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Abstract

Understanding the relationship between the diffusion-weighted MRI signal and the arrangement of 

white matter fibers is fundamental for accurate voxel-wise reconstruction of the fiber orientation 

distribution (FOD) and subsequent fiber tractography. Spherical deconvolution reconstruction 

techniques model the diffusion signal as the convolution of the FOD with a response function that 

represents the signal profile of a single fiber orientation. Thus, given the signal and a fiber 

response function, the FOD can be estimated in every imaging voxel by deconvolution. However, 

the selection of the appropriate response function remains relatively under-studied, and requires 

further validation. In this work, using 3D histologically-defined FODs and the corresponding 

diffusion signal from three ex vivo squirrel monkey brains, we derive the ground truth response 

functions. We find that the histologically-derived response functions differ from those 

conventionally used. Next, we find that response functions statistically vary across brain regions, 

which suggests that the practice of using the same kernel throughout the brain is not optimal. We 

show that different kernels lead to different FOD reconstructions, which in turn can lead to 

different tractography results depending on algorithmic parameters, with large variations in the 

accuracy of resulting reconstructions. Together, these results suggest there is room for 

improvement in estimating and understanding the relationship between the diffusion signal and the 

underlying FOD.
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Using 3D histologically defined fiber orientation distributions and the corresponding signal, we 

empirically derive the ground truth response functions. We find significant variation in response 

functions within and between brains.
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Introduction

Diffusion MRI fiber tractography has been widely adopted in clinical and basic neuroscience 

studies to probe the structural connectivity of the brain1–3. A key requirement for 

anatomically correct tractography is the accurate reconstruction of the distribution of 

neuronal fiber orientations in each voxel, an object often referred to as the fiber orientation 

distribution (FOD)4,5. A large number of reconstruction strategies have been proposed with 

the aim to estimate, model, or infer the structure of the FOD. Among them, spherical 

deconvolution (SD)6–9 has emerged as one of the most commonly implemented in 

neuroscience research.

Although there are many versions and derivations of this technique6–23 most spherical 

deconvolution methods are based on the idea that the diffusion MRI signal, S, can be 

modelled as the convolution of the fiber orientation distribution, with a kernel (called the 

fiber response function, R) that represents the signal attenuation that would be measured 

from a single (parallel) fiber population:

S Θ,Φ = R Θ ⊗ FOD Θ,Φ 1

where Θ and Φ are the polar and azimuthal angle in spherical coordinates (the response 

function is defined as the signal from fibers perfectly aligned along the vertical z-axis). The 

FOD can then be calculated by a deconvolution of the signal with the response function. 

Thus, an appropriate response function is required for accurate reconstruction of the FOD.

Several methods have been proposed to estimate the response function. Most derive the 

kernel from the diffusion data itself. For example, the response function can be estimated 

from the signal from voxels (typically 100+ voxels) with the highest fractional anisotropy 

values – voxels that are typically assumed to contain coherently oriented fibers24. Due to 

relying only on FA values, this family of algorithms is susceptible to artifacts (for example, 
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Gibbs ringing near ventricles). To overcome this limitation, several strategies have been 

proposed which iterate between performing SD and estimating the response function from a 

set of voxels most likely to contain only a single fiber population25,26. Alternatively, one can 

assume that a single fiber bundle gives rise to a spin displacement distribution that can be 

described with a single diffusion tensor model, and derive the response function as the signal 

that would be obtained from the tensor with given shape properties10,14.

In addition to its use for FOD reconstruction and subsequent tractography, the response 

function is also relevant to the field of microstructural modeling19,21,22,27–31. Here, 

quantifying brain microstructure with diffusion MRI requires an accurate representation of 

the relationship between the diffusion signal and relevant tissue parameters. In addition to 

the FOD, it is expected that the diffusion signal (and hence the response kernel) is dependent 

on intra-neurite, extra-neurite, and CSF volume (or signal) fractions and intrinsic 

diffusivities, axon packing and diameters, and myelination, as well as acquisition parameters 

including the diffusion times and diffusion weightings (b-value) (see equation 60 from32).

Despite evidence that the diffusion signal is dependent on an array of microstructural 

parameters, a major limitation in both the field of tractography and microstructural modeling 

is that in most cases the same response function is used in the deconvolution throughout the 

entire brain32. There are some exceptions, where the response function varies based on 

tissue (i.e. white matter and gray matter)33,34, however, these kernels still remain the same 

throughout the entire tissue type volume (for example, all white matter—an exception is the 

FORECAST method [8]). Despite the large number of approaches for response function 

estimation, little work has been done to validate the accuracy of these techniques and 

subsequent effects on tractography, or to question the validity of a brain-wide fiber response 

function.

In this study, we aim to use histology to derive the linear relationship (i.e., the response 

function) between the diffusion signal and the underlying FOD. Instead of the traditional 

approach of deconvolving the signal with an empirical response function in order to estimate 

the fiber distribution, we do the opposite – deconvolve the signal with the histologically-

derived FOD to derive the response function. In essence, we ask, “what is the true response 

function, given the diffusion signal and the FOD”? To do this, we perform diffusion MRI on 

three fixed ex vivo squirrel monkey brains, followed by 3D confocal microscopy to derive 

the “ground truth” FOD. We begin by testing the validity of utilizing the same response 

function throughout the entire brain. Next, we assess the effects of varying response 

functions on both the voxel-wise reconstruction and tractography results. Finally, the 

anatomical accuracy of tractography using different response functions is assessed by 

comparing tracking results to known connections from an existing squirrel monkey atlas.

Methods

Overview

An overview of the study methodology is shown in Figure 1. Briefly, each ex vivo brain was 

first scanned using MR imaging to acquire the diffusion signal (Figure 1A; see MRI 

Acquisition). After sectioning, the tissue was imaged using confocal microscopy and 
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multiple 3D confocal z-stacks were acquired (Figure 1B, see Histological Procedures). 

These z-stacks were processed using a pipeline previously developed to analyze 3D 

histology35,36, which resulted in voxel-wise histological ground truth 3D FODs (Figure 1C, 

see Histological Procedures). Because we want to estimate the response function, the 

diffusion signal can be deconvolved with the corresponding FODs, resulting in voxel-wise 

reconstructions of the response functions (Figure 1D, see Response Function Estimation). 

All animal procedures were approved by the Vanderbilt University Animal Care and Use 

Committee.

MRI acquisition

Diffusion MRI experiments were performed on three adult squirrel monkey brains that had 

been perfused with physiological saline followed by 4% paraformaldehyde. The brain was 

then immersed for 3 weeks in phosphate-buffered saline (PBS) medium with 1 mM Gd-

DTPA in order to reduce longitudinal relaxation time37. The brain was placed in liquid 

Fomblin (California Vacuum Technology, CA) and scanned on a Varian 9.4 T, 21 cm bore 

magnet using a quadrature birdcage volume coil (inner diameter = 63 mm).

Diffusion data were acquired with a 3D spin-echo diffusion-weighted EPI sequence (TR = 

410 ms; TE = 41 ms; NSHOTS = 4; NEX = 1; Partial Fourier k-space coverage = 0.75) at 

300 μm isotropic resolution. Diffusion gradient pulse duration and separation were 8 ms and 

22 ms, respectively, and the b-value was set to 6000 s/mm2. This value was chosen due to 

the decreased diffusivity of ex vivo tissue, which is approximately a fourth of that in 

vivo38,39, and is expected to closely replicate the signal attenuation profile for in vivo tissue 

with a b-value of approximately 1500 s/mm2. A gradient table of 107 uniformly distributed 

directions40 was used to acquire 107 diffusion-weighted volumes with four additional image 

volumes collected at b = 0.

Histological Procedures

Here, we aim to extract the histological FOD from 3D confocal z-stacks in areas equivalent 

to the size of an MRI voxel. To do this, we implement the methodology described in36, 

which consisted of tissue sectioning and staining, confocal acquisition, and confocal pre-

processing, followed by an image processing technique – structure tensor analysis – which 

resulted in an orientation estimate for every pixel in the 3D z-stack that is occupied by a 

fiber. The FOD is defined as the distribution of these orientation estimates. This procedure 

has been validated against manually traced fibers36, and has been used to assess the accuracy 

of diffusion MRI reconstruction techniques35.

Briefly, the tissue was sectioned at a thickness of 50um in the coronal plane. During 

sectioning, the frozen tissue block was digitally photographed prior to cutting every third 

section, resulting in a 3D “block-face” volume, which was used for inter-modality 

registration (see Image Registration).

Tissue sections were stained with the fluorescent lipophilic dye “DiI” (1, 10-

dioctadecyl-3,3,30 30-tetramethylindocarbocyanine perchlorate) and imaged using an LSM 

710 confocal microscope (Carl Zeiss, Inc. Thornwood, NY. USA). For all slices, acquisition 

began with a 2D confocal montage (0.8×0.8um resolution), used for image registration and 
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for localizing the 3D high resolution region of interest. A 3D z-stack was then collected 

(0.2×0.2×0.42um resolution) with an in-plane field of view of 900×900um (equivalent to 9 

MRI voxels). Confocal data were converted from the LSM file format to TIFF images and 

imported into MATLAB for image processing.

Image pre-processing consisted of attenuation correction, anisotropy correction, and 

interpolation to isotropic resolution. Next, pixel-wise fiber orientations in the 3D z-stack 

were obtained via structure tensor analysis41. The histological FOD was then computed as 

the histogram of the extracted fiber orientations, and fit to high order (lmax=20) spherical 

harmonic coefficients (SH). Throughout this paper, the histological-FODs are displayed as 

3D glyphs in the same way that MRI-FOD’s are typically displayed in the literature.

Image Registration

In order to derive voxel-wise response functions, it is important that the diffusion MRI 

signal and the histological FODs are aligned and oriented appropriately. A multi-step 

registration procedure42 was used to align histology to MRI data. The first step is 

registration of the 2D confocal montage to the corresponding block face image using mutual 

information based 2D linear registration followed by 2D nonlinear registration using the 

adaptive bases algorithm (ABA)43. Next, all block face photographs were assembled into a 

3D block volume, and registered to the MRI b = 0 image using a 3D affine transformation 

followed by 3D nonlinear registration with ABA. Given the location of the 3D z-stack in the 

2D confocal montage, we can use the combined deformation fields to determine the MRI 

signal from the same tissue volume. We then implemented the preservation of principle 

directions strategy44 to the diffusion weighting vectors (b-vectors) in order to take into 

account rotation, scaling, and shearing effects of the spatial transformations. At this point, 

for each histological FOD, we have the corresponding diffusion signal – which was then fit 

to SH coefficients to facilitate deconvolution.

This multi-step registration procedure was validated in an earlier study42, which showed that 

the accuracy of the overall registration was approximately one MRI voxel (~0.3 mm) by 

comparing position errors between manually chosen landmarks in histological and MRI 

space. Further, the combination of registration and histological procedures is similar to those 

utilized in36, which showed an angular accuracy of approximately 5° in single fiber regions 

when compared to manually defined ground truth fiber orientations.

Response Function Estimation

As described in Equation 1, the diffusion signal is assumed to be the convolution of the fiber 

distribution with the response function. Thus, to derive the response function, we 

deconvolved the signal with the histological FOD.

If the signal, response function, and FOD are expanded in terms of spherical harmonic 

coefficients slm, rlm, and plm, respectively (where l is the SH order and m is the phase index), 

it can be shown that the deconvolution leads to a simple relationship8:
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slm = S0
4π

2l + 1 plmrl 2

where S0 represents the non-diffusion weighted signal (assumed to equal 1, as long as the 

diffusion weighted signal is normalized to S0 before SH fitting). We note that here we 

assume a single q-space shell, or single b-value, acquisition (as the signal and response are 

also dependent on acquisition parameters including b-value32). Inverting this gives:

rl = 2l + 1
4π

sl
S0pl

3

where rl is only defined for m=0 (for axial symmetry of the response function around the z-

axis27,32,45), and pl and sl are vectors of coefficients (one element for each m value), for 

each order. Alternately, by multiplying both sides of Eq. (2) by plm and summing over m, the 

response function can be estimated from:

rl = 2l + 1
4π

pl ⋅sl

S0|pl|
2 4

We performed this procedure for 6 z-stacks on each brain, resulting in 18 independent 

confocal z-stacks, equivalent in size to 162 MRI voxels, resulting in 162 individual response 

function derivations. For quantitative analysis, we have chosen to focus only on voxels in the 

white matter which contain a single fiber population – defined to have only a single local 

maximum in the histological FOD. For this reason, voxels containing gray matter or crossing 

fibers were excluded, resulting in 153 total samples.

For response functions derived from MRI data, we used three conventional methods to 

estimate the response function (separately for each individual brain). The first algorithm is 

an implementation of the strategy developed in26, which estimates the response function 

from the 300 voxels with the highest FA value in an eroded brain mask. This algorithm is 

referred to as “FA response” in the rest of the manuscript. Second, the “Iterative response” is 

an implementation also described in26 which starts with an initial estimate of a response 

function, then performs CSD reconstruction to estimate FODs. From these, the voxels that 

are most likely to contain single-fiber populations are detected, and their signal is used to 

compute the next iteration of the procedure. The first two algorithms are implemented in 

MRTrix3 software24, and described in detail at (http://www.mrtrix.org, Response Function 

documentation). Finally, the “Tensor Response” is created assuming an axially-symmetric 

tensor8,10 with an FA of .70 and trace diffusivity of 0.7×10−3 mm2/s (note that ex vivo 

specimens have a diffusivity of approximately ¼ to ½ that of in vivo38,39). Importantly, these 

conventionally derived response functions do not correspond to any particular single 

voxel(s) as they are assumed to be applicable to white matter fiber populations throughout 

the entire brain.
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Tractography and Tracking Accuracy

We next assessed the effects of various response functions on both FOD reconstruction and 

tractography results. As a well-studied system with known connections in the squirrel 

monkey brain46,47, we chose to perform tractography of the motor system, with a seed 

region in the primary motor cortex. Both the seed region, as well as white matter and gray 

matter anatomical labels, are propagated from the Validate29 squirrel monkey atlas46 to each 

individual subject’s brain.

All reconstruction and tractography was performed using the MRtrix3 software toolkit24. 

Given a response kernel of interest, we first estimated the FOD from diffusion data using 

spherical deconvolution7 (command dwi2fod). From a field of FOD estimates, we performed 

whole brain fiber tractography (iFOD2 algorithm) and used the primary motor cortex seed as 

an inclusion region of interest.

The anatomical accuracy of tractography connections to labelled regions of interest was 

assessed by comparing results to known connections derived from histology and defined in 

the squirrel monkey atlas46,47. The atlas contains 71 white matter and gray matter ROIs, 44 

of which are known to be connected to the left hemisphere primary motor cortex and 27 of 

which are not connected (i.e., do not show evidence of tracer after injection into the primary 

motor cortex). Following procedures similar to48,49, tractography results were binarized, and 

the presence or absence of streamlines in each ROI (both white and gray matter) was 

determined. We measured the sensitivity (the ability to detect true connections) and 

specificity (the ability to avoid false connections) of the various tractographic 

implementations derived using different response kernels.

Results

Histologically Derived Average Response Functions

Response functions derived using standard practice methods for estimation are visualized in 

Figure 2 for all three subjects (A-C). Estimation using the signal from the voxels with the 

highest FA24 (“FA Response”), using an iterative estimation method26 (“Iterative 

Response”), and assuming a cylindrically symmetric diffusion tensor model10 (“Tensor 

Response”) show the standard, expected, oblate shape, where the signal is lowest in the 

direction of fibers (along the z-axis in the response function space) and highest 

perpendicular to them. Qualitatively, there are differences in the “flatness” of these functions 

within the same brain, suggesting fairly large variation between techniques.

The average response function across all histology (i.e., 6 z-stacks) is shown in Figure 2 for 

each subject. Qualitatively, in all cases, the histologically-derived average response functions 

share similarities to standard-practice methods, and are somewhat intermediate in shape 

between the iterative estimation methods and the tensor and FA-derived shapes. Finally, 

visualizing the mean and standard deviation across the brain suggests that there is some 

deviation in response within white matter.
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Variation across the brain

The variation in histologically derived response leads us to ask whether the use of a single 

response function across the entire brain is appropriate. For each monkey, we visualize the 

results of three (of the six) z-stacks (Figures 3, 4, and 5, for monkeys 1, 2, and 3, 

respectively), showing the z-stack location, the voxel-wise histological FOD, diffusion 

signal, and derived response functions, along with two views of the average response 

function at each location. Differences in shape, flatness, and radial and axial attenuations are 

apparent both within and across monkeys.

A multivariate analysis of variance (MANOVA) of the (n=4) spherical harmonic coefficients 

representing the response functions indicates that the response functions vary significantly 

across white matter locations within a brain (monkey #1: dimensionality = 3, p<.001; 

monkey #2: dimensionality = 3, p<.001; monkey #4: dimensionality = 4, p<.001 – here 

dimensionality is an estimate of the dimension of the space spanned by the group means, if 

the response functions were the same, the dimension would be 0). Additionally, a MANOVA 

also indicates that the response functions show significant differences across brains 

(dimensionality = 2; p<.001, indicating that the mean response function is not the same). 

Thus, there are statistically significant variations in response function within brains.

Fiber orientation distribution estimation

The standard-practice kernels, as well as three histologically defined kernels from the same 

monkey (Monkey #1 from Figure 3) are used to perform spherical deconvolution, and the 

resulting FODs are shown in Figure 6 for two white matter locations. It is clear that different 

response functions lead to different FODs. The most obvious differences are the 

amplification of smaller peaks in some of the methods utilizing the “flatter” kernels (for 

example, the Iterative Response). Our results are in agreement with the literature7,8, where 

different response functions result in FODs with peaks in the same orientations, and only 

differ in relative volume fractions of different fiber populations. Given that the peak 

orientations are the same, the question then becomes whether this affects subsequent 

tractography.

Tractography

Tractography from a region of the primary motor cortex (Figure 7A) was performed using 

the FOD reconstructions from the standard kernels, and the individual kernels from three z-

stacks (the same from Figure 6). Differences in spatial extent and path representation are 

apparent across different response functions (Figure 7B).

Because the only differences in reconstructed FODs are the amplitude of the peaks (and not 

orientation), we hypothesized that differences in tractographic reconstructions are due to the 

amplitude threshold on the FOD used in the fiber tracking algorithms. Given a number of 

“peaks” or local maxima of the FOD, the “FOD threshold” determines an amplitude below 

which the peak is considered negligible, and is not used to propagate streamlines. For Figure 

7B, this threshold was set at a typical value of 0.05 of the maximum peak amplitude. To 

investigate whether the threshold affected tractography, we set the threshold to zero (no 
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threshold on peak amplitude) and re-ran tractography (Figure 7C). Qualitatively, 

reconstructions appear much more similar despite differences in response functions.

Connectivity to the motor cortex is compared to known connections from tracer studies, with 

white matter and gray matter ROIs shown in Figure 8A. Sensitivity and specificity of all 

tracking strategies from Figure 7 are computed and shown in Figure 8B for standard tracking 

parameters, and Figure 8C for the non-thresholded tracking. With default tracking 

parameters, not only do different response functions lead to qualitatively different 

tractography results, they can lead to a fairly wide variation in the true positive rate and true 

negative rate of tractography connections (Figure 8B). However, this variation is largely 

caused by the amplitude threshold and the differences in amplitude when using different 

kernels for FOD reconstructions. Eliminating this amplitude threshold results in very similar 

sensitivity/specificity results (Figure 8C). These findings generalize to the additional two 

subjects (results not shown) with notable variation of sensitivity/specificity across response 

functions, and algorithms resulting in similar sensitivity/specificity after eliminating peak-

amplitude thresholds.

Discussion

Understanding the relationship between the diffusion MRI signal and tissue microstructure 

is a fundamental goal in the field of diffusion MR imaging. Here, we study one aspect of the 

microstructure, the geometric distribution of fibers in each imaging voxel (i.e., the FOD), a 

function that is fundamental in creating maps of the human brain using tractography. In this 

work, we use histology to derive the linear relationship between the diffusion signal and the 

underlying FOD – the response function (Figure 1).

We first observe that the histologically-derived response functions can differ in shape from 

conventional methods of estimating this kernel from the diffusion data itself or by assuming 

signal profiles (Figure 2). Differences are critical, because tractography results not only 

depend on tracking parameters, algorithms, and constraints (i.e. step size, curvature 

threshold, FA threshold)48,50,51, but spherical deconvolution results depend on the derivation 

and shape of the response function. Next, we show both qualitatively and quantitatively that 

the histologically derived response function varies within brains and between brains (Figure 

3–5). Variation across white matter is expected, as the diffusion process is known to be 

dependent on local anatomy and microstructural properties. Despite this knowledge, a brain-

wide response function is still the most prevalent method of performing SD today. Our 

results demonstrate that this practice is likely not adequate for accurate reconstruction of 

FODs across the brain, especially with varying tissue properties. It would be useful to 

extract other microstructural measures, for example axon diameters, volume fraction, or 

fiber dispersion, possibly from the confocal data itself, to study the response functions’ 

dependencies on the microstructure. Structure tensor analysis provides estimates of the fiber 

orientation distribution, but does not give information on other biophysical properties (e.g., 

the distribution of axonal diameters, net axonal volume fraction, myelination, or tortuosity 

of the extra-axonal space) that could be useful in relating the local response function to 

tissue microstructure. Other algorithms, and possibly multi-channel fluorescence 

microscopy data, will be required to identify the biophysical changes that account for the 
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observed spatial variation of response functions in the brain. In principle, knowledge of the 

relevant biophysical parameters would allow calculation of the local response function—

see52 for a review of the challenges and recent progress in diffusion MRI modeling.

In this study, we have assumed an axially symmetric response function, which is a common 

assumption in the diffusion literature (we are aware of no studies that have investigated, or 

utilized, an asymmetric response function). While axially symmetric response functions are 

simple and intuitive, it is possible that more complex geometries (e.g., sheet-like 

microstructure) of tissue could produce non-axially-symmetric response functions. 

Investigating the organization of fiber structure (in addition to simple orientation 

distributions) as well as non-symmetric response functions could be an avenue of future 

exploration. We note that the histologically-derived FODs can be asymmetric, which should 

simply result in an asymmetric signal.

While the focus of this manuscript is to show that the response function varies across white 

matter, we further show the effects of using different response functions on both FOD 

reconstruction and tractographic results. Unsurprisingly, different response functions lead to 

different FOD reconstruction estimates (Figure 6). Despite differences in the apparent 

volume fractions of fiber bundles, the peak orientation remains the same (given that the 

response functions used are axially symmetric). Because of this, it was surprising that 

different response functions can lead to different tractography results (Figures 7 and 8). This 

variation in tractography is almost certainly dependent on the algorithmic parameters as 

well; for example, the threshold below which peaks are deemed “spurious” as well as how 

the propagation steps are determined. To confirm this, tractography with no threshold 

resulted in very similar qualitative and quantitative results for all response functions, and 

subsequent FOD estimations. It is important to point out that we are not suggesting the use 

of no-thresholds for tractography, as it actually causes a distinct loss of specificity, and only 

use this as an example to show removing this threshold results in similar tracts for all tested 

response functions. In fact, no algorithmic parameters have both high specificity and 

sensitivity, in agreement with tractography validation studies48,49,53, and in practice it is 

important to have some threshold to control the number of false positive bundles. While 

different choices of tracking parameters can produce large variations, it is important to point 

out that, with typical usage (i.e., typical parameters), different response functions also lead 

to different tractography results.

It is also important to point out that there are a large number of spherical deconvolution 

methods in the literature6–9,11–20, each with slightly different derivations, modifications, or 

assumptions on the response kernels and models54,55. Here, we have chosen to assess what 

we believe to be the most commonly utilized in the field, implemented using common or 

open-sourced platforms, and do not intend to compare or rank the different methodologies, 

instead highlighting a difference between these and histologically derived kernels. More 

importantly, with histological analysis alone, we find that the response functions vary across 

different white matter regions, and can potentially (depending upon tracking parameters) 

result in different tractography reconstructions, as well as reconstructions different from 

existing reconstruction methods. This does not mean that the histologically informed 

tractography is actually “better”. In fact, the histological response may only be appropriate 
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for FOD reconstruction in certain anatomical locations and not others, and no method was 

perfect (Figure 8), all exhibiting a sensitivity/specificity tradeoff previously described in the 

validation literature48,50,51,53,56. The tractographic analysis serves to emphasize that 

different response functions can lead to different connectivity results.

Limitations

This study has several potential limitations. First, because of the ex vivo nature of the tissue, 

and reduced ex vivo diffusivity39, the derived response function is not the response function 

that should be used for in vivo data (or human data). However, studying ex vivo tissue is the 

only way in which the true fiber orientation distribution can be obtained, and our goal is 

simply to determine the linear relationship between this and the signal, and compare these 

data-driven methods of estimating the response function. Although these subjects did not 

have an in vivo acquisition, future studies should include both in vivo and ex vivo imaging, 

as well as multiple diffusion shells or diffusion times, followed by histological analysis, in 

order to better understand the response function, the signal, and the fiber distribution. 

Because of the ex vivo nature of the study, our results may not hold for in vivo human 

studies, although we expect the response function variation across brain regions, and across 

brains, to be largely generalizable to humans.

The second limitation is sample size. Only 6 z-stacks (containing predominantly single fiber 

populations) were analyzed per monkey. These regions covered multiple brains, with 

multiple slices per brain, and a variety of white matter locations (demonstrating a wide range 

of fiber orientations) across monkeys, further highlighting differences in response functions 

within and across brains. Additionally, only one connection was tested to assess differences 

in tractography. The primary motor system in the non-human primate has been studied 

extensively57,58 with well characterized connections. Our approach highlights the effects of 

the response function on tracking accuracy, and the resulting tradeoff in tractography 

sensitivity and specificity is likely to exist in all pathways of interest. However, the focus of 

the study is on variation in the response function themselves, rather than a thorough 

validation of tractography53.

Most importantly, for these results to be valid, it is important that the FODs derived from 

histology can actually be considered ground truth. The pipeline to extract 3D FODs from 3D 

confocal z-stacks is described thoroughly in36, where the technique was validated to ensure 

directional accuracy on the order of 5°. Importantly, this pipeline both thresholds the image 

to ensure that orientation estimates are extracted only from voxels occupied by fibers, 

excluding directions estimated from non-tissue pixels, and also excludes pixels with poor, or 

uncertain, directional information. In this way, we excluded extra-axonal compartments in 

the FOD estimate, and FOD estimates are weighted by the volume fraction of the axons (i.e. 

big axons have more fiber-occupying voxels than small axons), in the same way that dMRI 

is sensitive to the volumes of various compartments.

Confocal microscopy has its own disadvantages. For example, while the in-plane field of 

view covers 900um2, the through-plane thickness of the tissue is only 50um. We assume that 

the 50um thick tissue is representative of the fiber orientations throughout the sampled 

voxel, and un-sampled orientations can certainly cause erroneous fiber orientation estimates. 
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Additionally, sources of anisotropy are present in acquisition, including anisotropic voxel 

sizes (0.2×0.2×0.42um) and anisotropic point spread functions, which we attempt to correct 

through interpolation and deconvolution, respectively36. Despite this, the FOD derivation 

could possibly be less sensitive to through-plane fiber orientations, possibly biasing results 

(although obliquely-oriented fibers are detected and visible in 3D views). Together, these 

considerations may limit conclusions of the study, although we believe the primary 

conclusion – that the response function varies across the brain – to be supported by the 

results presented. Nevertheless, It is important to fully validate the histological techniques 

and image processing procedures. While we have previously manually traced fibers in 

individual z-stacks and found good agreement with the automated structure tensor analysis36 

(with agreement on the order of ~5 degrees), additional validation could include sectioning 

and imaging in orthogonal planes, and providing supporting evidence or complementary 

information in the form of alternative histological contrast. For example, Brightfield 

microscopy can cover large fields of view and has been used to extract FODs59, however, 

this has so far been limited to 2D analysis (although extracting 3D microstructure from 2D 

histology may prove feasible60). Recent work also shows the ability to exactly trace axons in 

3D (on the scale of nm) using electron microscopy52,61,62, although with limited fields of 

view that would likely prohibit direct comparison with MRI data from the same tissue 

volume.

Estimates of the response function can be corrupted by two sources, noise and misalignment. 

We do expect some misalignment of the FOD and signal due to tissue distortions and 

registration errors, as well as noise in the MRI signal – our ex vivo acquisitions resulted in 

an SNR of the b0 images in the WM of approximately 25, 29, and 22 for monkeys #1–3, 

typical of that in research studies. Figure 9 shows the results of simulations investigating 

both misalignment and noise. Here, misalignment refers to a rotational error between the 

FOD and simulated signal (i.e., the peak of the simulated FOD no longer perfectly aligns 

with the minimum of the simulated signal), in order to simulate a histological stack that 

possibly underwent improper deformation or rotation. After misalignment and noise 

corruption, the response function is recomputed from Equation 4. In this case, with 

uncorrupted data (SNR=∞) misalignment between FOD and signal results in very little 

change to the derived response function (decreased radial and increased axial signal) with 

rotation as much as 20° of misalignment. In addition, with SNR as low as 10, the overall 

shape of the response function is qualitatively in agreement with the true function – noise 

causes a “blurring” of the true FOD, again decreasing radial signal and increasing axial 

signal. Additionally, spurious peaks frequently occurred axially in the direction where 

lowest signal is expected. Further analysis indicated that this peak occurs when noise 

samples are large specifically along, or near, the peak direction of the FOD, and becomes 

more prominent as the noise level in that direction increases (Supplementary Figure 1). 

Noise in other directions is more regularized due to the increased density of sampling at 

varying polar angles (i.e., longitudinal planes). In our data, these peaks were infrequent (for 

example, this could be observed in Figure 3A), and if they occurred, were not as prominent 

as in simulations.
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Crossing Fibers

This study focused on single fiber voxels in the white matter, in order to avoid contamination 

or partial volume effects from other compartments – including gray matter or multiple intra-

voxel fiber populations. However, the dataset collected in35 additionally contains a number 

of z-stacks that contain crossing fibers (defined as voxels having multiple local maxima in 

the FOD). Figure 10 shows example z-stacks with crossing fibers (which were not used in 

the current study), highlighting location, shape of the FOD shown in two views (to highlight 

crossing and show both in-plane and through-plane fiber orientations), and the derived 

response function. We also show RGB colormaps (Figure 10D) for visualizing crossing fiber 

patterns.

An interesting observation across many of the crossing fiber regions is the presence of a 

“cusp-like” shape axially, instead of a simple monotonically decreasing function at 

decreasing polar angles (towards the z-axis). There are several potential explanations. First, 

this could be a genuine effect of the diffusion process due to multiple compartments, 

boundaries and restrictions, especially at angles close to (within 5–20 degrees) of the main 

fiber orientation. This could be caused by a combination of multiple diffusion pools (for 

example, one or more for each fiber population), where the process cannot be adequately 

explained by a single axial and radial diffusivity.

Alternatively, this could be an artifact. Investigating the effects of noise and misalignment 

through simulations on crossing fibers (Figure 11) shows that noise can, indeed, cause a 

cusp-like shape (red arrow), in addition to the spurious peaks directly along the z axis (blue 

arrows). However, this generally happened at an SNR lower than in our acquired data, and 

was relatively infrequently observed in simulations. While we found that this “cusp” did in 

fact appear in simulations when two different response functions exist within an imaging 

voxel (Figure 11; also see Supplementary Figure 2 for 100 response function estimations at 

an SNR=10 when two different response functions exist), the cusp did not appear in 

simulations when the same response function describes the two crossing fiber populations 

(see Supplementary Figure 2 for 100 estimations at an SNR=10 when one response function 

describes both fiber populations). When the signal is generated with two fibers with 

inherently different response kernels, we believe that the deconvolution procedure can result 

in erroneous high order coefficient estimates (giving rise to the sharp cusp), and an overall 

estimate that differs from the two true kernels. With the same response function, the estimate 

is stable, and noise produces a uniform blurring of the estimate (as in single fiber 

populations). Thus, the “cusp” is not an artifact of (or exclusive to) histological analysis - 

appearing in (noisy) simulations when fiber populations exhibit different response functions 

– but rather an artifact of assuming a single response function within a voxel.

Although the focus of this study is not on crossing fibers, we believe that these simulations 

suggest that in addition to variation within and across brains, response functions can vary 

within voxels. This is an effect not described or seen in the diffusion literature, as it is not 

common to assume multiple response functions within a voxel, or assume multiple response 

functions across a brain. Additionally, the cusp shape was seen (although only in one z-

stack, Figure 5B) in single fiber populations, which may suggest that there are indeed two 

fiber populations with two different response functions, which share the same or similar 
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orientation (a phenomenon expected in the brain56), although only one local maximum is 

identified in the FOD. These results suggest that response functions can vary within a voxel, 

as well as between voxels.

Conclusion

Here, for the first time, we have empirically estimated the linear relationship (i.e., the fiber 

response function) between the diffusion signal and the underlying FOD using 3D 

histological analysis. We find statistically significant differences in response functions 

between brain regions, which suggests that a single response function may not be 

appropriate for use throughout the entire brain, and instead a region-wise, or fiber-wise, 

response may be more appropriate. Additionally, we find different response functions across 

different brains, as well as evidence that response functions may vary within voxels due to 

multiple fiber populations. Differences in response functions lead to different FOD 

reconstructions, which in turn can lead to different tractography results, even though peaks 

in the FOD retain the same orientation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of study methodology. Spherical deconvolution models the diffusion signal, S, as 

the convolution of the fiber response function, R, with the fiber orientation distribution, F. 

The brain is scanned (A) resulting in an MRI signal. Next, 3D confocal microscopy is 

acquired (B), followed by image processing (C), resulting in the ground truth histological 

FOD. Estimating the voxel-wise response function (D) is done through deconvolution of the 

signal with the corresponding FOD.
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Figure 2. 
Response functions estimated using conventional methods differ from the histologically-

derived response functions. Kernels estimated using the highest FA voxels, the iterative 

calibration method, and modelled from the diffusion tensor are shown in two views. The 

average histologically-derived response function for each monkey (across 6 z-stacks) is 

shown (monkeys #1–3 correspond to A-C) along with the mean (red) and mean +/− one 

standard deviation (gray) surfaces to highlight variability. Note differences in magnitude are 

due to differing normalization in our work and in MRTrix3. Shape, and not magnitude, 

determines the final FOD shape.
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Figure 3. 
The response function varies across brain regions. Three locations in the same monkey brain 

(monkey #1) are shown, along with the histological fiber orientation distribution, signal, and 

derived response function for all 9 voxels. In addition, the average response function for 

each z-stack is shown in two views. Grayed-out voxel contained some gray matter and hence 

was not included in the study (or in derivation of average response).
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Figure 4. 
The response function varies across brain regions. Three locations in the same monkey brain 

(monkey #2) are shown, along with the histological fiber orientation distribution, signal, and 

derived response function for all 9 voxels. In addition, the average response function for 

each z-stack is shown in two views.
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Figure 5. 
The response function varies across brain regions. Three locations in the same monkey brain 

(monkey #3) are shown, along with the histological fiber orientation distribution, signal, and 

derived response function for all 9 voxels. In addition, the average response function for 

each z-stack is shown in two views.
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Figure 6. 
Different response functions lead to different FOD reconstructions. Fiber reconstruction in 

two regions of interest (A and B) using three commonly implemented response functions 

(FA Response, Iterative Response, Tensor Response), and three histologically derived 

response functions (those from Figure 3A, 3B, and 3C) from the same monkey. 

Reconstructed fiber orientation distributions retain similar shape and orientations, but 

contain different volume fractions of fiber populations. A zoomed-in region of 3 voxels is 

shown for each reconstruction to highlight differences/similarities.
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Figure 7. 
Different response functions can lead to different tractography results. Whole-brain 

tractography is performed with an inclusion region in the primary motor cortex (A) using the 

FODs described in Figure 6, using standard tractography parameters and settings (i.e., the 

FOD amplitude threshold) (B). Tractography is repeated using no threshold on FOD 

amplitude, resulting in qualitatively similar streamlines (C). Note that only streamlines 

within a single coronal slice are visualized.
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Figure 8. 
Different response functions can lead to different tractography results. Tractography is 

compared to an atlas of known connections (atlas and histology described in46,63, see Figure 

2 from53 and Figure 1B from49 for visualization of the ground truth pathways), by 

calculating the true positive and true negative rate of connections to various regions of 

interest (A). The sensitivity and specificity of the tractography results from Figure 7 are 

plotted in an ROC curve using the default FOD threshold (B) and no FOD threshold (C). 

Method abbreviations: FA: average FA response; ITER: iterative response; Tensor: tensor-

derived response; 3A-C: histological-derived response from z-stacks A-C from Figure 3.
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Figure 9. 
Noise and rotational misalignment can cause errors in estimating the response functions in 

single fiber regions. FODs and signal at varying noise levels (SNR = ∞, 10, and 20) and 

misalignments (angular errors between the FOD and diffusion signal of 0–20 degrees) were 

used to derive response functions. Response functions are relatively robust to angular error, 

but noise can cause spurious peaks axially (red arrow). Here, signal is generated from an 

axially symmetric diffusion tensor model with λ1=1.6E-3 mm2/s, λ2=λ3=1.6E-3 mm2/s, 

FA=0.7. Two simulations are shown for each noise level. Noise is added in quadrature.
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Figure 10. 
Histologically-derived response functions in crossing fiber regions display unconventional 

shapes. Three locations determined to contain crossing fiber populations (A-C) are shown, 

along with the FOD (viewed along the normal to the tissue section) overlaid on RGB color-

maps, the FOD shown at an alternate angle (to highlight both in-plane and through plane 

fibers), and the derived response functions. Many response functions show a “cusp-like” 

shape axially (indicated by blue ellipses). RGB color-maps of individual voxels (D) 

highlight orientation estimates (Red: right/left, Green: anterior/posterior, Blue: superior/

inferior) of every pixel in the 3d z-stack volume occupied by a fiber and show complex, 

interwoven, crossing fiber patterns.
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Figure 11. 
Noise and misalignment can cause errors in estimating the response functions in crossing 

fiber regions. FODs and signal at varying noise levels (SNR = ∞, 10, and 20) and 

misalignments (angular errors of 0–30 degrees) were used to derive response functions. 

Noise can cause spurious peaks axially (blue arrows), and can result in “cusp-like” shapes 

near the poles.
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