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We develop a detailed description of protein translational and
rotational diffusion in concentrated solution on the basis of all-
atom molecular dynamics simulations in explicit solvent. Our
systems contain up to 540 fully flexible proteins with 3.6 mil-
lion atoms. In concentrated protein solutions (100 mg/mL and
higher), the proteins ubiquitin and lysozyme, as well as the pro-
tein domains third IgG-binding domain of protein G and villin
headpiece, diffuse not as isolated particles, but as members of
transient clusters between which they constantly exchange. A
dynamic cluster model nearly quantitatively explains the increase
in viscosity and the decrease in protein diffusivity with protein
volume fraction, which both exceed the predictions from widely
used colloid models. The Stokes–Einstein relations for transla-
tional and rotational diffusion remain valid, but the effective
hydrodynamic radius grows linearly with protein volume fraction.
This increase follows the observed increase in cluster size and
explains the more dramatic slowdown of protein rotation com-
pared with translation. Baxter’s sticky-sphere model of colloidal
suspensions captures the concentration dependence of cluster
size, viscosity, and rotational and translational diffusion. The con-
sistency between simulations and experiments for a diverse set of
soluble globular proteins indicates that the cluster model applies
broadly to concentrated protein solutions, with equilibrium dis-
sociation constants for nonspecific protein–protein binding in the
Kd ≈ 10-mM regime.

MD simulation | protein crowding | diffusion | viscosity | dynamic clusters

The interior of cells is a densely crowded medium, in which
macromolecular concentrations range from 90 mg/mL in red

blood cells to 300 mg/mL in the mitochondrial matrix (1, 2).
Macromolecular crowding influences the stability of proteins,
reaction rates, the catalytic activity of enzymes, protein–protein
association, and diffusion (3–13). Excluded volume through
steric repulsion (14) and attractive protein–protein interactions
as well as hydrodynamic interactions affect protein diffusion
(6, 15–19). To address the influence of specific protein–protein
interactions on protein diffusion (20), crowded solutions with
proteins serving as both agents and readout have been studied
(5, 14, 16, 21–30).

Experimental techniques to study the effects of macromolecu-
lar crowding on diffusion (15) include tracer boundary spreading
(14), light scattering spectroscopy (31), fluorescence recovery
after photobleaching (FRAP) (32–34), electron spin resonance
(35), single-particle tracking (36), fluorescence correlation spec-
troscopy (FCS) (37–39), quasielastic neutron backscattering (27,
40), and NMR spectroscopy (24, 41, 42). Particle-based simula-
tions complement these experiments (15), treating the proteins
as spheres or ellipsoids (20, 43, 44), with residue-level coarse
graining (45–47), or as rigid all-atom models (16, 48). Hydro-
dynamic interactions contribute significantly to the slowdown of
protein diffusion in crowded environments (19). In implicit sol-
vent, they are ignored or approximated via the diffusion tensor
(16, 19, 44, 49).

Rapid advances in computing hardware and simulation algo-
rithms have opened up the opportunity to study macromolecular

crowding using atomistic molecular dynamics (MD) simulations.
Explicit solvent accounts directly for excluded volume effects
and hydrodynamic interactions and mediates short-range attrac-
tive and long-range electrostatic protein–protein interactions (5,
28–30, 50–52). Here, we use atomistic MD simulations of dense
protein solutions to calculate the viscosity and protein diffusion
coefficients as a function of protein concentration (Fig. 1). Ubiq-
uitin (UBQ), the third IgG-binding domain of protein G (GB3),
hen egg white lysozyme (LYZ), and villin headpiece (VIL) are
used as model proteins.

Soluble proteins self-associate in concentrated solution to
form transient and dynamic clusters (19, 24, 53–58). Cluster-
ing has also been reported for membrane proteins (59). The
influence of cluster formation on the protein translational and
rotational diffusivity has recently been addressed by atomistic
simulation studies (29, 30). Here, we build on these findings and
put cluster formation in the framework of the Stokes–Einstein
relations connecting viscosity, cluster size, and diffusion. Central
questions are (i) whether the Stokes–Einstein relations remain
valid in concentrated protein solutions (60), (ii) how transient
protein interactions affect the diffusivity and apparent hydrody-
namic radii of proteins in concentrated solutions (42), (iii) how
viscosity depends on protein concentration (39, 61, 62), and (iv)
whether colloid models apply to concentrated protein solutions.

To address these questions, we perform extensive MD sim-
ulations, develop a cluster model of concentration-dependent
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Fig. 1. Representative simulation snapshots of dense UBQ solution (200
mg/mL, N = 405) and GB3 solution (100 mg/mL, N = 20). Blue lines indicate
the periodically replicated simulation boxes. Proteins are depicted as green
surface (UBQ) or green ribbons (GB3); Na+ and Cl− ions as blue and cyan
balls, respectively; and TIP4P-D water as red sticks.

protein diffusion, and compare our results to the theoretical
predictions for hard-sphere (HS) colloidal suspensions without
and with attractive interactions. We put our findings in the con-
text of a wide range of experimental and simulation studies and
obtain a remarkably consistent picture of the diffusive dynamics
in concentrated solutions of soluble globular proteins.

Results
Shear Viscosity Increases Strongly with Protein Volume Fraction.
The viscosity of concentrated protein solutions and of TIP4P-
D solvent at different ion concentrations was calculated from the
pressure tensor fluctuations (SI Appendix, Fig. S5). The quadratic
function Eq. 3 fits η(φ) well over the simulation range, φ≤ 0.15
(Fig. 2, squares). We obtained similar fit parameters b for UBQ,
GB3, and VIL solutions, whereas b of the LYZ solutions is sig-
nificantly lower (Table 1). We calculated η0 = 0.937 mPa·s from
the average viscosity of solutions of TIP4P-D (65) water with
120 mM, 157 mM, and 200 mM NaCl. The values of the cal-
culated LYZ viscosities are in remarkably good agreement with
experimentally determined viscosities of the same protein (61).
For all four proteins, the viscosities calculated from the pres-
sure tensor fluctuations are bracketed by the experimental values
for BSA (62), human serum albumin (HSA), and ribonuclease A
(RNaseA) (39) solutions (Fig. 2).

The viscosity of dense protein solutions exceeds the Einstein
prediction η= η0 + 2.5φ for noninteracting HS colloids (66) even
after correction for high concentration (63). The pronounced
increase in the viscosity with protein concentration beyond the
nonlinear HS viscosity model (63) indicates that short-range
attractive interactions between the proteins cannot be ignored.
For colloids, the second-order term bφ2 in Eq. 3 for the viscosity
is related to the attraction strength, as measured by the osmotic
virial coefficient (67–69). In the following, we use η(φ) in Eq. 3
with values of b listed in Table 1 to account for the dependence
of the viscosity on the protein volume fraction.

Translational Diffusion Slows Down at High Protein Density. As
shown in Movie S1 for GB3 at 200 mg/mL with N = 540 proteins,
translational and rotational diffusion in concentrated solution is
strongly impacted by protein interactions. For each protein in the
simulation box, mean-squared displacement (MSD) curves were
calculated and fitted to the Einstein relation in SI Appendix, Eq.
S5 (SI Appendix, Fig. S6). The MSD curves of the dense pro-
tein solutions averaged over starting times and proteins are linear
at times exceeding 10 ns. The translational diffusion coefficients
DPBC

t obtained by fitting the Einstein relation to the MSD from
10 ns to 30 ns are therefore long-time diffusion coefficients. The
MSD curves of the dilute solutions (one protein in the simulation

box) are linear at small delays and were fitted to the Einstein
relation from 0 ns to 5 ns. We corrected DPBC

t for large finite-
size effects using Eq. 7, where we used η(φ) from the quadratic
fit, Eq. 3. The values before finite-size correction are listed in SI
Appendix, Table S3.

After finite-size correction, the translational diffusion coef-
ficient Dt of dilute UBQ is consistent with results of NMR
spectroscopy (71, 72) in dilute solution. Our calculated Dt val-
ues of LYZ are bracketed by measurements in dilute and dense
solutions (21, 24, 25, 71–76). The spread in the measured dif-
fusion coefficients of LYZ is possibly due to differences in pH
value, ionic strength, and temperature in the different exper-
iments. All simulation values of Dt in the dilute solution are
very close to Hydropro (70) predictions (Fig. 3A). The transla-
tional diffusion coefficients calculated for the large systems (with
N ≥ 120 proteins) at 200 mg/mL concentration are similar to the
values for the small systems (N ≤ 20) at the same concentration,
decreasing slightly with increasing box sizes (number of N ). For
all proteins, our dynamic cluster model Eq. 8, developed below,
accounts nearly quantitatively for the slowdown of translational
diffusion with increasing concentration.

Crowding Strongly Affects Rotational Diffusion. Rotational diffu-
sion coefficients D̄r and D̃r of the dense protein solutions were
obtained by fitting quaternion correlations (80) and by inte-
grating the orientational correlation function 〈〈P1(cos θ(t))〉〉,
respectively, over the time range 0–100 ns (SI Appendix). Fits to
elements of the quaternion covariance matrix are shown in SI
Appendix, Fig. S7. The resulting rotational diffusion coefficients
D1–D3 are shown in SI Appendix, Fig. S8. Fits to the orientational
correlation function are shown in SI Appendix, Fig. S9.

Orientationally averaged diffusion coefficients D̄r and D̃r

after finite-size correction (81) decrease strongly with increas-
ing φ (Fig. 3B). At infinite dilution, the UBQ and GB3 results
are bracketed by the rotational diffusion coefficients obtained
from Hydropro (70) calculations and from NMR spectroscopy

Fig. 2. Viscosity of concentrated protein solutions as a function of protein
volume fraction from all-atom MD simulations (symbols), experiments (dot-
ted lines and gray shading), and HS colloid theory (dashed lines). Blue, UBQ;
orange, GB3; green, LYZ; red, VIL. The viscosity η was calculated from MD
using fluctuations in the pressure tensor (SI Appendix, Eq. S3, squares; fit of
Eq. 3, solid lines) and the Stokes–Einstein (SE) relations (Eq. 6; small systems
N≤ 20, circles; large systems N≥ 120, diamonds). Green and purple dotted
lines: fits of Eq. 3 to experimental data on concentrated LYZ (61) and BSA
(62) solutions. Magenta and olive dotted lines: exponential fit [equation 4
in Zorrilla et al. (39)] to the experimental data on HSA and RNaseA solutions
(39). Black dashed line: Einstein expression for HS colloidal suspensions (Eq.
4). Brown dashed-dotted line: Ladd expression (63, 64) for HSs (Eq. 5).
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Table 1. Viscosity coefficient b, clustering propensity ζ, Baxter parameter τ , and effective dissociation constant Kd for nonspecific
protein–protein binding in concentrated solutions of UBQ, GB3, LYZ, and VIL

Protein b,mPa·s ζ τ cl Kcl
d , mM τRDF KRDF

d , mM τDt KDt
d , mM τkoff Kkoff

d , mM τη Kηd , mM

UBQ 55.3 8.2 0.12 19 0.13 21 0.13 21 0.49 ∼80 0.038 6.1
GB3 63.1 8.8 0.11 26 0.19 44 0.13 30 0.34 ∼80 0.033 7.6
LYZ 32.5 3.6 0.27 26 — — — — 0.80 ∼80 0.071 6.9
VIL 56.2 11.6 0.09 28 — — 0.13 43 0.24 ∼80 0.037 12.2

τ cl and Kcl
d are from cluster sizes, τRDF and KRDF

d are from radial distribution function g(r), τDt and KDt
d are from D′t (φ) at low protein concentration, τkoff

and K
koff
d are from binding off rates, and τη and Kηd are from viscosity term b.

(77, 78). The experimental rotational diffusion coefficient in
dilute LYZ solution reported in ref. 73 is slightly lower than the
calculated values, whereas the rotational diffusion coefficients
reported in ref. 25 agree well with our data at all protein con-
centrations. The calculated rotational diffusion coefficients of
dilute LYZ and VIL are in fair agreement with Hydropro (70)
predictions. As for the translational diffusion, the rotational dif-
fusion coefficients calculated for the large systems (N ≥ 120) at
200 mg/mL concentration are close to the values of the small sys-
tems (N ≤ 20) at the same concentration, being slightly lower for
UBQ and slightly higher for GB3. The dynamic cluster model
Eq. 9 predicts the rotational diffusion coefficients of UBQ,
GB3, VIL, and LYZ accurately over the entire concentration
range, except for the LYZ solution at 100 mg/mL concentration,
where the effect of the weak clustering (Fig. 3C) is somewhat
overestimated.

Diffusion in Dense Protein Solutions Follows the Stokes–Einstein
Relation. Given translational and rotational diffusion coeffi-
cients, the viscosity can be estimated from the Stokes–Einstein
relations (Eq. 6). For all small systems (N ≤ 20), we observe
excellent agreement between the viscosity calculated from the
autocorrelation of the pressure tensor fluctuations and from the
diffusion coefficients (Fig. 2), indicating that the dense protein
solutions show normal (Stokes–Einstein) diffusion for all pro-
tein volume fractions considered here. For the large systems
(N ≥ 120), slight deviations in Dt and Dr (Fig. 3) lead to strongly
overestimated viscosity (diamonds in Fig. 2). Therefore, in prac-
tical calculations we advise against calculating the viscosity via
the Stokes–Einstein relation, Eq. 6, because the results are quite
sensitive to the uncertainties in Dt and D̄r .

Hydrodynamic Radius, Cluster Size, and Diffusion Are Related. We
obtained very similar hydrodynamic radii from the Stokes–
Einstein relations for translation and rotation, Eqs. 10 and 11,
respectively (Fig. 3D). Therefore, after correcting for finite-size
effects with actual shear viscosities η(φ), both translational diffu-
sion and rotational diffusion follow Stokes–Einstein theory even
at high protein volume fractions. Only values for the small sys-
tems (N ≤ 20) are shown, because only for these systems was the
computationally expensive calculation of the viscosity from the
pressure fluctuation autocorrelation function performed.

If the increase in viscosity were to capture all factors that
contribute to the concentration-dependent slowdown of protein
diffusivity, then the hydrodynamic radius, calculated from the
Stokes–Einstein relations, Eqs. 10 and 11, should remain con-
stant at all concentrations. Instead, we observe that the effective
hydrodynamic radius cubed, Rh

3, increases with protein volume
fraction φ. This dependence is consistent with protein cluster
formation (Fig. 3C). Indeed, when calculating the cluster size
distribution based on an α-carbon distance cutoff criterion, the
cluster size distribution shifts to larger clusters at increasing
protein volume fraction (SI Appendix, Fig. S10). For protein con-
centrations up to 100 mg/mL, the mean number of proteins in a
cluster grows linearly as m(φ) = 1 + ζφ, with clustering propen-

sity ζ listed in Table 1 (Fig. 3C). The highest concentration
(200 mg/mL) was not included in the fit, because the close
proximity of proteins causes a significant dependence of the cal-
culated mean cluster size on the cutoff criterion (SI Appendix,
Fig. S11). Given the linear increase of cluster size with pro-
tein volume fraction φ, the effective hydrodynamic radius cubed
should likewise increase linearly with φ, Rh

3(φ) =Rh,φ=0
3(1 +

ζφ), where we assumed that the hydrodynamic radius cubed is
proportional to the cluster volume. Remarkably, the dynamic
cluster model accounts nearly quantitatively for the relative
increase of Rh

3(φ) (Fig. 3D).
As shown in SI Appendix, the clustering propensity ζ is related

to an effective dissociation constant Kd via the protein volume
vp , ζ = 1/(vpKd). Given protein volumes vp(UBQ) = 10.4 nm3,
vp(GB3) = 7.2 nm3, vp(LYZ) = 17.2 nm3, and vp(VIL) = 5.1
nm3 (SI Appendix, Fig. S12), we obtain dissociation constants
of K cl

d (UBQ) = 1/(8.2× 10.4 nm3×NA)≈ 19 mM, K cl
d (GB3)≈

26 mM, K cl
d (LYZ)≈ 26 mM, and K cl

d (VIL)≈ 28 mM with NA

Avogadro’s constant (Table 1).

Effective Viscosity Accounts for Hydrodynamic Interactions. We
investigated whether the effective viscosity η(φ) captures the
indirect (hydrodynamic) effects of increased protein concentra-
tion and cluster formation, i.e., all of the effects that are not
accounted for by an increased effective hydrodynamic radius.
For each protein, we recorded the times at which it is free, i.e.,
not in any cluster (SI Appendix, Fig. S13). For these trajectory
segments, we calculated MSD curves (SI Appendix, Fig. S14)
and translational diffusion coefficients D free

t . D free
t could not

be reliably determined for the proteins at the highest concen-
tration (200 mg/mL) due to insufficient sampling of unbound
proteins. For all four protein species, the product η(φ)D free

t (φ)
is approximately constant as a function of concentration (SI
Appendix, Fig. S15). We conclude that the effective viscos-
ity indeed accounts for the hydrodynamic contributions to the
diffusivity slowdown.

Displacement Pair Correlation Shows Contribution from Direct and
Hydrodynamic Interactions. We calculated the displacement pair
correlation introduced by Ando and Skolnick (19) (SI Appendix).
We analyzed the protein pair correlation for pairs at distances
0.6–3 nm. At distances corresponding to cluster formation, we
observed highly correlated motion for all protein pairs at all con-
centrations and time delays (SI Appendix, Fig. S16). At increas-
ing pair distance (∼2–3 nm), the pair correlation decreased
gradually.

Protein Binding Interfaces. The interactions between the pro-
teins in clusters were loose but not entirely random in their
orientation (SI Appendix, Fig. S17). For UBQ, the preferred
binding interface coincides remarkably well with the noncova-
lent dimer interface reported from NMR measurements (82),
more or less independent of protein concentration (Fig. 4). It
includes residues 8–11, 20, 24, 25, 28, 31–42, 46–49, 54–60, and
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Fig. 3. Protein diffusion and clustering. (A and B) Concentration-dependent translational (A) and rotational (B) protein diffusion. (A) Dependence of the
translational diffusion coefficient on protein volume fraction φ. Solid circles and diamonds show the finite-size corrected diffusion coefficients Dt of the
small systems (N≤ 20) and large systems (N≥ 120), respectively. Open squares show Hydropro calculations (70), and other open symbols show experimental
data. UBQ data: 4 (71), 5 (72). LYZ data: 4 (73), 5 (74), C (75), B (21), ? (76), + (24), × (25). Lines show the predictions from the dynamic cluster
model Eq. 8 with fitted Dt,φ=0. (B) Dependence of the rotational diffusion coefficients on protein volume fraction φ. Solid circles and diamonds show the
diffusion coefficients obtained from the anisotropic diffusion tensor and corrected for finite-size effects (D̄r ) for the small systems (N≤ 20) and large systems
(N≥ 120), respectively. Stars (?) and plus signs (+) show the finite-size corrected diffusion coefficients D̃r from integration of 〈〈P1(cos θ)〉〉 for the small and
large systems, respectively. Triangles (4) represent NMR data for dilute UBQ (blue) (77), dilute GB3 (orange) (78), and dilute LYZ (green) (73) solution. Green
crosses (×) show NMR data for LYZ (25). Open squares show results from Hydropro (70) calculations. Lines show the predictions from the dynamic cluster
model Eq. 9 with fitted Dr,φ=0. B, Inset shows a zoom-in at high protein volume fraction. (C and D) Protein-cluster model. (C) Dependence of mean cluster
size m(φ) on protein volume fraction φ [circles for small systems (N≤ 20), diamonds for large systems (N≥ 120)]. The dashed line shows a linear fit 1 + ζφ

to the data at 0–100 mg/mL with binding propensity ζ listed in Table 1. Purple circles and diamonds are results from a Monte Carlo simulation of Baxter’s
sticky HSs with N = 16 and N = 120 particles in the box, respectively, using τ = 0.15 and finite-range attractive interactions up to 1.05 σ. The dotted curve
shows the fit m(φ) = 1 +φ/τ + 743.3φ3 to the MC data up to φ= 0.15. Green crosses show experimental data on LYZ cluster formation (79). (C, Inset)
Representative simulation snapshot of dense UBQ solution (100 mg/mL). Blue lines indicate the periodically replicated simulation boxes. Colors and colored
labels indicate transient UBQ protein clusters and cluster size m, respectively (solvent not shown). (D) Dependence of reduced hydrodynamic radii cubed,
Rh

3/Rh,φ= 0
3, on protein volume fraction φ. The effective Rh is calculated from the Stokes–Einstein relations for translation, Eq. 10 (circles), and for rotation,

Eq. 11 (squares). The dashed lines show the prediction 1 + ζφ from C with ζ values from Table 1.

71–76. The C-terminal tail (residues 71–76) and an adjacent rel-
atively hydrophobic surface patch show strong involvement, in
line with experimental evidence (82). In dense LYZ solutions,
we observed that residues Asp48 and Arg73 contribute most to
LYZ–LYZ interaction (SI Appendix, Fig. S17). In a Brownian
dynamics study (83), these residues were found to play crucial
roles in the formation of a LYZ–LYZ encounter complex.

Colloidal Suspension Model. Baxter’s attractive (sticky) HSs (68,
69, 84–86) are widely used as a model for suspensions of inter-
acting colloidal particles. Their association constant is related

to the dimensionless Baxter parameter τ as τ = vHSKd (derived
in SI Appendix), where vHS is the HS volume. Low τ indicates
high protein stickiness. We conducted Monte Carlo (MC) sim-
ulations of Baxter sticky HSs with τ = 0.15 and finite-range
attractive interactions up to 1.05 σ of N = 16 and N = 120 par-
ticles in a simulation box. The mean cluster size grows linearly
at low protein concentrations, deviating for φ> 0.075 (Fig. 3C).
Considering the rough approximations of this model, the clus-
ter sizes of MC simulations of sticky HSs are in surprisingly
good agreement with those of the atomistic MD simulations.
We can also relate τ and Kd to the second virial coefficient
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Fig. 4. UBQ protein–protein interaction interfaces. Red, white, and blue
indicate strong, intermediate, and weak involvement in UBQ–UBQ contacts.
The NMR experimental noncovalent dimer interface is derived from Liu et al.
(82). The rightmost view indicates hydrophobic (white), polar (green), acidic
(red), and basic (blue) surface residues. C indicates the C terminus.

(69) B2 = 2π
∫∞
0

r2 dr [1− g(r)] = 4vHS− vHS/τ = 4vHS− 1/Kd .
Integration of the radial distribution function of the UBQ cen-
ters at 30 mg/mL and GB3 centers at 39 mg/mL over the first
peak gives us values of B2(UBQ) =−38.9 nm3 and B2(GB3) =
−8.9 nm3, respectively (SI Appendix, Fig. S18) (no data for
LYZ and VIL, as we did not conduct simulations at low con-
centrations for these proteins). With vp(UBQ) = 10.4 nm3 and
vp(GB3) = 7.2 nm3 and under the assumption of the sticky HS
model, we thus obtain KRDF

d (UBQ) = 21 mM and KRDF
d (GB3) =

44 mM, in good agreement with the values from the cluster
model (Table 1).

For the sticky HS model, Cichocki and Felderhof (68) derived
a low-density expansion of the long-time single-particle diffusion
coefficient in terms of the volume fraction,

Dt(φ)

Dt,φ=0
≈ 1−

(
2.0972 +

0.562

τ

)
φ. [1]

We determined the slope D ′t,φ=0/Dt,φ=0≈ 6.3 (Fig. 5A, dashed-
dotted line) from a fit to our protein simulation data for UBQ
and GB3 at low φ, which gives us a value of τDt ≈ 0.1. From
τDt , vp(UBQ) = 10.4 nm3, and vp(GB3) = 7.2 nm3, we obtain
apparent dissociation constants of KDt

d (UBQ) = τ/(NAvp)≈ 21

mM and KDt
d (GB3)≈ 30 mM that are in good agreement with

the Kd values obtained directly from the cluster model and by
integration of g(r) (Table 1). Since the relative concentration-
dependent slowdown of VIL diffusivity is similar to that of UBQ
and GB3 (Fig. 5A), we also calculated KDt

d (VIL)≈ 43 mM using
the same τDt . This does not apply for LYZ solutions.

Cichocki and Felderhof (68) also evaluated the quadratic term
in the viscosity expansion,

η(φ)

η0
≈ 1 + 2.5φ+

(
5.931 +

1.899

τ

)
φ2. [2]

Equating b = 5.931 + 1.899/τ with the coefficient b from the φ2

term in the viscosity expansion fitted to MD data (Eq. 3 and
Table 1), we obtain values of τη and K η

d (Table 1), which are
again close to those obtained from the cluster model, g(r), and
Dt(φ) (Table 1).

Dissociation Constant from Off Rate of Nonspecific Complexes.
The cumulative distribution functions of the lifetimes of pro-
tein pairs (SI Appendix, Fig. S19) show that most pairs stay
together for 1–50 ns, indicating dynamic clustering according
to Liu et al.’s (24) terminology. The lifetimes of protein pairs
are independent of the protein concentration, supporting the
presence of dynamic protein clusters rather than protein aggre-
gation. From the cumulative distribution function, we obtained
the same median protein pair lifetime of t̃off≈ 5 ns for all
proteins and concentrations and defined an off rate for non-
specific complexes as koff = 1/toff = ln(2)/t̃off≈ 1.4× 108 s−1,
assuming exponential kinetics. Assuming in addition a Smolu-
chowski on rate, kon = 4πDtRh , and substituting the Stokes–
Einstein relation for translational diffusion, we expect an on
rate for nonspecific complexes of kon = 2kBTNA/3η0≈ 1.8× 109

M−1·s−1. The resulting “kinetic” dissociation constant K
koff
d =

koff/kon≈ 80 mM agrees well with those obtained from the other
methods (Table 1).

A B

Fig. 5. Concentration-dependent protein diffusion. (A) Dependence of the normalized translational diffusion coefficient Dred
t on protein volume fraction

φ. Solid circles show MD data from this study. Open circles show data from simulation studies (16, 26, 29, 87). Open triangles denote data from experimental
studies (21–27, 75, 76, 88–93). Hb, hemoglobin; Mb, myoglobin; “Mixed,” CI2 in different dense protein solutions; Ova, ovalbumin. The solid curves show the
prediction of the dynamic cluster model Dt,clust(φ) (Eq. 8, no adjustable parameters) for UBQ, GB3, LYZ, and VIL solutions, indicated by corresponding colors.
The dashed and dotted curves show the slowdown of Dred

t predicted from colloid theory on noninteracting HSs by van Blaaderen et al. (94) and Tokuyama
and Oppenheim (95), respectively (SI Appendix). The dashed-dotted line shows a linear fit to Dred

t of UBQ and GB3 at φ≤ 0.04. A plot with experimental
studies resolved by symbols is shown in SI Appendix, Fig. S20A. (B) Dependence of the normalized rotational diffusion coefficient Dred

r on protein volume
fraction φ. Solid circles show MD data from this study. Open circles show data from simulation studies (16, 29). Open triangles denote data from experimental
studies (22, 25, 96). “Cell”: Hb or Mb in different cell types. The solid curves show the prediction of the dynamic cluster model Dr,clust(φ) (Eq. 9, no adjustable
parameters) for UBQ, GB3, LYZ, and VIL solutions, indicated by corresponding colors. The dashed curve shows the slowdown of Dred

r predicted from colloid
theory for noninteracting HSs (97) (SI Appendix). A plot with experimental studies resolved by symbols is shown in SI Appendix, Fig. S20B.
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Discussion
Relative Slowdown in Diffusion Is Consistent with Experiment and
Cluster Model. The relative slowdown of translational and rota-
tional diffusion of UBQ, GB3, LYZ, and VIL at increas-
ing protein volume fraction is within the range of published
experimental and simulation results. Literature data on the
protein-concentration dependence of Dt were normalized to
D red

t =Dt(φ)/Dt,φ=0. If only protein mass concentrations were
given, protein volume fractions were approximated according
to the dependence of UBQ volume fraction on UBQ mass
concentration.

The dependence of D red
t on protein crowding is surprisingly

consistent across the different studies (Fig. 5A and SI Appendix,
Fig. S20A), considering that they cover both experiments and
simulations and report results for proteins of different size,
shape, and charge, for different model resolution and different
experimental conditions (temperature, pH value). In particular,
our simulation results for D red

t of dense VIL solutions are in line
with a recent study by Nawrocki et al. (29). Likewise, the slow-
down of D red

t of dense LYZ solutions agrees with the majority of
experimental data on LYZ diffusion (green triangles in Fig. 5A
and open green symbols in SI Appendix, Fig. S20A). We conclude
that the slowdown of translational diffusion in concentrated pro-
tein solutions is a general feature of soluble proteins and that the
extent of the slowdown is governed by the clustering propensity
of the protein (notwithstanding additional shape effects, which
may not be captured by our choice of globular proteins). We also
conclude that the colloidal models of noninteracting HSs (94, 95)
(SI Appendix and dashed and dotted lines in Fig. 5) significantly
underestimate the slowdown of translational diffusion of most
proteins studied.

We collected data on the slowdown of the rotational diffu-
sion from experimental and simulation studies and normalized
the diffusion coefficients to D red

r = D̄r (φ)/D̄r ,φ=0. The slowdown
of D red

r is less consistent in the considered studies (Fig. 5B and
SI Appendix, Fig. S20B) than the slowdown of D red

t . We sug-
gest that the greater variability in the slowdown of D red

r is due to
the R3

h dependence of D red
r compared with the Rh dependence

of D red
t in the Stokes–Einstein relations. Up to intermediate

concentration (100 mg/mL), the slowdown of D red
r in LYZ solu-

tions, although in line with experiment (25), does not abide by
the cluster model prediction, even though the model takes into
account the reduced clustering propensity of the LYZ protein,
possibly from its high positive charge (+9) (Fig. 3C and ζ in
Table 1). Indeed, the slowdown of D red

r at low LYZ concen-
trations appears to be better represented by a noninteracting
HS model. In our simulations, LYZ forms very few clusters at
intermediate (100 mg/mL) concentration. At higher concentra-
tion (200 mg/mL), we find a significant contribution of higher
cluster numbers (>5) (SI Appendix, Fig. S10). From small-angle
X-ray scattering data, Stradner et al. (79) inferred slightly larger
LYZ clusters (green crosses in Fig. 3C) compared with our sim-
ulations. However, the higher pH in their experiments may have
reduced the net protein charge and increased cluster formation.
Scattering data were subsequently found to be compatible with
lysozyme being largely repulsive (98).

We stress that our dynamic cluster model (Eqs. 8 and 9 and
solid lines in Figs. 3 A and B and 5) predicts the relative slow-
down in diffusion based on protein cluster size and viscosity. In
light of this, the prediction of the model represents the observed
and calculated slowdown in diffusion strikingly well. Our cluster
model relates differences in the relative diffusivities of differ-
ent proteins to differences in their nonspecific interactions. This
observation provides a physical basis for the protein-dependent
concentration scaling factor ξ introduced by ref. 21 to establish
consistency with a HS diffusion model (95).

Separating the Effects of Clustering and Hydrodynamics. Using an
elegant MD simulation setup, Nawrocki et al. (30) found that
direct protein interactions are the dominant contributors to the
slowdown of rotational diffusivity, whereas hydrodynamics play
only a minor role. Here, we could show that the effective vis-
cosity accounts for the indirect, hydrodynamic effects of dense
solutions on the diffusivity slowdown (SI Appendix, Fig. S15).
In dense UBQ, GB3, and VIL solutions at 200 mg/mL, the
viscosity is ∼2.5-fold increased compared to the solvent viscos-
ity (Fig. 2). The translational diffusion decreases by a factor
of ∼4, whereas the rotational diffusion decreases by a factor
of ∼6 (Fig. 3 A and B). The direct effect of protein clus-
tering (i.e., the increase in the effective hydrodynamic radius)
accounts for an additional factor ∼4/2.5 = 1.6 on translational
diffusion and a factor ∼6/2.5 = 2.4 on rotational diffusion. We
therefore find that direct clustering interactions contribute to
∼40% and 50% of the total slowdown in translational and rota-
tional diffusivity, respectively, of dense UBQ, GB3, and VIL
solutions.

The displacement pair correlation function assesses concerted
protein motion and is used to distinguish short-range and long-
range interactions in simulations of crowded systems (19). At
short distances, the proteins form clusters, and their motion
is highly correlated (SI Appendix, Fig. S16). The pair corre-
lation decreases at larger protein pair distances, because the
short-range interactions fade out and only contributions from
long-range effects (electrostatics, hydrodynamics) remain. Inter-
estingly, at low protein concentrations (30–50 mg/mL), the pro-
tein motions are correlated up to high distances, whereas the
correlation decreases quickly with increasing distance at high
protein concentration. This suggests that the motion of pro-
teins at low concentration is more effectively coupled by hydro-
dynamic and electrostatic forces. At high concentrations, the
coupled motion of a protein pair at short distances appears to
be effectively quenched by interference of competing proteins.
This trend is surprising, because proteins may serve as bridging
intermediates at high concentrations, which should effectively
increase the pair correlation for the distances considered.

Protein Solutions as Colloidal Suspensions with Attractions. The
effective dissociation constants Kd and Baxter parameters τ
were derived according to the low-concentration behavior of the
sticky-HS model for attractive colloidal particles. The Kd values
for nonspecific protein–protein binding derived from the struc-
ture, dynamics, and viscosity of the protein solutions are fairly
consistent with each other (Table 1). As listed in Table 1, Kd esti-
mates from m(φ), g(r), Dt(φ), koff, and η(φ) vary within about
one order of magnitude for a given protein. The correspond-
ing values of τ also agree well with each other. Interestingly,
the decreased clustering propensity of LYZ solutions compared
with UBQ, GB3, and VIL solutions is reflected only by a higher
τ , but not by an increase in the effective dissociation constant
Kd = τ/vp , because the increased τ value of LYZ is compen-
sated by its larger volume vp . In turn, this results in a relatively
small ζ = 1/(Kdvp) for LYZ. For our limited set of four proteins,
protein stickiness decreases with size, thereby ameliorating the
aggregation problem for large proteins pointed out by Ando and
Skolnick (19).

The formation of 3D clusters explains the strong increase
of the mean cluster size m(φ) in sticky-HS solutions at large
φ (Fig. 3C). Sticky spheres have no orientational preference,
which allows the formation of compact clusters. By contrast,
protein–protein interactions are directional and only some pro-
tein orientations result in favorable interactions (SI Appendix,
Fig. S17). The orientational preference disfavors the formation
of compact clusters, as can be seen in the formation of only
m − 1 protein connections for a cluster of size m up to interme-
diate (100 mg/mL) protein concentration (SI Appendix, Fig. S21).
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https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1817564116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1817564116


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

In consideration of these differences, τ should be considered
an effective parameter whose value depends on the property
that is fitted and on the fit range. Therefore, we emphasize that
the sticky HS model is only a rough approximation of a com-
plex protein solution, which nonetheless explains the behavior of
the complex protein systems surprisingly well up to intermediate
protein concentration.

From light-scattering experiments, Scherer et al. (57) esti-
mated τ ≈ 0.6 for concentrated monoclonal antibody mAB2
solution (150 mM NaCl concentration), which is of the same
order of magnitude as our simulation results (Table 1). They
observed a strong dependence of τ on the ionic strength, ranging
from∼1,000 to∼0.5 when increasing the ion concentration from
40 mM to 600 mM. It will be interesting to study the effect of
varying ionic strengths on τ by MD simulations. In contrast to
mAB2 solutions, the scattering data for antibody mAB1 solu-
tions could not be represented by Baxter’s sticky HS model due
to stronger (and possibly long-range) interactions, whereas an
alternative model based on two oligomeric species (57, 58) fitted
the data well. This suggests that only weakly interacting proteins
are well described by the attractive HS model (57).

Limitations. The generality of our findings on the connection
of cluster size, viscosity, and diffusion is subject to several
limitations.

All four proteins studied here are small and globular. This
justifies the use of averaged rotational diffusion coefficients D̄r

and facilitates the comparison with colloid theory, but does
not consider the effects of different shapes on the concentra-
tion dependence of diffusion. Dense solutions of larger proteins
and proteins with varying degree of anisotropy will have to be
simulated atomistically to address these issues.

Slight finite-size effects on protein clustering and diffusivity
were observed. In the smallest simulation of dense protein solu-
tions (UBQ at 200 mg/mL with N = 15 proteins), occasional
formation of a box-spanning cluster was observed, as seen in the
contribution of cluster sizes m = 12−15 to the cluster size distri-
bution for this system (SI Appendix, Fig. S10). This artifact was
not seen in any of the other simulations and does not appear
to strongly affect the diffusivity and viscosity of the UBQ solu-
tion (Figs. 2 and 3). The translational and rotational diffusion
coefficients at high concentration (200 mg/mL) vary slightly for
higher protein numbers in the simulation box. The absolute devi-
ations in Dt and Dr between small and large systems are small.
However, the relative deviations in Dt and Dr are substantial,
overestimating the viscosity calculated from the Stokes–Einstein
relations (Fig. 2, circles). On the one hand, we attribute these
deviations to incomplete sampling of the extremely large simu-
lation systems. We expect that the simulations with large system
size (N ≥ 120) take more time to equilibrate, thus introducing
a bias on the diffusion coefficients, which is not accounted for
by the current finite-size corrections (Eq. 7 and SI Appendix, Eq.
S10). On the other hand, we observe a significant tail to high
cluster numbers in the cluster distribution in these systems (SI
Appendix, Fig. S10). Whereas the mean cluster sizes in the small
and large systems are similar (Fig. 3C), occasional large clusters
in the large systems appear to slightly suppress diffusion in a way
not captured by the smaller simulation systems. Assessing and
quantifying both effects in detail would merit a separate study.

Based on the clustering data for UBQ and GB3 solutions,
we assume that the cluster size increases linearly with pro-
tein concentration up to intermediate (100 mg/mL) protein
concentration. Although this simple model works surprisingly
well in explaining our calculated diffusion data even at higher
concentrations (Fig. 3 A and B), the actual functional depen-
dence of cluster size on protein concentration may be nonlinear
and depend on the specifics of the system (protein type, pH,
ionic strength, temperature). Much longer simulations would be

needed to precisely determine the cluster distribution and mean
cluster size at high protein concentration.

The representation of dense protein solutions by Baxter’s
sticky HS suspensions is limited to weak, short-range protein–
protein interactions. As scattering data show (57), the sticky HS
model does not represent experimental data well for strongly
interacting particles or particles with significant attractive long-
range (electrostatic) interactions. In our simulations and in cel-
lular conditions, these interactions are effectively shielded by the
ions in the solution, making this limitation less relevant in vivo.
Nevertheless, it would be interesting to test the applicability of
the cluster model for these cases.

Conclusions
By performing all-atom molecular dynamics simulations of dense
protein solutions, we found an increase in the viscosity of the
solutions at higher protein volume fractions, consistent with
experimental results (39, 61, 62). This increase is considerably
higher than predicted by colloidal models of noninteracting
HSs, stressing the importance of measuring or calculating rather
than approximating the viscosity at protein volume fractions
approaching cellular crowding conditions. We calculated trans-
lational and rotational diffusion coefficients and corrected them
for finite-size effects using the respective viscosity of the solu-
tion. Translational diffusion and rotational diffusion are strongly
affected by protein crowding. For LYZ solutions, experimen-
tally measured diffusion coefficients are available also at high
concentration and are in excellent agreement with our simula-
tion data (Fig. 3 A and B). We calculated effective hydrody-
namic radii using the Stokes–Einstein relations and found that
a similar increase in the effective hydrodynamic radius can be
inferred from the slowdown of translational and rotational dif-
fusion caused by the formation of dynamic protein clusters.
Indeed, establishing consistency with the Stokes–Einstein rela-
tions requires accounting for protein cluster formation (42) as a
result of attractive interactions (60). Overall, we conclude that
the concentration dependence of protein cluster size, the trans-
lational and rotational diffusion coefficient, and viscosity are
consistent with each other (exception: LYZ at 100 mg/mL) and—
for the proteins studied here—are explained well by Baxter’s
sticky HS model of colloidal suspensions.

Representing the diffusion data in reduced form as a function
of protein volume fraction showed that the relative slowdown
in translational diffusion is consistent with results from previ-
ous studies. The relative slowdown in rotational diffusion shows
a larger spread, consistent with the notion that rotational diffu-
sivity depends more sensibly on clustering propensity and thus
on the specifics of the protein interactions. Dynamic cluster for-
mation has recently been observed also for membrane proteins
(59) and shown to slow down rotational diffusion. In light of
our analysis in terms of the cluster and colloidal models, we
would expect similar affinities Kd ≈ 10 mM for other abundant,
soluble proteins with similar size and shape. It will be inter-
esting to explore the limits of our cluster model, i.e., if the
cluster model remains valid for large, anisotropic, and more
sticky proteins. In this context, the effect of liquid–liquid phase
separation (99) on protein diffusivity is an exciting question to
address.

We find that the proteins favor certain orientations for interac-
tions and our findings on UBQ contact interfaces are consistent
with experiments (82). The protein interactions lead to highly
correlated motion at short distances and the correlation is sus-
tained up to larger distances at low concentration. At high
concentration, despite increased protein cluster formation, the
pair correlation (19) at similar distances is decreased.

In the cellular environment, the situation is complicated by
molecular heterogeneity, reactions, partitioning in microenvi-
ronments by phase separation, interactions with membranes
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and structural proteins, and other factors (99–102). Neverthe-
less, the findings here and in earlier work (103), as well as
the observation that diffusion in cell lysates is similar to dif-
fusion in crowded protein solutions (22), suggest that both in
concentrated solution and in cells, proteins appear to diffuse
not as isolated particles, but as members of dynamic clusters
between which they constantly exchange. From the consistency
of our diffusivity results with experiments in solution and on
the basis of our cluster model, we conclude that—in crowded
conditions corresponding to the cellular concentration—the
strength of nonspecific protein–protein interactions for abun-
dant proteins such as UBQ should correspond to low-millimolar
binding.

We can now carry out atomistic MD simulations of crowded
simulations at an unprecedented scale (29), here with up to
540 proteins and 3.6 million atoms in the box simulated over
microseconds. Atomistic simulations of solutions of protein mix-
tures, possibly reflecting the distribution of proteins in the cell,
no longer seem out of reach (52). Developments in nucleic acid
force fields (104–109) will make it attractive to test the above
findings on dense nucleic acid solutions and dense protein–
nucleic acid mixtures. Ultimately, the macromolecular diversity
in the cell will have to be considered (101) to predict passive
diffusion in vivo.

SI Appendix. SI Appendix contains supplementary text; SI
Appendix, Figs. S1–S21; SI Appendix, Tables S1–S3; Movie S1;
and SI references.

Movie S1. Shown is an atomistic MD simulation of 540 GB3 pro-
teins in concentrated solution (200 mg/mL) at simulation time
0–500 ns. The fully flexible proteins are shown in surface repre-
sentation and differentiated by color. For clarity, water and ions
are omitted. Proteins that seem to appear and disappear traverse
the periodic boundaries.

Materials and Methods
MD Simulations of Dense Protein Solutions. We performed all-atom MD sim-
ulations of solutions of human UBQ [PDB code 1UBQ (110)], GB3 [PDB code
1P7F (111)], LYZ [PDB code 1E8L (112)], and VIL [PDB code 1VII (113)] at up
to five different densities with N = 15 (UBQ) and N = 20 (GB3, LYZ, VIL) pro-
teins in the simulation box. In addition, the most concentrated UBQ and
GB3 solutions (200 mg/mL) were simulated with large simulation boxes con-
taining from N = 120 to N = 540 proteins (SI Appendix, Table S1). To mimic
an infinitely dilute system, MD simulations with a single protein copy were
carried out. The simulation procedures are detailed in SI Appendix.

Viscosity Calculation and Approximations. The low-frequency, low-shear vis-
cosity η(φ) of dense protein solutions differs from the viscosity η0 of the
pure solvent consisting of only water and ions. We determined η(φ) and η0

from MD simulations by integration of the autocorrelation functions of the
pressure tensor fluctuations (114), as detailed in SI Appendix. The depen-
dence of η on the protein volume fraction φ is well captured by a quadratic
function,

η(φ) = (1 + 2.5φ+ bφ2)η0, [3]

with parameter b fitted to the calculated viscosities, η0 the solvent viscosity
averaged over the NaCl concentrations used in this study, and the coeffi-
cient 2.5 adopted from Einstein’s colloid theory (66). The experiments of
Woutersen and De Kruif (69) have shown that the coefficient b increases
with the strength of attractions between colloidal particles.

We compared the calculated viscosities to predictions from colloid the-
ory. At low solute volume fractions φ, Einstein (66) predicted a linear
dependence of the viscosity of HS suspensions on φ,

η(φ) = (1 + 2.5φ)η0. [4]

For higher solute volume fractions, this expression was modified by Ladd
(63, 64) to

η(φ) =
1 + 1.5φ(1 + S(φ))

1−φ(1 + S(φ))
η0, [5]

with S(φ) =φ+φ2− 2.3φ3.
In addition, we also estimated the viscosity by assuming that the

Stokes–Einstein relations for rotational diffusion, Dr = kBT/(8πηRh
3), and

for translational diffusion, Dt = kBT/(6πηRh), are exactly satisfied, such that

η(φ) =
kBT

π

√
D̄r (φ)

27Dt
3(φ)

, [6]

where the bar indicates that we average over orientational asymmetries.

Translational Diffusion. Translational diffusion coefficients DPBC
t were

obtained for each protein density by fitting the Einstein relation to the
MSD, as detailed in SI Appendix. The diffusion coefficients were corrected
for finite-size effects using (115)

Dt = DPBC
t +

kBTξ

6πη(φ)L
, [7]

with ξ= 2.837297 and L the edge length of the cubic simulation box. In the
simulations of dilute proteins, where the protein radius Rp is comparable
to the box dimension L, we used the expanded correction, ξ= 2.837297−
4πRp

2/3L2 (115).
We compared the calculated translational diffusion coefficients to the

predictions of a dynamic cluster model without any free parameters,

Dt, clust(φ) = Dt,φ=0
η0

η(φ)(1 + ζφ)1/3
, [8]

where 1 + ζφ is the mean cluster size, as defined in SI Appendix and calcu-
lated directly from the MD structures. This model is based on the assumption
that the slowdown in translational diffusion is linked to the increase in
the effective hydrodynamic radius and in the viscosity via the Stokes–
Einstein relation for translational diffusion. We also compared the reduced
translational diffusion coefficients Dt(φ)/Dt,φ=0 to the approximate form
for monodisperse noninteracting HS colloidal suspensions (94, 95) (SI
Appendix).

Rotational Diffusion. Rotational diffusion coefficients were calculated fol-
lowing the procedure by Linke et al. (80, 116), as detailed in SI Appendix.
Additionally, an effective rotational diffusion coefficient was obtained from
fits to the orientational correlation function 〈〈P1(cos θ(t))〉〉= 〈〈cos θ(t)〉〉
(117, 118), as detailed in SI Appendix.

We compared the calculated rotational diffusion coefficients to the
predictions of the dynamic cluster model,

Dr, clust(φ) = Dr,φ= 0
η0

η(φ)(1 + ζφ)
, [9]

where we again assumed the Stokes–Einstein relation to apply with
a hydrodynamic radius cubed proportional to the mean cluster size
1 + ζφ. We also compared the reduced rotational diffusion coefficients
Dr (φ)/Dr,φ=0 to predictions from colloidal models of noninteracting HSs (97)
(SI Appendix).

Hydrodynamic Radius. We solved the Stokes–Einstein relations for transla-
tional and rotational diffusion to define effective hydrodynamic radii for
translation,

Rh, t(φ) =
kBT

6πη(φ)Dt(φ)
, [10]

and for rotation,

Rh, r (φ) =

(
kBT

8πη(φ)D̄r (φ)

)1/3

. [11]

Gaussian error propagation of Dt(φ), D̄r (φ), and η(φ) was employed to
estimate the errors of Rh,t and Rh,r .
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