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Abstract

Background: Although several studies linked adolescent cannabis use to long-term cognitive 

dysfunction, there are negative reports too. The fact that not all users develop cognitive 

impairment suggests a genetic vulnerability to adverse effects of cannabis, which are attributed to 

action of delta-9-tetrahydrocannabinol (Δ9-THC), a cannabis constituent and partial agonist of 

brain cannabinoid receptor 1 (CNR1). As both neurons and glial cells express CNR1, genetic 

vulnerability could influence Δ9-THC-induced signaling in a cell type-specific manner.

Methods: Here we use an animal model of inducible expression of dominant-negative Disrupted-

In-Schizophrenia-1 (DN-DISC1) selectively in astrocytes to evaluate the molecular mechanisms 

whereby an astrocyte genetic vulnerability could interact with adolescent Δ9-THC exposure to 

impair recognition memory in adulthood.

Results: Selective expression of DN-DISC1 in astrocytes and adolescent treatment with Δ9-THC 

synergistically affected recognition memory in adult mice. Similar deficits in recognition memory 

were observed following knockdown of endogenous Disc1 in hippocampal astrocytes in mice 

treated with Δ9-THC during adolescence. At the molecular level, DN-DISC1 and Δ9-THC 

synergistically activated the NF-kB-COX-2 pathway in astrocytes and decreased immunoreactivity 

of parvalbumin-positive pre-synaptic inhibitory boutons around pyramidal neurons of the 
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hippocampal CA3 area. The cognitive abnormalities were prevented in DN-DISC1 mice exposed 

to Δ9-THC by simultaneous adolescent treatment with the COX-2 inhibitor, NS389.

Conclusions: Our data demonstrate that individual vulnerability to cannabis can be exclusively 

mediated by astrocytes. Results of this work suggest that genetic predisposition within astrocytes 

can exaggerate Δ9-THC-produced cognitive impairments via convergent inflammatory signaling, 

suggesting possible targets for preventing adverse effects of cannabis within susceptible 

individuals.

One sentence summary:

Adolescent GxE in astrocytes impairs adulthood memory

Keywords

cannabis; astrocytes; adolescence; cognitive dysfunction; hippocampus; gene-environment 
interaction

Introduction

Cannabis is the most commonly used illicit drug of abuse in the United States (1). Although 

several studies have reported no long-term cognitive impairments after cannabis use, chronic 

cannabis exposure during adolescence has been associated with persistent deficits in some 

cognitive domains, including attention, memory, and processing speed (2–4). Cannabis 
sativa plant includes more than 400 different chemical constituents, of which about 70 are 

cannabinoids (5). Cannabis-induced adverse effects are mediated by delta-9-

tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of cannabis and a 

partial agonist of brain cannabinoid receptors (CNR1) (6). However, the mechanisms 

underlying Δ9-THC-induced long-lasting behavioral and cognitive abnormalities remain 

unknown.

Although neurons highly express CNR1, the role of glial CNR1 is being increasingly 

appreciated (7, 8). Two recent studies have shown that detrimental effects of Δ9-THC on 

learning and memory in mice are mediated by astrocyte CNR1 (9, 10), activation of NF-κB 

signaling and up-regulation of cyclooxygenase-2 (COX-2) that might lead to excessive 

glutamate release by astrocytes (11).

Notably, not all cannabis users demonstrate cognitive impairment suggesting a genetic 

vulnerability to adverse effects of cannabis (12–14). Similarly, preclinical studies have 

reported that mice carrying mutations in candidate genes for psychiatric disorders exhibit 

greater responses to adverse effects of Δ9-THC on memory (15–19). However, the 

underlying molecular mechanisms of how genetic mutations could moderate cognitive 

effects of cannabis remain unknown. Further, although astrocytes appear to play a major role 

in mediating effects of Δ9-THC on memory (9, 10), the molecular underpinning of how 

genetic risk factors could interact with Δ9-THC in a cell type specific manner to impair 

cognitive abilities have never been studied. In order to address these questions, we used an 

animal model of selective astrocyte expression of a rare, highly penetrant mutation, a 

dominant-negative form of Disrupted in Schizophrenia 1 (DISC1) (18, 20–28).
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DISC1 is a gene disrupted by the balanced (1;11) (q42.1; q14.3) translocation, segregating in 

a Scottish family with several major psychiatric disorders (29, 30). Although the DISC1 

locus has not been reported in recent genome-wide association studies (GWAS)(31), rare 

mutations of large effects contribute to behavioral and cognitive abnormalities (32) and have 

important roles in mechanistic studies (33, 34). It is in this context that we use a C-terminus 

truncated form of full-length DISC1 as a dominant-negative molecular tool (DN-DISC1). In 

this study, we sought to determine the molecular basis of gene-environment interaction 

(GxE) in astrocytes and elucidate how GxE interplay could shape up individual vulnerability 

to adverse cognitive effects of cannabis on cognitive abilities.

Materials and Methods

Animals

In order to evaluate the cell-specific role of astrocytes in gene environment interaction 

(GxE), mice expressing dominant negative form of DISC1 (DN-DISC1) in astrocytes were 

exposed to chronic Δ9-THC treatment (8 mg/kg, sc, daily) for three weeks from postnatal 

day (P) P30 and on. 21 days later, mice were assessed in a series of behavioral tests. All 

procedures were approved by the JHU ACUC.

Behavioral tests

The following tests were used: open field, spontaneous alternation, spatial recognition in Y 

maze, novel object recognition test, novel place recognition test and fear conditioning as 

previously described (24, 35–37).

AAV injections

AAV-Gfa-mir30-Disc1-EGFP or AAV-Gfa mir30-control-EGFP were injected in the CA2-

CA3 areas of the hippocampus at P15–17.

Isolation of RNA and RNAseq analyses

Total RNA was purified from mouse hippocampus upon completion of Δ9-THC. RNAseq 

analysis was done as described in supplemental 1.

Biochemistry

Expression of Phospho-p65, Phospho-IκBα and COX-2 was assessed with standard Western 

blotting in primary astrocytes or hippocampal tissue samples. DISC1-IκBα binding was 

analyzed with co-immunoprecipitation as previously described (38).

Immunohistochemistry

GAD67-positive (GAD67+) presynaptic boutons within parvalbumin-positive (PV+) 

branches were evaluated on the surface of pyramidal neurons of the CA1 and CA3 areas of 

hippocampus.
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Pharmacological treatment with the COX-2 inhibitor

Effects of COX-2 inhibition on cognitive deficits were assessed with the COX-2 inhibitor, 

NS398, (10mg/kg, daily sc).

Measurement of glutamate in hippocampal tissue and in culture medium

Glutamate concentration in the hippocampus or primary astrocyte culture were assayed 

using Kusakabe’s method (39) or glutamate assay, respectively.

For detailed information, please see Supplemental 1.

Results

Astrocyte DN-DISC1 and adolescent Δ9-THC impair memory in adult mice

Based on our prior studies (26, 28), we hypothesized that expression of DN-DISC1 in 

astrocytes (aDN-DISC1) would synergistically interact with adolescent Δ9-THC exposure to 

affect learning and memory in adult mice. In order to test this hypothesis, we treated control 

or aDN-DISC1 male and female mice with single daily injections of Δ9-THC (8mg/kg; SC) 

starting at postnatal day 30 (P30) for three weeks (14) to span mouse adolescence (P30–51) 

that corresponds to human adolescence from 12 to 19 years of age (40–43). Upon 

completion of treatment, the mice were left undisturbed for another three weeks before 

behavioral testing was commenced (Fig.1A).

For male mice, compared to other groups, aDN-DISC1 mice treated with Δ9-THC exhibited 

synergistically impaired performance in the spatial recognition test in the Y maze (the 

significant aDN-DISC1 by Δ9-THC interaction, F(1,33)=4.46, p = 0.045) and the novel 

object recognition test (NORT) (the significant aDN-DISC1 by Δ9-THC interaction, 

F(1,33)=14.48, p<0.001), as well as significantly worse performance in the novel place 

recognition test (NPRT) compared to aDN-DISC1 mice treated with vehicle, p<0.05 (Fig.

1B–D). For female mice, the aDN-DISC1-Δ9THC combination produced synergistic 

impairment in the spatial recognition test in the Y-maze only (the significant aDN-DISC1 by 

Δ9-THC interaction, F(1,43)=12.88, p<0.001) (Fig.1E–G). Memory deficits were not 

associated with group differences in general exploratory activity during the training phase 

for the above tests, distance traveled in the Y maze, or novelty-induced activity. No effects 

of Δ9-THC were found in the forced swim test, or context- or cue-dependent delay fear 

conditioning either (Fig.S1–S3 in Supplement 1). Thus, our results suggest that adolescent 

treatment with Δ9-THC and expression of DN-DISC1 in astrocytes synergistically affect 

recognition memory in adult mice. As the most robust behavioral effects were found in 

aDN-DISC1 male mice, we focused on male mice in all subsequent tests.

In order to examine whether the above synergistic effects were dependent on adolescent Δ9-

THC exposure (39), adult control and aDN-DISC1 mice were treated using the same 

protocol. We found no significant effects of adult Δ9-THC exposure on recognition memory 

in aDN-DISC1 mice (Fig.S4 in Supplement 1).

Although expression of aDN-DISC1 in the brain reaches the maximum by late adolescence, 

there is expression of aDN-DSC1 during late gestation and early postnatal period (28) that 
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coincides with astrocyte proliferation and maturation (44, 45). In order to evaluate a possible 

contribution of early expression of aDN-DISC1 to the cognitive phenotypes, we turned off 

expression of aDN-DISC1 using doxycycline-containing food beginning at P21 and on 

(Fig.S5A in Supplement 1). We observed no significant cognitive effects in any group 

(Fig.S5BD in Supplement 1, suggesting that developmental expression of aDN-DISC1 

unlikely contributed to the cognitive abnormalities.

We next wondered whether a different psychoactive compound could also interact with 

aDN-DISC1 to impair recognition memory (46, 47). In order to evaluate this possibility, 

control and aDN-DISC1 adolescent male mice were treated with amphetamine (1 mg/kg, 

ip). No significant changes in the same memory tests were found in either group (Fig.S6 in 

Supplement 1).

We also evaluated whether expression of DN-DISC1 in neurons could also lead to the 

cognitive deficits after adolescent Δ9-THC treatment. We generated mice with neuronal 

expression of DN-DISC1 (nDN-DISC1) by crossing TRE-DN-DISC1 mice with CAMKII-

tTA mice to express DN-DISC1 in forebrain neurons (23). Control and nDN-DISC1 male 

mice were treated with the same treatment prFig.S7 in Supplement 1), suggesting a cell type 

specific GxE to impair recognition memory.

The hippocampus is sufficient for mediating the major effects of interaction

The hippocampus plays the critical role in spatial recognition memory (48–50). The 

cognitive effects of exogenous cannabinoids have been linked to adverse effects on 

hippocampal neuronal circuits (51–54). In addition, we previously reported strong 

expression of astrocyte DN-DISC1 in the hippocampus compared to the frontal cortex (28). 

Thus, we evaluated the contribution of hippocampal aDN-DISC1 to memory deficits 

observed in Δ9-THC-treated mice. In order to address this question and alter expression of 

DISC1 in astrocytes with a different genetic tool, we engineered an adeno-associated viral 

(AAV) vector to knockdown (KD) endogenous Disc1 selectively in astrocytes, Gfa-GFP-
mir30-Disc1, or control (scrambled) vector, Gfa-GFP-mir30-Ctrl (Fig.S8 in Supplement 1). 

Gfa-GFP-mir30-Disc1 AAV decreased expression of Disc1 in vivo (Fig.S8A) and 

transduced astrocytes only (Fig.S8B) (see Supplement 1).

Since prior studies have suggested that Δ9-THC exposure may affect CA1-CA3 circuits (9, 

55, 56), control and mir30-Disc1 AAV were injected in the CA2-CA3 areas of the 

hippocampus at P16 to let the effects of KD take place by P30 when Δ9-THC treatment was 

commenced. Three weeks later behavioral testing was initiated (Fig.2A). Consistent with our 

earlier findings (Fig.1), compared to the Gfa-GFP-mir30-Ctrl AAV, Gfa-GFP-mir30-Disc1 
AAV synergistically impaired spatial memory in the Y-maze test (the significant Disc1-KD 

by Δ9-THC interaction, F(1,22)=13.90, p=0.001), NORT (the significant the Disc1-KD by 

Δ9-THC interaction, F(1,22)=4.35, p=0.05) but not NPRT in mice treated with Δ9-THC 

during adolescence (Fig.2B–D). These effects were unlikely related to non-specific changes 

in locomotion or exploratory activity (Fig.S9 in Supplement 1). Upon completion of 

behavioral tests (P90), we confirmed that AAV transduction was present in astrocytes of the 

CA2-CA3 areas (Fig.S10 in Supplement 1). Thus, expression of aDN-DISC1 or Disc1 KD 
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in hippocampal astrocytes synergistically exacerbated the adverse cognitive effects of 

adolescent Δ9-THC in adult mice.

Δ9-THC activates pro-inflammatory signaling in DN-DISC1 astrocytes

In order to gain an unbiased insight in the mechanisms of GxE, we performed RNA-seq 

analyses of hippocampal tissue samples derived from control and aDN-DISC1 mice treated 

with vehicle or Δ9-THC as above. Our analyses focused on the 56 genes differentially 

expressed in both the aDN-DISC1 and Δ9-THC conditions, but not in either condition alone 

(Fig.3A). This analysis revealed a significant up-regulation of genes involved in the 

inflammatory pathways, including NF-kB signaling (Fig.3B). Full lists of differentially 

expressed genes and pathways are presented in Tables S2 and S3 (in Supplement 2), 

respectively (the NCBI accession number is GSE116813). Together with prior studies 

demonstrating that both Δ9-THC and DISC1 influence NF-kB signaling (10), our results 

suggest that this inflammatory pathway may be a convergent target of DN-DISC1 and Δ9-

THC in astrocytes.

DISC1 regulates activation of NF-kB-COX-2 signaling in astrocytes

We focused on evaluation of expression of Ptgs2 (a.k.a. Cox-2) that encodes for a 

constitutively expressed and inducible enzyme, cyclooxygenase-2 (COX-2), that converts 

arachidonic acid to prostaglandins (57, 58). We chose to assess altered expression of Ptgs2 
in our GxE model because Δ9-THC induces a robust increase in activity and expression of 

COX-2 in astrocytes and mediates synaptic and cognitive effects of Δ9-THC (10, 59). Since 

tissue astrocytes and cultured cells exhibit significant transcriptome differences (60), we 

assessed Ptgs2 expression in astrocytes acutely isolated from the hippocampus followed by 

Δ9-THC treatment. We found a synergistic up-regulation of Ptgs2 in astrocytes of aDN-

DISC1 mice treated with Δ9-THC compared to other groups (the significant DN-DISC1 × 

Δ9-THC treatment interaction, F(1,8)=87.43, p=0.001) (Fig.4A).

We then assessed the protein levels of COX-2 and phospho-NF-κB p65 in astrocytes isolated 

from the hippocampus one day after in vivo Δ9-THC or vehicle treatment. Consistent with 

mRNA data, we found a significant and synergistic increase in COX-2 level (the significant 

DN-DISC1 × Δ9-THC interaction, F(1,8) =15.52, p=0.004) and phosphorylation of NF-κB 

p65 compared to other groups (the significant DN-DISC1 × Δ9-THC interaction, 

F(1,8)=6.03, p=0.040) (Fig.4B).

To further evaluate activation of NF-κB p65 signaling in astrocyte, we measured the 

phosphorylation levels of NF-κB p65 and IκBα, an upstream signaling protein of NF-κB 

p65, in primary DN-DISC1 or control astrocytes treated with Δ9-THC (5 M for 5 min or 1 

hour) or vehicle. Consistent with in vivo data, DN-DISC1 astrocytes treated with Δ9-THC 

had synergistically increased phosphorylation of NF-κB p65 (Δ9-THC treatment for an 

hour) and enhanced phosphorylation of IκBα (Δ9-THC treatment for 5 min), compared with 

other conditions (Fig.4C).

Given that phosphorylation of IκBα leads to its dissociation from p65 and degradation, an 

event that requires prior to nuclear translocation of the liberated p65 (61, 62), DISC1 may 

interact with phospho-IκBα for stabilization of cytoplasmic IκBα:p65 complex. Indeed, 
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coimmunoprecipitation experiments confirmed protein interaction between wild-type DISC1 

and phospho-IκBα. Importantly, this interaction was disrupted by over-expression of DN-

DISC1 (Fig. 4D). Our results suggest that binding of DISC1 to phospho-IκBα may stabilize 

IκBα activity, supporting inhibitory action of IκBα on NF-kB. Expression of DN-DISC1 in 

astrocytes leads to decreased levels of endogenous DISC1 (26) that may facilitate 

degradation of phosphorylated-IκBα and activation of NF-kB as a result of its release from 

binding to IκBα.

As up-regulation of COX-2 could increase glutamate secretion by astrocytes (11), we 

examined the effects of Δ9-THC on levels of glutamate in the hippocampus and culture 

medium collected from primary astrocytes. Compared to other groups, there was a 

significant increase in glutamate levels in the hippocampus of aDN-DISC1 mice treated with 

Δ9-THC mice (p<0.05) (Fig.S11A in Supplement 1). In addition, we found a synergistically 

increased secretion of glutamate by primary DN-DISC1 astrocytes following stimulation of 

Δ9-THC (the significant aDN-DISC1 by Δ9-THC interaction, F(1,18)=6.74, p=0.02) 

(Fig.S11B in Supplement 1). Collectively, these results suggest that DN-DISC1 and Δ9-THC 

interact to activate the pro-inflammatory NF-kB-COX-2 signaling and increase secretion of 

glutamate by astrocytes.

Decreased GAD+PV+ immunoreactivity in the CA3 area of the hippocampus

Chronic exposure to Δ9-THC during adolescence was associated with decreased GAD67 

expression in parvalbumin-positive (PV+) interneurons (63–67). Given enhanced 

vulnerability of GABA+PV+ neurons to adverse effects of chronic excitotoxicity that may be 

a result of increased secretion of glutamate by DN-DISC1 astrocytes (68–71), we assessed 

the integrity of pre-synaptic GAD+PV+ boutons in control and aDN-DISC1 mice. Since our 

AAV results strongly suggested that the CA areas of the hippocampus could be critically 

involved in producing deficient recognition memory, we focused on examination of pre-

synaptic GAD+PV+ boutons in these areas (Fig.S12 in Supplement 1). Compared to aDN-

DISC1 mice treated with vehicle or control mice treated with Δ9-THC, we found 

significantly decreased intensity of GAD+PV+ boutons on the surface of pyramidal neurons 

of the CA3 but not CA1 area in aDN-DISC1 mice treated with Δ9-THC (p<0.05) (Fig.5). No 

significant changes of GAD+PV+ boutons size or density were found (Fig.S13 in 

Supplement 1). Reduced immunoreactivity of GAD+PV+ boutons was not associated with a 

general decrease in GAD+ immunoreactivity (Fig.S14 in Supplement 1), suggesting PV+ 

GABA neurons could be selectively and synergistically affected in aDN-DISC1 mice treated 

with Δ9-THC during adolescence.

Blockade of NF-kB-COX-2 activation prevents cognitive impairment

Since our results had suggested synergistic elevation of the pro-inflammatory NF-kBCOX-2 

signaling in aDN-DISC1 treated with Δ9-THC, we hypothesized that inhibition of COX-2 

activity concurrently with Δ9-THC injections during adolescence may prevent the 

development of cognitive impairment in adult mice. In order to test this prediction, we 

assessed the effects of COX-2 inhibition (NS398, 10mg/kg, daily S.C. injections 30 min 

before Δ9-THC injections) on different types of recognition memory in control and aDN-

DISC1 treated with Δ9-THC at adolescence (Fig.6). We found that NS398 prevented the 
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development of memory deficits in aDN-DISC1 mice treated with Δ9-THC (the significant 

aDN-DISC1 by NS398 interaction for Y maze, F(1,29)=5.03, p=0.033; for NORT, 

F(1,29)=8.99, p=0.006; and for NPRT, F(1,29)=19.81, p<0.001). No effects of NS398 were 

found on locomotor activity in mice in the Y maze (Fig.S15 in Supplement 1).

We also evaluated whether the COX-2 inhibition would prevent elevated secretion of 

glutamate by primary DN-DISC1 astrocytes following stimulation with Δ9-THC. We found 

that NS398 reversed increased secretion of glutamate by primary DN-DISC1 astrocytes 

treated Δ9-THC (Fig.S16 in Supplement 1). These results suggest convergence of effects of 

DN-DISC1 and Δ9-THC on NF-kB-COX-2 signaling in astrocytes, leading to increased 

production of glutamate by astrocytes.

Discussion

We report that inducible expression of dominant-negative Disrupted-In-Schizophrenia-1 

(DN-DISC1) in astrocytes but not neurons or knockdown of endogenous Disc1 in 

hippocampal astrocytes interact with adolescent Δ9-THC exposure to impair recognition 

memory in adult mice. The present findings suggest that DN-DISC1 and Δ9-THC 

synergistically activate the NF-kB-COX-2 pathway in astrocytes, leading to increased 

secretion of glutamate and decreased immunoreactivity of parvalbumin-positive pre-synaptic 

boutons around pyramidal neurons of the CA3 area of the hippocampus. Deficient 

recognition memory could be prevented with the COX-2 inhibitor. Our data demonstrate that 

astrocyte genetic risk factors can exacerbate cognitive effects of adolescent cannabis use and 

indicate a putative target for preventive treatment.

Adolescent not adult exposure to Δ9-THC was required for the development of deficient 

recognition memory in adult mice with expression of DN-DISC1 in astrocytes. These results 

are consistent with other pre-clinical reports on effects of adolescent exposure to 

cannabinoids and resulting cognitive impairments (3, 72–74). Lack of effects of Δ9-THC in 

aDN-DISC1 mice on fear conditioning is in line with the unaltered performance in the 

Morris water maze (75–77) or aversive memory tasks in mice following adolescent 

treatment with cannabinoids (2, 72, 78–80). This selectivity in cognitive effects of 

cannabinoids could be related to differential distribution of CNR1 in the neural circuits 

underlying various cognitive tasks.

The current work is congruent with human studies that demonstrate that cannabis use during 

adolescence could have lasting effects on cognition (2, 72, 80–82) that is likely related to 

continuing maturation of the brain in general (83–86) and cannabinoid receptors in 

particular (87–89). Our results are consistent with human studies that adolescent cannabis 

use tend to affect working memory (WM) in adulthood (90, 91), particularly spatial 

processing that is dependent on the integrity of the hippocampus (92, 93). While human 

studies suggest an association (94–96), animal models enable us to establish a causal 

relationship and neurobiological mechanisms. In this context, our study significantly extend 

the existing literature on effects of cannabinoids on spatial of WM as evaluated in rodents 

with spatial recognition tests (97).
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Our data clearly demonstrate that expression of the same risk factor in different brain cells 

types produces differential neurobehavioral outcomes in mice treated with Δ9-THC. 

Astrocyte but not neuronal expression of DN-DISC1 interacts with adolescent Δ9-THC to 

lead to recognition memory impairment in adult mice. In contrast, neuronal expression of 

DN-DISC1 and Δ9-THC treatment seem to have greater effects on fear conditioning, 

consistent with our prior studies with constitutive DN-DISC1 model (18)

The effects on recognition memory in astrocyte DN-DISC1 mice are unlikely dependent on 

early developmental effects of DN-DISC1 as turning off expression of DN-DISC1 after P21 

completely eliminates the cognitive effects observed in our model. This appears in line with 

our prior reports on differential effects of DN-DISC1 on various behaviors depending on 

time this risk factor was expressed in neurons or astrocytes (98, 99). In addition, our data 

with DOX manipulation suggests that expression of DN-DISC1 during adolescent exposure 

to Δ9-THC is critical for the cognitive effects observed in our model. However, one cannot 

completely rule out the potential effects of DOX itself on neuroinflammatory processes in 

astrocytes that may have contributed to the preventive effects of DOX treatment.

GFAP-tTA;DN-DISC1 model has some limitations that make identification of underlying 

neural circuits mechanisms challenging. The GFAP promoter is active in the hippocampus 

and subcortical regions (100), and in addition to astrocytes, it is active in progenitor cells of 

the dentate gyrus of the hippocampus and the olfactory bulbs (101–103). Our findings with 

the viral knockdown of Disc1 in the CA areas were designed to address these limitations and 

suggest that the bulk of cognitive effects observed in DN-DISC1 mice treated with Δ9-THC 

are related to altered expression of Disc1 in hippocampal astrocytes. Additionally, the 

similar outcomes of Disc1 KD and DN-DISC1 suggest that the observed behavioral 

outcomes are likely due to altered expression of endogenous Disc1 rather than “off-target” 

or so-called gain-of-function effects of DN-DISC1 (30).

Although previous research and our current work clearly indicate that adolescent cannabis 

exposure can produce long-lasting behavioral and cognitive problems, there has been no 

direct comparison made between cognitive effects of cannabis and other psychoactive drugs. 

Indeed, there are numerous reports on long-term effects of psychostimulants used during 

adolescence (104–107). We found that chronic treatment with amphetamine of DN-DISC1 

mice did not replicate the phenotypes produced by Δ9-THC, suggesting some selectivity in 

behavioral outcomes of adolescence exposure to cannabinoids vs. psychostimulants. Future 

studies will need to perform a more comprehensive dose-dependent comparative analysis.

The majority of pre-clinical research on cannabis has focused on GABA or glutamatergic 

neurons (108–113). However, there is a growing appreciation that glial cells also contribute 

to the detrimental behavioral effects associated with cannabis (2–4) as glial cells also 

express CNR1 and other factors of the endocannabinoid system (114). A recent study has 

shown that deletion of Cnr1 in mouse astrocytes prevents acute effects of Δ9-THC on spatial 

working memory and long-term depression (LTD) at hippocampal CA3-CA1 synapses. 

Critically, abolition of the same receptor on GABA or glutamate neurons does not lead to the 

same rescue phenomenon, suggesting that deficits in working memory triggered by acute 

administration of Δ9-THC could be due to the activation of CNR1 signaling in astrocytes (9). 
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In a further support of the major role of astrocytes in the mechanisms of cognitive 

impairment following Δ9-THC exposure, another study has demonstrated that chronic Δ9-

THC triggers a sustained activation of COX-2 and increased production of prostaglandin E2 

(PGE2) in the brain. The activation of this signaling mechanism is initiated via CNR1-

coupled G protein βγ subunits (10). However, astrocytes also express CNR2 (115, 116). 

Thus, it is conceivable that at least some of the cognitive effects of THC may have been 

mediated by CNR2. Future research will address this critical question.

There are significant variations in response to cannabis among users, suggesting genetic 

disposition (78, 117–119). Consistent with human findings, pre-clinical studies with mouse 

models carrying mutations in Neuregulin 1 (NRG1), COMT or DISC1 have shown that the 

effects of Δ9-THC on adolescent or adult mutant mice can dramatically differ from those on 

control littermates (15, 120). However, the neurobiological and molecular underpinnings of 

how genetic variants could moderate effects of Δ9-THC remain poorly understood (16, 121, 

122). Moreover, there are very few if any studies of the molecular mechanism of cell type-

specific GxE that mediate adverse effects of environmental risk factors, including cannabis. 

We have studied the neurobiological mechanisms of gene-environment interaction relevant 

to major psychiatric conditions using a rare mutation of a neurodevelopmental risk factor, 

DN-DISC1(123) as an experimental genetic tool to identify the molecular mechanisms 

whereby DN-DISC1 in astrocytes influences the signaling pathways activated by Δ9-THC. 

Based on the results of an unbiased RNA-seq analysis and prior studies (9), we identified the 

neuroinflammatory signaling in astrocytes that appears to be a convergent target for DN-

DISC1 and inflammatory factors up-regulated by Δ9-THC. Specifically, we found that DN-

DISC1 and Δ9-THC synergistically activate NF-kB-COX-2 signaling that might lead to 

increased secretion of glutamate by astrocytes. In order to test this molecular hypothesis, we 

inhibited activation of COX-2 with the selective inhibitor and were able to prevent the 

development of cognitive deficits in aDN-DISC1 mice treated with Δ9-THC. We believe this 

pharmacological approach could be applied to other GxE rodent models with the goal to use 

COX-2 inhibitors to counteract and/or ameliorate psychosis-like behavioral alterations 

associated with neuroinflammatory conditions produced by several environmental factors, 

including chronic THC exposure during adolescence. This would be congruent with several 

studies that demonstrated that ad-on treatment with COX-2 inhibitors had some beneficial 

anti-psychotic and cognitive effects (124–129). However, given cell and regional 

heterogeneity of the hippocampus, future studies will need to validate the above molecular 

events using isolated tissue astrocytes from different areas of the hippocampus.

Consistent with prior rodent studies (108–113), we also found synergetic adverse effects of 

Δ9-THC on the integrity of GABA neurons. Our findings indicate that the intensity of PV+ 

pre-synaptic boutons around pyramidal neurons of the CA3 area are predominantly affected, 

suggesting that inhibitory influence of PV+ cells in the hippocampus could be compromised 

in aDN-DISC1 mice treated with Δ9-THC, potentially leading to altered excitatory-

inhibitory balance underlying aspects of cognitive dysfunction. In addition, in line with the 

recent publication, decreased PV+ could also lead to abnormal long-term depression (LTD) 

at hippocampal CA3-CA1 synapses (10). Future studies will address these possibilities in 

detail.
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In conclusion, our work for the first time demonstrates that a genetic predisposition and 

adolescent Δ9-THC exposure could synergistically produce a sustained activation of NF-kB-

COX-2 signaling in astrocytes. This leads to elevated secretion of glutamate, reduced 

immunoreactivity of parvalbumin-positive pre-synaptic boutons around pyramidal neurons 

of the CA3 area of the hippocampus and deficient memory. The observed cognitive deficits 

can be prevented with the COX-2 inhibitor, suggesting future targets for therapeutic 

interventions.
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Figure 1. Cognitive impairments in astrocyte DN-DISC1 mice
A - Schematic diagram of the treatment protocol

In all graphs the Y-axes depict the preference (%); the X-axes depict the experimental 

groups: C-V – control mice treated with the vehicle (6 males and 16 females); C-T – control 

mice treated with Δ9-THC (10 males and 16 females); DISC1-V – aDN-DISC1 mice treated 

with vehicle (11 males and 7 females); DISC1-T - aDN-DISC1 mice treated with Δ9-THC 

(10 males and 8 females)

Male mice

B- Spatial recognition memory in the Y maze. Compared to other groups, aDN-DISC1 male 

mice treated with Δ9-THC exhibited the significantly decreased preference for the previously 

blocked arm. Two-way ANOVA of the preference data revealed a significant effect of DN-
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DISC1, F(1,33)=5.49, p=0.025 and the significant aDN-DISC1 by Δ9-THC interaction, 

F(1,33)=4.46, p = 0.045; Fisher LSD post-hoc test showed that aDN-DISC1-Δ9-THC mice 

were significantly different from both C-T and DISC1-V mice, ** p<0.01.

C- Novel object recognition test (NORT). Compared to other groups, aDN-DISC1 male 

mice treated with Δ9-THC exhibited the significantly decreased preference for the novel 

object. Two-way ANOVA of the preference data revealed a significant effect of DN-DISC1, 

F(1,33)=26.12, p<0.001; a significant effect of Δ9-THC, F(1,33)=9.26, p=0.005 and the 

significant aDN-DISC1 by Δ9-THC interaction, F(1,33)=14.48, p<0.001; Fisher LSD post-

hoc test showed that DN-DISC1- Δ9-THC mice were different from both C-T and DISC1-V 

mice, ** p<0.01.

D- Novel place recognition test (NPRT). Compared to other groups, aDN-DISC1 male mice 

treated with Δ9-THC exhibited the significantly decreased preference for the novel place of 

one of two identical objects. Two-way ANOVA of the preference data revealed a significant 

effect of Δ9-THC, F(1,33)=7.89, p=0.008. Planned post-hoc tests showed that significantly 

decreased preference in aDN-DISC1 mice treated with Δ9-THC compared to vehicle-treated 

aDN-DISC1 mice (DISC1-V) but there was no difference in the preference between Δ9-THC 

–treated- aDN-DISC1 (DISC1-T) and control (C-T) mice (p=0.074). * p<0.05.

Female mice

E- Spatial recognition memory in the Y maze. Compared to other groups, aDN-DISC1 

female mice treated with Δ9-THC exhibited the significantly decreased preference for the 

previously blocked arm. Two-way ANOVA of the preference data revealed a significant 

effect of Δ9-THC, F(1,43)=4.74, p=0.035 and the significant aDN-DISC1 by Δ9-THC 

interaction, F(1,43)=12.88, p<0.001; Fisher LSD post-hoc test showed that aDN-DISC1-Δ9-

THC (DISC1-T) mice were different from vehicle-treated - aDN-DISC1-vehicle (DISC1-V) 

mice and Δ9-THC -treated control (C-T) mice, ** p<0.01.

F- NORT. No group differences were found.

G- NPRT. No group differences were found.
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Figure 2. Disc1 KD in hippocampal astrocytes
A- Schematic diagram of the AAV vector injections and treatment protocol;

On all data panels: the Y-axes depict the preference (%); the X-axes depict the experimental 

groups: C-V – mice injected with Gfa-GFP-mir30-Ctrl AAV and treated with the vehicle 

(N=6); C-T - mice injected with Gfa-GFP-mir30-Ctrl AAV and treated with Δ9-THC (N=6); 

DISC1-V – mice injected with Gfa-GFP-mir30-Disc1 AAV and treated with vehicle (N=5); 

DISC1-T - mice injected with Gfa-GFP-mir30-Disc1 AAV and treated with Δ9-THC (N=6).

B- Spatial recognition memory in the Y maze. Compared to other groups, Disc1 AAV mice 

treated with Δ9-THC exhibited the significantly decreased preference for the previously 

blocked arm. Two-way ANOVA of the preference data revealed a significant effect of Disc1-

KD, F(1,22)=5.77, p=0.027; a significant effect of Δ9-THC, F(1,22)=11.43, p=0.003, and the 

significant Disc1-KD by Δ9-THC interaction, F(1,22)=13.90, p=0.001. Fisher LSD post-hoc 

test showed that Disc1-KD- Δ9-THC mice were different from Δ9-THC-treated control mice 

(p<0.001) and Disc1-KD vehicle-treated mice (p<0.001); ** p<0.001.

C- Novel object recognition test (NORT). Compared to other groups, Disc1 AAV mice 

treated with Δ9-THC exhibited the significantly decreased preference for the novel object. 

Two-way ANOVA of the preference data revealed a significant effect of Disc1-KD, 

F(1,22)=11.20, p=0.003; and the borderline significance for the Δ9-THC by Disc1-KD, 

F(1,22)=4.35, p=0.051; Fisher LSD post-hoc test showed that Disc1-KD-THC mice were 

different from Δ9-THC-treated control mice (p<0.001) and Disc1-KD vehicle-treated mice 

(p=0.027); **p<0.01, * p<0.05.
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D - Novel place recognition test (NPRT). No significant effects of Disc1-KD were found in 

NPRT.
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Figure 3. RNA-seq identifies synergistic (GxE) genes, which are enriched in NF-kB signaling 
pathway
A – In aDN-Disc1 mice exposed to Δ9-THC, there were 145 differentially expressed genes 

(FDR < 0.20; see circle at upper right). Over a third of the 145 genes (56, 38.6%; see red 

shaded portion of circle) were synergistic (GxE) genes since they were not found to be 

differentially expressed by aDN-Disc1 or THC alone. Two of the genes (Ddit4, Sgk1) were 

also differentially expressed by aDN-Disc1 or THC alone, and 87 genes were differentially 

expressed by aDN-Disc1 alone. The oval represents six genes differentially expressed after 

THC treatment: three were differentially expressed in wild type mice, and three in the 

aDNn-Disc1 mice of which two were in aDNA-Disc1 mice treated with THC.
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B – GxE genes are enriched for membership in the NF-kB activation by viruses pathway (z-

score = 2.00; p = 1.74E-03; BH-adjusted p-value [FDR] = 0.0253, 4 genes; all up-regulated: 

Akt2, Cd4, Itga5, and Prkch).
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Figure 4. Synergistic effects of DN-DISC1 and Δ9-THC on the NF-kB- COX-2 signaling in 
astrocytes
A - DISC1 and Δ9-THC synergistically increased Ptgs2 (gene encoding for COX2 protein) 

expression in hippocamplal tissue astrocytes. The graph plots the individual data points and 

superimposes the mean and error bars. Each point represents an independent sample from a 

single animal assayed in triplicates. Two-way ANOVA revealed the significant effects of 

DN-DISC1 (F(1,8)=139.52, p<0.001), Δ9-THC (F(1,8)=59.15, p<0.001) and significant DN-

DISC1 × Δ9-THC treatment interaction, F(1,8)=87.43, p=0.001. Fisher LSD post-hoc 

analysis showed that Ptgs2 expression in the DN-DISC1-Δ9-THC group was significantly 

greater compared to DN-DISC1-vehicle (DISC1-T vs. DISC1-V; p<0.001) or control- Δ9-

THC group (DISC1-T vs. C-T; p<0.001); ** - denotes p<0.01.

B – Representative Western blot images and densitometric analysis showing that DISC1 and 

Δ9-THC treatment synergistically increased expression of COX-2 protein and 

phosphorylation of p65 (S536-p65/p65) in hippocampal astrocytes. Two-way ANOVA 

revealed the significant effects on COX-2 protein level (main effects: DISC1 (F(1,8)=18.76, 

p=0.003, Δ9-THC F(1,8)=18.79, p=0.002 and the significant DN-DISC1 × Δ9-THC 
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interaction F(1,8) =15.52, p=0.004) and on phosphorylation of NF-κB p65 (main effects: 

DISC1 (F(1,8)=9.29, p=0.016, Δ9-THC F(1,8)=6.32, p=0.036 and the significant DN-DISC1 

× Δ9-THC interaction: F(1,8)=6.03, p=0.040. Fisher LSD post-hoc analysis showed that 

protein level of COX-2 (protein encoded by Ptgs2 gene) in DN-DISC1-Δ9-THC group was 

significantly greater compared to control-Δ9-THC (DISC1-T vs. C-T; p<0.001) and DN-

DISC1-Vehicle group (DISC1-T vs. DISC1-V; p<0.001). Fisher LSD post-hoc analysis 

showed protein level of Phospho-NF-κB p65 in DN-DISC1-Δ9-THC group was significantly 

greater compared to control-Δ9-THC (DISC1-T vs. C-T; p=0.005) or DN-DISC1-Vehicle 

group (DISC1-T vs. DISC1-V; p=0.008). No other significant differences were detected in 

expression of COX-2 or Phospho-NF-κB p65. Data are presented as the mean ± SEM; n=3 

independent samples in each group; ** - denotes p<0.01.

C – Δ9-THC treatment of primary DN-DISC1 astrocytes up-regulated phosphorylation of 

IκBα and decreased IκBα expression (5 minutes interval) and increased phosphorylation of 

NF-κB p65 (one hour interval).

D- Protein interaction of DISC1 with phospho-IκBα (p32/36-IkBα) was assessed by 

coimmunoprecipitation (IP) in HEK293 cells. HA-tagged wild-type DISC1 interacts with 

endogenous phospho-IκBα. Overexpression of myc-tagged DN-DISC1 reduced wild-type 

DISC1- phospho-IkBα interaction. Input for each protein is presneted.
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Figure 5. Astrocyte DN-DISC1 and Δ9-THC treatment synergistically decrease GAD+PV+ 

immunoreactivity in the CA3 area of the hippocampus
On all data panels: the Y-axes depict the percentage of GAD boutons intensity in CA3 or 

CA1 PV neurons in relation to the level for the control-vehicle group; the X-axes depict the 

experimental groups (C-V – control mice treated with the vehicle; C-T – control mice 

treated with Δ9-THC; DISC1-V – aDN-DISC1 mice treated with vehicle; DISC1-T - aDN-

DISC1 mice treated with Δ9-THC).

A- Representative images of GAD boutons intensity in pyramidal neurons of the CA3 area 

of the hippocampus; note decreased intensity in the DISC1+T group

B- Representative images of GAD boutons intensity in pyramidal neurons of the CA1 area 

of the hippocampus; note comparable intensity in all groups
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C- Quantitative analyses of the intensity of GAD+PV+ presynaptic boutons around 

pyramidal neurons of the CA3 area of the hippocampus; n=3 sections per mouse, 3 mice per 

group; each data point represents one mouse. Two-way ANOVA of the intensity data 

revealed a significant effect of the group, F(1,8)=12.06, p=0.008 and significant effect of the 

Δ9-THC, F(1,8)=19.16, p=0.002; Fisher LSD post-hoc test showed that aDN-DISC1-Δ9-

THC mice were significantly different from both C-T and DISC1-V mice, * p<0.05.

D- Quantitative analyses of the intensity of GAD+PV+ presynaptic boutons around 

pyramidal neurons of the CA1 area of the hippocampus. Two-way ANOVA of the intensity 

data revealed no significant effects of the DN-DISC1, F(1,8)=0.075, p=0.791, no significant 

effects of Δ9-THC, F(1,8)=2.129, p=0.183 and no DN-DISC1 by Δ9-THC treatment 

interaction, F(1,8)=0.347, p=0.572; N=3 sections per mouse, 3 mice per group; each data 

point represents one mouse.
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Figure 6. Rescuing the memory deficits with the COX-2 inhibitor
A- Schematic diagram of the treatment protocol;

On all data panels: the Y-axes depict the preference (%); the X-axes depict the experimental 

groups: C-V/T– control mice treated with vehicle and Δ9-THC (N=7); C-N/T – control mice 

treated with the selective COX-2 inhibitor (NS398) and Δ9-THC (N=9); DISC1-V/T – aDN-

DISC1 mice treated with vehicle and Δ9-THC (N=8); DISC1-N/T -aDN-DISC1 mice treated 

with the NS398 and Δ9-THC (N=9). NS398 (10 mg/kg SC injections) was administrated 

daily 30 minutes prior Δ9-THC injections (10 mg/kg SC injections).

B- Spatial recognition memory in the Y maze. Significantly decreased preference for the 

previously blocked arm in aDN-DISC1 mice treated with Δ9-THC was significantly restored 

by NS398 co-treatment. Two-way ANOVA of the preference data revealed a significant 

effect of aDN-DISC1, F(1,29)=4.68, p=0.039; no effect of NS398, F(1,29)=9.26, p=0.205 

and the significant aDN-DISC1 by NS398 interaction, F(1,29)=5.03, p=0.033; Fisher LSD 

post-hoc test showed that aDN-DISC1 significantly reduced preference for the previously 

blocked arm in Δ9-THC-treated mice (DISC1-V/T vs. C-V/T, p =0.004) and NS398 co-

treatment significantly increased this preference (DISC1-V/T vs. DISC1-N/T, p =0.007); ** 

- denotes p<0.01; N=7–9 per group.

C- Novel object recognition test (NORT). Significantly decreased preference for the novel 

object in aDN-DISC1 mice treated with Δ9-THC was significantly restored by NS398 co-

treatment. Two-way ANOVA of the preference data revealed a significant effect of aDN-

DISC1, F(1,29)=11.64, p=0.002; NS398, F(1,29)=8.61, p=0.006 and the significant aDN-

DISC1 by NS398 interaction, F(1,29)=8.99, p=0.006; Fisher LSD post-hoc test showed that 

aDN-DISC1 significantly reduced preference for the novel object in Δ9-THC-treated mice 
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(DISC1-V/T vs. C-V/T, p <0.001) and NS398 co-treatment significantly increased this 

preference (DISC1-V/T vs. DISC1-N/T, p<0.001); ** - denotes p<0.01; N=7–9 per group.

D- Novel place recognition test (NPRT). Significantly decreased preference for the novel 

place of one of two identical objects in aDN-DISC1 mice treated with Δ9-THC was 

significantly restored by NS398 co-treatment. Two-way ANOVA of the preference data 

revealed no effect of aDN-DISC1, F(1,29)=2.05, p=0.163; no effect of NS398, 

F(1,29)=2.89, p=0.100 and the significant aDN-DISC1 by NS398 interaction, 

F(1,29)=19.81, p<0.001; Fisher LSD post-hoc test showed that aDN-DISC1 significantly 

reduced preference for the novel object in Δ9-THC-treated mice (DISC1-V/T vs. C-V/T, p 
<0.001) and NS398 co-treatment significantly increased this preference (DISC1-V/T vs. 

DISC1-N/T, p=0.043); * - denotes p<0.05, ** - denotes p<0.01; N=7–9 per group.
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