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Abstract

Introduction Critical-sized defect (CSD) is one of the most challenging cases for orthopaedic surgeons. We aim to explore the
therapeutic potential of the combination of bone marrow-derived mesenchymal stem cells (BM-MSCs), hydroxyapatite (HA)
granules, bone morphogenetic protein-2 (BMP-2), and internal fixation for treating CSDs.

Methods This was a translational study performed during the period of January 2012 to 2016. Subjects were patients diagnosed
with CSDs who had previously failed surgical attempts. They were treated with the combination of autologous BM-MSCs, HA
granules, BMP-2, and mechanical stabilization. Post-operative pain level, functional outcome, defect volume, and radiological
healing were evaluated after a minimum follow-up of 12 months.

Results A total of six subjects were recruited in this study. The pain was significantly reduced in all cases; with the decrease of
mean preoperative visual analog scale (VAS) from 4 = 2.2 to 0 after six month follow-up. Clinical functional outcome percentage
increased significantly from 25+ 13.7 to 70.79 + 19.5. Radiological healing assessment using Tiedemann score also showed an
increase from 0.16 +0.4 to 8 + 3 at one year follow-up. No immunologic nor neoplastic side effects were found.

Conclusions The combination of autologous BM-MSCs, HA granules, and BMP-2 is safe and remains to be a good option for the
definitive treatment for CSD with previous failed surgical attempts. Further studies with a larger sample size are required to be

done.

Level of evidence: Therapeutic Level 11
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Introduction

Segmental defects in bone remain an ongoing challenge for
orthopaedic surgeons [1]. Large segmental defects, also
known as critical-sized defects (CSDs), may not heal sponta-
neously and lead to nonunion prognosis due to the size of
defects or unstable biomechanical properties, unfavourable
wound environment, suboptimal surgical technique, metabol-
ic factors, hormones, nutrition, and applied stress [2]. CSDs
are difficult to characterize as the diagnosis is subjective [3].
Generally, it has been suggested that the CSD includes defect
length greater than 2 cm as well as bone circumference loss
greater than 50% [4].

The relative rarity of CSDs means that a high level of evi-
dence to guide their management is sparse [4]. Bone grafts or
substitute biomaterials are commonly used as therapeutic strat-
egies for clinical bone surgery to fill the bone defects for
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reconstructing large bone segments [2]. Over the years, autolo-
gous bone grafts (ABGs) have been regarded as the mainstay of
therapy to augment or accelerate bone regeneration [5-7].
However, major drawbacks are associated with this approach,
such as additional anaesthetic time and personnel needed for
graft harvesting [8—10], limited quantity of the graft and access
to donor sites, and immune-mediated rejection [5, 8, 11-13].

Hydroxyapatite (HA) is a representative bone repairing
biomaterial for its similar composition to human bones and
teeth [14]. Compared to ABGs, HA synthetic bone grafts have
been shown to stimulate bone regeneration in experimental
animal studies, with excellent stability and bone-regenerative
characteristics. They slowly degrade and are gradually re-
placed by bone due to their composition and structure [15].

In addition to ABGs and HA, most surgeons accept that the
use of a bone morphogenetic protein (BMP) for treatment of a
CSD must be tailored to the individual circumstance.
Certainly, the bone involved has a bearing on the acceptable
value for a CSD [1]. Previous studies [16—18] have shown that
BMP-2 can be utilized in various therapeutic interventions
including bone defects and nonunion fractures.

According to the diamond concept of bone healing, as pre-
viously described by Giannoudis et al. [19], osteogenic cells
must work in conjunction with osteoconductive (scaffold),
osteoinductive, and stable mechanical environment. To obtain
mechanical stability, fixation is often used for reconstructing
bone defects. Most authors believe that solid fixation would
facilitate bone union [20]. Compared to internal fixators, ex-
ternal fixators are impractical for patients. Moreover, external
fixators need consistent maintenance. Thus, they could be
problematic in a population of noncompliant patients [21].
Moreover, external fixation (EF) can lead to numerous com-
plications, including pin-tract infection, joint stiffness, and
soft tissue irritation [21]. Thus, we use internal fixation (IF)
in this study.

In the present study, we utilized the combination of osteo-
genic MSCs, osteoconductive synthetic HA granules, and a
stable mechanical environment provided by internal fixation
to provide a single-stage bone defect reconstruction. This
combination had been evaluated in an animal model and sig-
nificantly resulted in faster and thicker callous formation [22].
To date, human studies evaluating this combination have nev-
er been conducted. The purpose of this study is to present the
experience of the authors in treating six cases of CSDs using
the combination of MSCs, HA granules, BMP-2, and internal
fixation in treating CSD.

Patients and methods

A single arm prospective experimental study was performed
between 2012 and 2016. The study protocol was approved by
the institutional board review (567/PT02.FK/ETIK/2012) and
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registered in the clinicaltrials.gov (NCT 01725698). This
study was funded by FMUI (Grant Number: 474/H2.F1D/
HKP.02.04/2012).

Six patients with CSDs who had failed previous surgical
attempts were included. Patients with immunodeficiency, pre-
vious history of pathologic fracture, neoplastic pathologies,
ongoing hormonal therapy, and suspected active
osteomyelitis/related soft tissue infection were excluded. All
diagnosis, bone marrow harvest (BMH), and surgical proce-
dures were conducted by one senior trauma consultant ortho-
paedic surgeon (IHD). Written informed consent and baseline
functional status were obtained from all subjects prior to the
study period. All subjects were administered with oral
ibandronate 150 mg once a month to prevent osteopenia.
Characteristics of the subjects are presented in Table 1.

Isolation and culture of bone marrow-derived
mesenchymal stem cells

The autologous BM-MSCs were isolated and cultured based on
a protocol previously described by Lubis et al. [23] The BMH
was performed under local anaesthesia (lidocaine 2%) in the
procedural room of an outpatient clinic in a sterile fashion.
Forty milliliters of bone marrow (BM) was aspirated from sev-
eral locations within the posterior iliac crest and transferred into
a container prefilled with 5000 U/mL of heparin. Subsequently,
the aspirate was diluted with phosphate-buffered saline on 1:1
ratio and centrifuged at room temperature at 3000 rpm for 30 mi-
nutes. The collected bufty coat was washed and transferred into
a culture flask containing Dulbecco’s Modified Eagle Medium
(Gibco, Grand Island, New York) supplemented with 10% fetal
bovine serum (Gibco, Grand Island, New York). Cells were
incubated at 37 °C at 5% CO, with routine culture medium
change every two to three days. Subculture was performed with-
in seven to ten days.

Attached cells were cultured until they reach at least 50
million cells (4th week). Cellular characterization was subse-
quently performed on plastic adherent confluent cells by flow
cytometry (FACSCalibur™, Franklin Lakes, New Jersey).
Cultured cells were checked for typical MSC markers
(CD73, CD105) and hematopoietic markers (HLA-DR,
CD14, CD19, CD34, and CD45). To ensure safety, the steril-
ity of the BM-MSCs was checked thrice during the culture
process. BM-MSC culture procedures were performed in a
cGMP-certified facility (ReGeniC Laboratory—Bifarma
Adiluhung, Jakarta, Indonesia). Cell viability was evaluated
with trypan blue staining using a microscope.

Surgical procedure
Surgical procedures were performed by one trauma surgeon

approximately three weeks after BMH. The nonunion site was
exposed; then, fibrotic tissue removal, decortication, and
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Table 1  Patient characteristics
Case Gender Age Affected bone Duration of disease Defect volume (cm®)  Prev. surgical procedure Length of follow-up
1 Male 18 Humerus 12 months 5%2x%2 (20 cm®) 1. ORIF 12 months®
2. Implant removal and splinting due
to re-fracture
2 Male 34 Femur 36 months 7%x3.5%3(73.5 cm® 1. ORIF 21 months
2. Debridement, impant removal and
external fixation due to infection
3. Debridement, cement spacer
3 Female 24 Tibia 9 months 12 x4 %2 (96 cm®) 1. Debridement and ex-fix 17 months
2. Debridement and skin graft/flap
4 Male 28 Tibia 7 years 8x3x3 (72 cm’) 1. Debridement and external fixation 12 months
2. Ex-fix removal
Male 33 Tibia 6 months 6x2x2 (24 cm®) 1. Debridement and external fixation 12 months
Female 40 Femur S years 6x2.5%2 (30 cm’) 1. ORIF 12 months
2. Debridement and external fixation
3. Ex-Fix removal
Mean £+ SD 34.5+31.85 52,58+31.9 19+14.17

Patient 1 did not continue the follow-up process due to fracture site has consolidated in 6 month

recanalization were performed. Mechanical stability was pro-
vided by using an internal fixation system, tailored in accor-
dance with the soft tissue condition. In case 4, the surgery was
immediately performed after his external fixation removed (in
the same day). The bone defects were filled using HA granules
(Bongros®-HA, Bioalpha, Seungnam, Korea) and 1.33 mL
BMP-2 (Novosis, CGBio, Seoul, Korea) for each 5 g of HA
granule. Prior to the implantation, the scaffolds were mixed
with 50 million autologous BM-MSCs contained in 10 mL of
plasma solution. Afterward, prompt soft tissue closure was
performed.

The estimated defect size was measured with the following
formula from two projection of plain radiograph of the corre-
sponding extremity as seen in Fig. 1.

V = LAAl1 x HAA1 x WAA2

VvV Volume
L Length

H Height

W Width

Bone defect volume was reported in cm?®. For instance, if
the defect volume is 30 cm3, six vials of HA granules
(Bongros®-HA) at 5 g (total 6 x 5=30 g) will be filled into
the defect.

Evaluation of the subjects

Subjects were hospitalized for five days after surgery. The
initial clinical evaluation was performed for signs of pain,
infection, and soft tissue compromise. In lower extremity

cases, no weight bearing was allowed for at least six weeks
after surgery. Patients underwent clinical and radiographic
evaluation every month. The measured outcomes were pain
level (VAS) and functional scores of the involved extremity,
which was scored based on either Lower Extremity Functional
Scale [24] (LEFS) or Disabilities of the Arms, Shoulder, and
Hand [25] (DASH).

Radiological assessments were conducted using Tiedeman
radiological scoring system for measuring volume defect be-
fore as well as six and 12 months after implantation. However,
there is no consensus regarding the cumulative score for ra-
diological union. We determined that Tiedeman score >S5 to
be the cut-off point for radiographic union [26].

Results

In all subjects, no major complication occurred intra-
operatively or during the post-operative period. However,
two subjects (case 2 and case 4) developed surgical site infec-
tion. Case 2, a 34-year-old male, after undergoing spacer re-
moval, open reduction internal fixation and autogenic BM-
MSC implantation, developed surgical site infection.
Subsequently, he underwent re-debridement and re-
implantation of allogeneic umbilical cord MSC therapy, and
his infection resolved. Case 4, a 28-year-old male, had super-
ficial surgical site infection. After we performed wound care
and dressing as well as administered antibiotics, the infection
resolved. Case 6, a 40-year-old female, developed partial
union. We planned to administer another MSC implantation
for case 6, but she did not do follow-up to our hospital as she
had family problems and moved to another island.

All cases were regularly followed until union was achieved
with a mean duration of follow-up of 19+ 14.17 months. The
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Fig. 1 Volume defect
measurement by means of
radiography

Lateral Photo
W, = (W1+W2+W3)/3

initial mean longitudinal bone defect measured 7.33 cm
(range, 512 cm) or 52.58 +31.9 cm’ in volume bone defect.
The outcome comparison between pre-operative, after 6-
month, and 12-month follow-up is presented in Tables 2 and
3. Pre-operative, post-operative, and follow-up radiograph is
shown in Figs. 2, 3, 4, 5, 6, and 7 showing dramatic improve-
ment of the bone graft incorporation through times.

Discussion

The major issue in CSDs aside from the size of the defect itself is
the limited capabilities of the biological environment to promote
fracture healing. The diamond concept of fracture healing de-
scribes that osteogenic cells, growth factors (osteoinduction),
osteoconductive scaffolds, and mechanical environment are the
cornerstone of fracture healing [19, 27]. During the early phase of
healing, haematoma is the source of signaling molecules that
may induce a cascade of cellular events that initiate the fracture
healing process. Stimulated by these growth factors, the MSCs
are recruited to the fracture site and transform to osteoblasts to
promote further healing. Osteoconductive materials provide nat-
ural scaffold for all the aforementioned cellular events stabilized
mechanically to optimize the healing process [19]. Various treat-
ments are available for treating CSDs; however, all of them re-
volve around this concept.

Antero-Posterior
Photo

Laag = (L1+L2+L3)/3
o, = (H1+H2+H3)(3

In the present study, we applied the basis of this concept by
using the combination of MSCs, BMP-2, HA scaffold, and IF.
To our knowledge, this is the largest series that evaluates the
application of MSC-based tissue engineering construct in
CSDs. To evaluate the effectiveness of this technique, we
selected a group of “very challenging” cases—those who
had poor results on the previous reconstructive procedures.

Masquelet technique is the current recommended treatment
for CSDs with a high rate of success [3]. However, some
authors have documented a small number of failures using
this technique. The main cause of failure was reactivation of
infection, graft reabsorption, and graft maturation failure [28,
29]. The technique was performed on the second case by
giving an antibiotic cemented spacer in the defect by the pre-
vious surgeon. However, during the definitive surgery, no
membranes were found on the cemented region. Thus, the
patient was referred to our institution for further treatment.

One of the most challenging cases was case 5. The patient
had extensive soft tissue damage around the fracture site that
warranted a soft tissue reconstruction in the previous institu-
tion despite the presence of a massive bone defect. The quality
of soft tissue around the defect would complicate whatever
type of reconstruction that we would choose, not to mention
the initial longitudinal defect was 12 cm. The combination of
HA, MSCs, BMP-2, and mechanical stability provided by
lateral side plating has achieved a complete consolidation after

Table 2 The effect of MSCs

implantation for critical-sized Pre-op (n=06) 6 month post-op (n=06) 12 months post-op (n=5)
bone defect on primary end point
outcomes Visual analog scale 4+£22 0 0

Functional score (%) 25 +13.7 71.59+20.5 78.23+15.4

Defect volume (cm?) 52.58 +31.9 2.83+3.54 34+3.65

Tiedeman score 0.16 = 0.4 8+3 9+2
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Table 3 Functional score and leg length discprepancy of the subjects

Case DASH

LEFS

LLD

1 25 (initial)
20.83 (3-month-post-operative)
16.7 (6-month-postoperative)
12.5 (9-month-postoperative)-
10 (1-year-post-operative)

2 _

3 _

26.25% (initial), 55% (3-month-post-operative), 60%
(6-month-post-operative), 72.5% (9-month-post-operative),
82.5% (12-month-post-operative)

22.5% (initial), 55% (3-month-post-operative), 62.5%
(6-month-post-operative), 75% (9-month-post-operative),
80% (12-month-post-operative)

22.5% (initial), 43.75% (1-month-post-operative), 62.5%
(3-month-post-operative), 80% (6-month-post-operative),
100% (9- and 12-month-post-operative)

25% (initial), 38.75% (1-month-post-operative), 52.5
(3-month-post-operative), 60% (6-month-post-operative), 70%
(12-months post-operative)

2.5 cm (initial), 1 cm (2-month-post-operative)
3 cm (initial), 1 cm (3-month-post-operative)

3 cm (initial), 3 cm (14-month-post-operative)

3 cm (initial), 0 cm (12 months post-operative)

5 cm (initial), 0.5 cm (6-month-post-operative)

d

Fig. 2 An 18-year-old male (case 1) with 5-cm bone defect of the humerus. a Pre-operative radiography. b Post-operative radiography. ¢ Two-month
post-operative radiography. d Six-month post-operative radiography. e Twelve-month post-operative radiography
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b d

Fig. 3 A 34-year-old male (case 2) diagnosed with infected open fracture of the right distal femur with 7-cm bone defect after Masquelet procedure. a
Pre-operative radiography. b Post-operative radiography, ¢ Twelve-month radiography. d Twenty-one-month radiography

nine months. In addition, the patient had significant functional ~ orthopaedic field, especially in treating tibia fractures, non-
improvement in the last follow-up. union, and CSDs [30-32]. Several types of osteogenic cells

During the past decades, numerous studies documented a ~ have been applied in tissue engineering so far, such as aspi-
wide number of varieties in tissue engineering constructs in rate, concentrated aspirate, periosteum-derived MSCs, and

Fig.4 A 24-year-old female (case 3) with 12 cm BD of the tibia. a Initial radiography. b Pre-operative radiography. ¢ Post-operative radiography. d Six-
month radiography. e Fifteen-month post-operative radiography
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e

Fig. 5 A 28-year-old male (case 4) with 7-year history of 8-cm bone defect of the right tibia. a Initial x-ray and clinical picture after external fixation
removal. b Pre-operative radiography. ¢ Post-operative, d Five-month radiography. e Twelve-month radiography

in vitro expanded MSCs [30]. However, despite the early en-
thusiasm of the promising result in the animal studies, clinical
studies that applying them in treating large bone defect are
scant.

Quarto et al. [32] and Marcacci et al. [31] applied the
in vitro expanded MSCs for treating 47 cm bone defect in
six patients. The bone defect was supported by the use of
porous hydroxyapatite-tri-calcium-phosphate (HA-TCP) scaf-
folds that was designed to match the size and shape of the
defect. Complete fusion and integration of the scaffold and
host bone were achieved at five to seven months, showing

promising results in the repairment of CSD. Compared to
HA construct, HA-TCP construct demonstrated superiority
regarding cell proliferation, calcium deposition, and collagen
bundle formation [33, 34].

Bajada et al. [35] successfully treated a nine year tibial
nonunion resistant to six previous surgical procedures by
using autologous bone marrow stromal cells expanded to
5x10° cells after three week tissue culture. The cells were
combined with calcium sulfate (CaSO4). However, despite
its success, calcium sulfate’s low biomechanical performance
and rapid resorption were not considered to be a suitable

Fig.6 A 33-year-old male (case 5) with 6-cm bone defect of the tibia. a Initial radiography. b Pre-operative radiography. ¢ Post-operative radiography. d
Six-month post-operative radiography. e Twelve-month post-operative radiography
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Fig.7 A 40-year-old female with 5 years of 6-cm bone defect of the femur. a Pre-operative radiography. b Post-operative radiography. ¢ Six-month post-
operative radiography. d Twelve-month post-operative radiography. e Four-year post-operative radiography

scaffold in CSDs, in which the biomechanical property of the
scaffold is also needed to permit osteoconduction [36].
Particle size is also an important variable in bone regeneration.
Malinin et al. [37] have found that particle size between 100
and 300 pum is the best option for impaction grafting in closed
intraosseous bone defects. However, as impaction grafting is
not possible in most CSDs, innate mechanical strength of the
allograft should also be noticed, Sanchez et al. [38] have sug-
gested that intermediate particle size (300—600 wm) has best
mechanical strength due to particle morphology and number
of bonds in the contact zone.

According to previous studies, aspirated BM contained an
average of 600—700 cells/cm®. Our cell and tissue culture pro-
cess had expanded these numbers of cells into 50 x 10° cells
during three replicative passages in the span of three weeks.
Hernigou et al. [39] reported that the use of percutaneous
ABGs was effective and safe for nonunion. Moreover, they
mentioned that the efficacy of the ABGs appeared to be in
proportion with the concentration and total amount of cells
injected to the graft.

Osteoinductivity plays a vital role in the regeneration
of CSDs. It is considered as the possible cause why
inconsistent results were found with the use of earlier
tissue-engineering construct involving MSCs and

@ Springer

resorbable calcium scaffold [40]. Niikura et al. [41] re-
vealed that downregulation of BMP gene expression
might account for nonunions; this suggests that BMPs
play an essential role in osteogenesis. The beneficial
effect of BMP-2 itself has been approved by the FDA
for treating nonunions [16]. The osteoinductive activities
of BMPs have led to numerous applications in bone
regeneration. However, the introduction of BMP prod-
ucts to the market was not without reports of multiple
complications and adverse effects. Efforts have been fo-
cused on improving the delivery of BMPs to lower the
administration dosage and maintaining its local concen-
tration to lengthen its duration of action [42]. Few strat-
egies have been proposed to overcome these issues.
Several gene therapy studies have successfully trans-
ferred the BMP-2 ¢cDNA to the muscle grafts or local
tissue to induce repair of segmental bone grafts but still
limited in an animal model [18, 43]. As for clinical
studies, Carragee et al. [44] reviewed the efficacy and
safety of rhBMP-2 treatments in spinal surgery.
Although the original report from industry-sponsored
rhBMP-2 publications found no adverse events associat-
ed with the use of thBMP-2, the review of FDA docu-
ments and subsequent publications proven otherwise.
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The estimated adverse events associated with the use of
rhBMP-2 range from 10 to 50%. Several serious side
effects of BMP-2, including heterotopic ossification, ear-
ly osteolysis, and inflammation at the grafting site were
also reported [41].

A recent animal study by Decambron et al. evaluated the
impact of adding BMP-2 to MSCs-coral tissue engineering
construct (TEC). Despite insignificant results, an increased
amount of newly formed bone and scaffold resorption was
observed in BMP-MSC-TEC group [40]. The contradictory
effects of the BMP on bone healing are explained by its stim-
ulating effect to both osteoclasts and osteoblasts. In the pres-
ence of both cells, BMP will primarily activate the osteoclasts
to promote bone resorption supporting osteoclastogenesis
[45].

In several conditions, including being in a poorly
vascularized environment, state of extensive tissue damage
and inadequate nutrition transplanted stem cells cannot be
predicted and would fail as a treatment. MSCs cannot work
alone; they depend on the extracellular matrix, and they
should be combined with an intercellular signal
(osteoinductive) as well as neovascularization to sustain its
viability. The BMP-2 has the strongest osteoinductive potency
compared to other osteoinductive factors. It plays an essential
role in the process of differentiation which starts from the
differentiation of MSC into osteoprogenitor cells and subse-
quently become pre-osteoblast, and eventually the differenti-
ation of osteoblast into osteocyte [46].

The findings in our study showed a promising result in
promoting fracture healing and scaffold integration in the host
bone. MSC-based tissue engineering construct may also avoid
some drawbacks that are experienced by other treatment
methods such as the limited number of graft/scaffold, require-
ment of multiple surgery or microvascular surgery, and long
treatment duration that extremely relied on the patient compli-
ance. There are several limitations in our study. The absence
of control group may largely affect the results and conclusions
of our study, as we could not evaluate the efficacy of each
component separately. Our study only involved a small num-
ber of patients. These limitations highlighted that further stud-
ies, multicenter randomized controlled studies with larger
samples, and longer follow-up duration are required to follow
our translational study.

Previously, we published a separated case report on a sim-
ilar technique for reconstructing CSDs after osteofibrous dys-
plasia resection. The patient obtained complete union and sig-
nificant functional improvements by 42 weeks, and the results
were consistent after 84 weeks of follow-up [46]. This study
further supports our in vitro study that the additional MSC
injection to the scaffold would increase the potency of bone
healing [27]. Aside from their effects on stimulation of the
dormant local stem cells surrounding the fracture site by its
paracrine effects, the induction of proliferation and

proliferation of BM-MSCs into osteogenic cells (when im-
planted in the defect area) is more desired in CSDs.*’

Conclusions

The combination of autologous BM-MSCs, HA granules, and
BMP-2 are safe and may serve as a good option for treating
CSDs. Further multicenter randomized controlled trials are
required to investigate the efficacy of this therapeutic
combination.
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