, the extracellular interstitial pH, pHe, is approx. 7.3 and 

the intracellular cytosolic pH, pHi, is ca. 7.2, or a pH gradient of −0.1. In acidic tissues, the 

pHe can be as low as 6.7, and the pHi will be maintained at 7.0–7.1, or a pH gradient of 

+0.3–0.4. This reverse pH gradient can be exploited to trap chemotherapeutics in the cytosol 

of cells that are in more acidic pHe environments. Ion trapping is well-characterized 

theoretically and empirically, and occurs if the non-ionized form of the drug is membrane 

permeant and the charged form is not. Hence, weak base chemotherapeutics are excluded 

from more alkaline compartments, and weak acids are sequestered118. Table 2 provides a 

summary of weakly acidic, weakly basic and complex chemotherapeutics that are commonly 

used to treat cancers. Notably, if therapy is designed to neutralize tumor acidity, the benefits 

of these agents would be reversed and hence, those with increased uptake due to tumor 

acidity would have reduced uptake and vice-versa. Thus, raising tumor pH with buffers or 
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targeting would be expected to enhance efficacy of weakly basic drugs while reducing 

efficacy of weak acid agents 106,107.

Acid-activated Agents.—Development of agents that are only active under relatively 

acidic conditions is an area of active investigation. There is a tremendous interest in 

developing nanoparticles that are induced to release therapeutic agents in areas at low pH of 

tumors, and this has recently been reviewed119,120. Multiple chemistries can be used in these 

particles, such as lipid and polymeric shells made of ionizable groups that are designed to 

disassemble at low pH, releasing chemotherapeutic agents 121–123 .

A well-developed class of agents that are activated by low pH are the Proton Pump 

Inhibitors, PPIs. As discussed previously, maintenance of intracellular pH is accomplished 

by a series of proton exchangers, including vacuolar ATPases (V-ATPase), Na+/H+ 

exchanger (NHE), monocarboxylate transporters (MCTs) and carbonic anhydrase 9 124. 

These proton-extruding mechanisms remove metabolic acid into the extracellular matrix and 

are thus key to survival, especially in an acidic milieu. Thus, depriving cancer cells of the 

functions exploited by these exchangers should inevitably lead to cell death due to internal 

acidification. V-ATPases actively participate in this process in tumor cells by pumping H+ 

both from the cytosol to internal vacuoles that are rapidly turned over in the face of acidity 
125. While direct inhibition of V-ATPases with specific agents, such as bafilomycin, are 

effectively cytotoxic in vitro, they have too much toxicity in vivo to be effectively used 

therapeutically, with an LD50 (mice) of ~0.45 mg/kg. An alternative approach would be to 

use proton pump inhibitors (PPI) that are used worldwide as very potent antacids (i.e. 

omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole). Importantly, these 

are well tolerated, even in prolonged treatments and at very high dosages, as in patients with 

Zollinger and Hellison syndrome and other conditions 124–127. .

PPIs are cysteine targeting Tetracyclic Sulfonamide prodrugs that require protonation in an 

acidic milieu to be activated to covalently bind to free sulfhydryls. Thus, they are effective in 

the acid pH of the stomach, and hence the major intended target is the gastric H+/K+ATPase, 

which is abundant and has a vulnerable cysteine. In cells of extragastric tissues, acid pH is 

limited to lysosomes and hence, V-ATPases are also targeted, as they have vulnerable 

cysteines as well128,129. Tumor targeting may well come from the well-characterized effect 

of acidic extracellular environments to stimulate lysosomogenesis with increased lysosomal 

turnover 64,70,130,131. . A series of preclinical investigations have shown that PPI sensitize 

tumor cells and tumors to the action of chemotherapeutics, even at low doses. Further, PPIs 

as monotherapy can exert a potent antitumor activity, and can be associated with in vivo 
modulation of tumor pH. As with buffers, PPIs have been shown to reverse tumor immune 

escape, through a clear increase of the immune infiltrate within the tumor mass 66. These 

preclinical data represented the background for a series of clinical studies aimed at 

supporting the use of PPI as chemosensitizers.

In addition, pre-clinical studies have clearly shown that Carbonic Anhydrase-9, CA-IX, is 

critically important in maintaining an acidic pHe, and that inhibitors of this proton 

exchanger may be successfully used as anti-cancer agents124. Multiple inhibitors of CA-IX 

have been developed but have in common a sulfonamide to target the active site, as well as a 
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large size to prevent it from crossing the plasma membrane, as the active site of CA-IX (as 

well as CA-IV and CA-XII) is exofacial 132,133. Moreover, recent evidence suggests that 

proton pump inhibitors and CA-IX inhibitors may be successfully combined in the treatment 

of human cancers, particularly under low pH conditions133, thus leading us to re-think about 

the use of combinations between proton exchangers inhibitors134. As far as the involvement 

of CAs in diabetes there is clear evidence that CA inhibition may represent an effective 

prevention and treatment of obesity that we know as a common pathway of cancer and 

diabetes135. Thus, what we are learning on cancer treatment may be highly useful in the 

future treatment of diabetes.

Clinical Studies

Direct Targeting of Acidity.—To translate the provocative responses of animal tumors to 

buffers into the clinic, phase I/II clinical trials of sodium bicarbonate monotherapy were 

initiated, and are described in 136. Because of widespread complaints of GI discomfort and 

potential effects on edema, it has been determined that NaHCO3 alone is insufficient as a 

buffer therapy. As an alternative to buffer therapy, Helix Biopharma has recently developed a 

urease targeted to CEACAM-6 (L-DOS47) to raise pH by converting endogenous urea to 

two NH4
+ and one HCO3

-. This was investigated in a clinical trial (NCT02309892) in non-

small cell lung cancer patients and was shown to be well-tolerated 137. TRC101117 has just 

completed a phase III pivotal trail in patients with chronic kidney disease (NCT03317444), 

but not yet been investigated in relation to diabetes or cancer.

PPIs in the clinic.—In 2014, Papagerakis et al. published a large retrospective 

metanalysis of outcomes in 596 previously untreated head and neck squamous cell 

carcinoma (HNSCC) patients138. The major findings of this study were strong univariate 

associations between both histamine receptor-2 antagonists (H2RAs) and proton pump 

inhibitors (PPIs) with treatment outcomes showing that both PPIs and H2RAs were 

significantly positive prognostic factors for overall survival.

Prospective clinical studies in osteosarcomas 139 and metastatic breast cancer have been 

published 140. In osteosarcomas, the clinical goal was to improve the effect of neoadjuvant 

chemotherapy, NAC, on the tumor lesion in the resected bone with the addition of 

esomeprazole the two days before the combined chemotherapy. The results showed that pre-

treatment with PPI increased the effectiveness of NAC in osteosarcoma patients, particularly 

in the chondroblastic variant. In breast cancer, patients were divided into 3 arms: one 

receiving a standard cisplatin and paclitaxel (C+P) chemotherapy; and 2 arms with second 

with C+P plus either 120 mg or 160 mg esomeprazole the days before chemotherapy. After 

the course of C+P was completed, patients were further divided into two arms: one 

continuing esomeprazole for the following year and the other discontinuing. Results showed 

that the 45% of the patients that continued esomeprazole after of chemotherapy were alive at 

the end of the study, particularly the triple negative patients, with a significant increase of 

both the time to progression (TTP) and the overall survival (OS). More recently, a case 

series study in refractory gastro-intestinal cancer have shown that the addition of PPI to 

chemotherapy increased the TTP in these patients140. Further, PPIs were shown to increase 
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the efficacy of standard chemotherapy and significantly improved the quality of life of 

treated companion animals with in either standard treatment142 or metronomic regimens143.

Despite this promise, the mechanism by which PPIs exert their effects remain unknown. An 

intriguing hypothesis might be that PPI, as the buffer therapies as well, may induce their 

effect through a buffering effect on the stomach 144. This hypothesis is based on the high 

level of anti-acidic effect of PPI at the gastric level, but this of course will be a matter for 

future studies. Additionally PPIs have been shown to have off target effects, specifically to 

dopamine and serotonin receptors 145. However, it has also been shown that P-type H+/K+ 

ATPases may be expressed by cancer cells of non-gastric origin146,147, but also in 

extragastric non-cancer conditions148. In any event, PPIs are well-tolerated and have shown 

clinical benefit.

CONCLUSIONS

Diabetes and Cancer and, indeed other pathological conditions, share a phenotype of 

disrupted acid-base homeostasis. In both cases, the ensuing extracellular acidity has been 

shown to be relevant to the diseases’ etiopathology. In both bases, targeting the extracellular 

acidity directly has been shown to ameliorate some symptoms, providing pre-clinical or 

clinical benefit. Despite this promise, targeting acidity and defining the mechanisms driving 

acidity are still nascent areas of investigation.
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Fig. 1. 
Regulation of pH and its roles in cancer and diabetic cells. The interstitial fluid pH is more 

highly variable compared with blood pH due to a lack of strong pH buffer. A large amount 

of proton and lactate- are produced via metabolism in cancer and diabetic cells. A large 

amount of proton (H+) produced systematically in diabetic cells of the whole body are 

circulated into other any organs in addition to cells themselves producing a large amount of 

proton (H+). The large amount of proton (H+) provides low pH environments surrounding 

cells in any organs including cancer and diabetic cells. These low pH environments produce 

insulin resistance by decreasing the affinity of insulin to its receptor, leading more proton (H
+) production due to diminution of glucose availability caused by insulin resistance. In the 

liver, the insulin resistance produces ketone bodies (KB) from free fatty acids (FFT) leading 

to much lower pH environments, and also releases IGF-1, which accelerates the cancer cell 

growth producing more proton (H+).
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Table 1.

Fundamental observations regarding acid-base homeostasis

1. pH is the negative log of the H+ activity in solution

2. Neutrality occurs when [H+] = [OH−] at a pH near 7.001.

3. All energy catabolism is eventually oxidative: i.e. the conversion of hydrocarbons and alcohols to higher oxidations states, e.g. acids.

4. Hence, the majority of regulatory systems in the body have evolved to deal with acidic pH excursions.

5. Systemic acid-base balance is achieved through the lungs, which regulate CO2 tension, and kidneys, which regulate excretion of HCO3
−. The 

aqueous CO2 -bicarbonate system is the most important biological buffer.

6. Net diffusion of hydrogen ions in tissue occurs when bound to with mobile buffers: H+ must be accompanied by mobile anions for charge 
balance.

7. Proteins provide significant non-mobile buffering power.

8. Biological processes affected by pH are primarily mediated by histidine amino acid residues, which have pKa values in the physiological 
range2.

9. Multiple pathways have evolved to export metabolically-derived acids from inside of cells to their environment.
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Table 2.

Common chemotherapeutic agents that are affected by the acidic pH of tumors (decreased or increased by 

acidic pH).

Weak bases (decreased uptake)

  • Ifosfamide/Cyclophosphamide

  • Erlotinib/Lapatinib/Gefitinib

  • Tamoxifen

Weak Acids (increased uptake)

  • Flurouricil

  • Capcitabine

  • Pemetrexed

Complex Ionization (decreased uptake)

  • Melphelan

  • Doxorubicin/Daunorubicin

  • Imatinib

Complex ionization (increased uptake)

  • Gemcitabine

  • Irinotecan

  • Sunitinib
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