Correction

BIOCHEMISTRY

NAS PNAS

Correction for "Discovery of novel carbohydrate-active enzymes through the rational exploration of the protein sequences space," by William Helbert, Laurent Poulet, Sophie Drouillard, Sophie Mathieu, Mélanie Loiodice, Marie Couturier, Vincent Lombard, Nicolas Terrapon, Jeremy Turchetto, Renaud Vincentelli, and Bernard Henrissat, which was first published March 8, 2019; 10.1073/pnas.1815791116 (*Proc Natl Acad Sci USA* 116: 6063–6068).

The authors wish to note the following: "We have found small errors in Table 2 and Table 3; these errors do not change the main conclusions of the paper, except that one additional novel family is now listed. A protein was wrongly assigned to GH42_dist in the original Table 2. This protein and its orthologs actually form a family completely different from GH42. The orientation of the glycosidic bond cleaved by this protein is different from that of bona fide GH42 proteins. The protein in question is now removed from corrected Table 2 and is listed as GH164 in corrected Table 3. Additionally, a typo and an incorrect Gen-Bank accession number were also corrected in Table 3. The corrected paper reports on an additional novel GH family of proteins. We apologize for the errors." The corrected Table 2 and Table 3 appear below.

Table 2. Activity of enzymes distantly related to the described GH or PL (GH/PLxx_dist) families

Distant CAZy family	GenBank accession no.	Substrate	Organism
GH2_dist	WP_029427454.1	pNP-β-D-xylopyranoside (new)	Bacteroides cellulosilyticus WH2
GH2_dist	WP_029428707.1	Tamarind gum (new)	Bacteroides cellulosilyticus WH2
GH2_dist	WP_029428765.1	pNP-β-D-glucuronide	Bacteroides cellulosilyticus WH2
GH2_dist	WP_018628801.1	pNP-β-D-glucuronide	Niabella aurantiaca DSM 17617
GH3_dist	AJG33435.1	pNP-β-D-NAc-glucopyranoside	<i>Rickettsia rickettsii</i> str. R
GH5_dist	ZP_06241352.1	pNP-β-D-mannopyranoside	Victivallis vadensis ATCC BAA-548
GH10_dist	EMS72420.1	pNP-β-D-xylopyranoside (weak)	Clostridium termitidis CT1112
GH16_dist	ZP_02063674.1	pNP-β-D-glucopyranoside (new)	Bacteroides ovatus ATCC 8483
GH20_dist	AEV99795.1	pNP-β-D-NAc-6Sulf-glucopyranoside	Niastella koreensis GR20-10
GH20_dist	AHF94523.1	pNP-β-D-NAc-glucopyranoside	Opitutaceae bacterium TAV5
GH31_dist	EIY61740.1	pNP-α-D-galactopyranoside	Bacteroides salyersiae CL02T12C01
GH36_dist	EIY66649.1	pNP-α-D-galactopyranoside	Bacteroides salyersiae CL02T12C01
GH36_dist	ACS99969.1	pNP-α-D-galactopyranoside	Paenibacillus sp. JDR-2
GH36_dist	ACS99975.1	pNP-α-D-galactopyranoside	Paenibacillus sp. JDR-2
GH36_dist	ZP_06242255.1	pNP-α-D-galactopyranoside	Victivallis vadensis ATCC BAA-548
GH49_dist	EDY96541.1	Chaetomorpha sp. CWP (new)	Bacteroides plebeius DSM 17135
GH49_dist	EDY96565.1	Chaetomorpha sp. CWP (new)	Bacteroides plebeius DSM 17135
GH51_dist	WP_084555785.1	Lichenan (new)	Alkaliflexus imshenetskii DSM 15055
GH76_dist	ADO68190.1	pNP-α-D-maltopyranoside (new)	Stigmatella aurantiaca DW4/3–1
GH106_dist	WP_018627535.1	pNP-α-L-rhamnopyranoside	Niabella aurantiaca DSM 17617
GH106_dist	ACT02314.1	pNP-α-L-rhamnopyranoside	Paenibacillus sp. JDR-2
GH117_dist	WP_010134686.1	pNP-β-D-galactofuranoside	Flavobacteriaceae bacterium S85

This set encompasses enzymes that fall outside of established subfamilies or that are only distantly related to biochemically characterized enzymes. "New" designates novel specificity in the family. CWP, cell wall polysaccharide.

Table 3. Substrate specificity of new CAZy families

New family	GenBank accession no.	Substrate	Activity	Organism
GH147	WP_029428318.1	β-galactan	Endo-β-(1,4)-galactanase	Bacteroides cellulosilyticus WH2
GH147	EFI37897.1	β-galactan	Endo-β-(1,4)-galactanase	Bacteroides sp. 3_1_23
GH148	AGN79260.1	Konjac glucomannan	Endo-β-(1,4)-glucosidase	Pseudomonas putida H8234
GH148	ACR13278.1	Konjac glucomannan	Endo-β-(1,4)-glucosidase	Teredinibacter turnerae T7901
GH157	WP_029429093.1	CM-curdlan	Endo-β-(1,3)-glucanase	Bacteroides cellulosilyticus WH2
GH158	ZP_06243608.1	CM-curdlan	Endo-β-(1,3)-glucanase	Victivallis vadensis ATCC BAA-548
GH159	WP_007210837.1	pNP-β-D-galactofuranoside	β-galactofuranosidase	Bacteroides cellulosilyticus WH2
GH160	AEI51087.1	EPS Nostoc commune (new)	Endo-β-(1,4)-galactosidase	Runella slithyformis DSM 19594
GH164	EIY59668.1	PNP-α-D-mannopyranoside	α-mannosidase	Bacteroides salyersiae CL02T12C01
PL30	WP_029426181.1	Hyaluronan	Endo-hyaluronan lyase	Bacteroides cellulosilyticus WH2
PL31	ABD82242.1	β-glucuronan	Endo-β-(1,4)-glucuronan lyase	Saccharophagus degradans 2–40
PL31	AGF62897.1	β-glucuronan	Endo-β-(1,4)-glucuronan lyase	Streptomyces hygroscopicus subsp. jinggangensis TL01
PL32	EIY62149.1	β-mannuronan	Endo-mannuronan lyase	Bacteroides salyersiae CL02T12C01
PL33	ALJ61728.1	Hyaluronan	Endo-hyaluronan lyase	Bacteroides cellulosilyticus WH2
PL33	AHF90976.1	Gellan (new)	Endo-gellan lyase	Opitutaceae bacterium TAV5
PL33	AHF90672.1	Chondroitin sulfate	Endo-chondroitin sulfate lyase	Opitutaceae bacterium TAV5
PL33	AHF90411.1	Gellan (new)	Endo-gellan lyase	Opitutaceae bacterium TAV5
PL34	AHF91913.1	Alginate	Endo-alginate lyase	Opitutaceae bacterium TAV5
PL35	ZP_06241351.1	Chondroitin	Endo-chondroitin lyase	Victivallis vadensis ATCC BAA-548
PL36	WP_026728881.1	β-mannuronan	Endo-mannuronan lyase	Flavobacterium denitrificans DSM 15936

The substrate and the modality of substrate degradation are specified. "New" designates novel specificity not reported previously. Note that families GH147 and 148 were reported by other groups during the course of our work (30, 31). CM, carboxymethyl.

Published under the PNAS license.

Published online May 6, 2019.

PNAS PNAS

www.pnas.org/cgi/doi/10.1073/pnas.1906635116