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Abstract

Antimicrobial resistance extracts high morbidity, mortality and economic costs yearly by 

rendering bacteria immune to antibiotics. Identifying and understanding antimicrobial resistance 

are imperative for clinical practice to treat resistant infections and for public health efforts to limit 

the spread of resistance. Technologies such as next-generation sequencing are expanding our 

abilities to detect and study antimicrobial resistance. This Review provides a detailed overview of 

antimicrobial resistance identification and characterization methods, from traditional antimicrobial 

susceptibility testing to recent deep-learning methods. We focus on sequencing-based resistance 

discovery and discuss tools and databases used in antimicrobial resistance studies.

Antimicrobials are small molecules that can inhibit or kill bacteria. These small molecules 

are commonly used as therapeutics for bacterial infections, but some bacteria can grow and 

survive despite antimicrobial pressures, a property known as antimicrobial resistance. In 

clinical settings, resistant bacterial infections decrease available treatment options and 

increase morbidity and mortality compared with those caused by susceptible bacteria1–5. 

Resistance is observed against nearly all antimicrobials (FIG. 1a,b), including so-called last-
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resort antimicrobials used in life-threatening, multidrug-resistant infections6–10. Bacteria 

resistant to first-line antimicrobials infect 2 million people in the USA yearly, and these 

infections exact a US$20 billion health-care cost11–13. This problem is not isolated to the 

USA. In the European Union, antimicrobial resistance has accounted for >30,000 deaths and 

nearly 900,000 disability-adjusted life-years14. In fact, multiple national and global public 

health organizations categorize antimicrobial resistance as an imminent danger and 

uniformly agree that tracking its emergence and prevalence is critical to minimize the threat 

to human health14–17. Antimicrobial susceptibility testing (AST) is the traditional method 

for assaying antimicrobial resistance in bacteria (Box 1). These culture-based tests 

determine how well bacteria can grow in the presence of antimicrobials. AST is widely used 

in hospital clinical microbiology laboratories because it provides actionable phenotypic 

resistance data to guide patient treatment decisions. Although culture-based resistance 

determination can provide critical information for patient management and resistance gene 

epidemiology, it has drawbacks in implementation and information content18. Conducting 

AST requires microbiology facilities and trained clinical microbiology personnel for 

accuracy. Additionally, AST is viable only for cultivable bacteria, precluding studies on the 

emergence and spread of antimicrobial resistance in diverse and complex microbial 

communities with large fractions of currently uncultured bacteria19.

Bacterial antimicrobial resistance is usually genetically encoded (FIG. 1c). Genetically 

encoded antimicrobial resistance can occur through a number of mechanisms, including 

overexpression or duplication of existing genes, point mutations or the acquisition of entirely 

new genes via horizontal gene transfer (HGT). Improvements in next-generation sequencing 

technologies and computational methods are facilitating rapid antimicrobial resistance gene 

identification and characterization in genomes and metagenomes. These developing 

technologies and methods complement traditional culture-based methods for clinical and 

surveillance applications and provide opportunities for quick and sensitive resistance 

determinations in cultivable and uncultivable bacteria. Large-scale and comparative studies 

of human, animal and environmental samples have provided unprecedented insights into the 

global distribution of antimicrobial resistance genes and the spread of multidrug-resistant 

bacteria20–24, resistance exchange networks25 and how different habitats and phylogeny 

affect the evolutionary dynamics of antimicrobial resistance worldwide26. Understanding 

and surveying genetic determinants of resistance using sequencing data pose unique 

challenges that are being addressed by improved computational algorithms that organize 

genomic data and predict antimicrobial resistance and by improving in vitro sequencing 

modalities.

In this Review, we discuss the strengths and weak-nesses of current and emerging methods 

for studying resistance, including computational strategies and resources for resistance gene 

identification in genomic and metagenomic samples. We also describe recent advancements 

to mitigate weaknesses in resistance detection methods, and we highlight areas requiring 

greater focus.
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Sequencing-based resistance discovery

Advancements in sequencing technologies have increased bacterial sequence data 

availability, and continually decreasing costs have made sequencing a viable antimicrobial 

resistance surveillance tool. Several methods and tools have been published in recent years 

for detecting genetic determinants of antimicrobial resistance from whole-genome 

sequencing (WGS) and whole-metagenome sequencing (WMS) data (TABLE 1). 

Organizing sequencing data is an important pre-processing step before antimicrobial 

resistance gene analysis. Short reads, generated by technologies such as Illumina, can either 

be processed using assembly-based methods, whereby sequencing reads are first assembled 

into contiguous fragments (contigs) and then annotated by comparing with custom or public 

reference databases, or directly analysed using read-based methods, whereby resistance 

determinants are predicted by mapping reads directly to a reference database (FIG. 2).

Assembly-based methods.

The de novo assembly of WGS of bacterial genomes from short-read data is generally 

performed by De Bruijn graph (DBG)-based assemblers such as SPAdes27, Velvet28, 

ABySS29 and SOAPdenovo30. In this approach, sequencing reads are divided into shorter 

overlapping sub-sequences (called k-mers) of length k (where k is less than the read length) 

and are used to form a network graph. The assemblers then reconstruct the genome sequence 

by finding an optimum path (euler’s path) through the graph that visits each edge once (see 

reF.31 for more information on DBG-based assembly). Although the DBG approach is 

computationally efficient in handling high-volume sequencing data, it is greatly affected by 

errors introduced during sequencing32. Errors in sequencing data introduce false k-mers in 

the graph, resulting in fragmented assemblies. Several assemblers (for example, SPAdes and 

Velvet) heuristically eliminate these errors before finding a Euler’s path in the graph31,33. 

Assembling WMS data is more complicated than single-isolate assembly (FIG. 2a), as the 

algorithms need to account for unknown abundances of different organisms with unknown 

phylogenetic relationships32. In single-genome assembly, uniform sequencing coverage 

across the genome is used by assemblers to correct sequencing errors and to identify 

repetitive sequences and plasmids — several assemblers exploit the higher coverage of 

plasmids owing to copy number to distinguish between chromosome and plasmid sequences 

in isolate genomes34–37 — but uneven coverage of different organisms in WMS data makes 

detecting repeats difficult. Long stretches of identical sequences in unrelated species further 

complicate assembly by making it difficult to assign reads to a particular species. Thus, 

algorithms developed for single-genome assembly cannot be directly applied to assemble 

metagenomes. Several metagenome-specific assemblers have been developed to overcome 

these challenges, either by partitioning or optimizing the graph for uneven sequencing 

depths32. Some notable metagenomic assemblers are IDBA-UD38, MEGAHIT39, 

MetaSPAdes40 and MetaVelvet41 (extensions of SPAdes and Velvet for metagenomes). The 

CAMI project42, now starting its second iteration43, seeks to benchmark these assemblers 

on highly complex and close to real data sets for users. However, currently, there is no single 

assembler that stands out as the best one that would accurately reconstruct known genomes 

and capture the majority of the taxonomic diversity in real data sets. Both biological factors 

(such as sample source and microbial community structure) and technical factors (such as 
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library preparation method, sequencing depth and sequencing platform choice) affect the 

ability of an assembler to generate accurate and larger contigs. Thus, it is recommended to 

apply multiple assemblers on a subset of samples to determine the best fit for a given data 

set.

Following assembly, genomic or metagenomic contigs are annotated for resistance 

determinants by predicting protein-coding regions on contigs and then comparing them 

against antimicrobial resistance reference databases using similarity-based search tools (for 

example, BLAST44, USEARCH45 or DIAMOND46). Although pairwise alignment between 

the query and antimicrobial resistance reference sequences is the most commonly applied 

approach for characterizing the resistome from contigs, an inherent bias of databases 

towards human-associated organisms is reflected in prediction outputs, so choosing the 

appropriate databases to compare assembled contigs with reference sequences is 

imperative47.

Given sufficient coverage, assembly-based methods can construct whole genomes or large 

contigs with protein-coding genes, regulatory sequence information and the complete 

surrounding genomic context. This information can be used to study co-associated genes and 

biological pathways that are involved in resistance determination. Assembly and annotation 

of WMS data can identify antimicrobial resistance genes that are more divergent from and 

lack homology to known sequences in the reference databases. However, the process of de 

novo assembly and annotation is computationally expensive, time consuming and requires 

higher genome coverage than reference-based assembly or read mapping-based methods, 

which can be difficult to achieve for all samples, specifically when dealing with 

metagenomic samples with high microbial diversity and uneven taxonomic composition.

Read-based methods.

Antimicrobial resistance genes in a sample can be detected without genome assembly either 

by aligning reads to the reference databases using pairwise alignment tools such as Bowtie2 

(REF.48) or BWA49, or by splitting reads into k-mers and mapping them to the reference 

databases.

SRST2 (REF.50) is one widely used tool that aligns reads to a custom reference database 

using Bowtie2 to predict antimicrobial resistance genes in the sample. Alternatively, 

KmerResistance51 splits reads into k-mers, maps them and counts the co-occurrence of k-

mers between reads and a reference database to predict resistance genes and associated 

species. Both methods can identify antimicrobial resistance genes even in the presence of 

contaminants (for example, background noise in the raw reads owing to the presence of 

laboratory or host contamination) and in samples for which insufficient reads are available 

for de novo assembly, but they cannot predict antimicrobial resistance conferred by single-

nucleotide polymorphisms (SNPs). By contrast, ARIBA52 uses a hybrid approach where 

reference sequences in the database are first clustered using CD-HIT53 before sequences 

from each cluster are assembled independently. Resulting contigs are then compared with 

the closest reference to identify allelic variants. Additionally, ARIBA provides information 

on whether genes are complete or fragmented and reports sequence variants along with their 

potential effects (for example, missense, nonsense or frameshift mutations and small 
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insertions and deletions (indels)). Clustering reference sequences and using a representative 

sequence from the cluster to map reads considerably reduce ambiguous alignments54, but 

using a single linear representative locus masks subtle yet important variation between 

subtypes and subfamilies of genes within clusters54,55. To account for this information loss, 

Graphing Resistance Out of Metagenomes (GROOT)56, a newly established tool for 

resistome profiling of metagenomes, builds a variation graph for reference gene sets and 

aligns sequence reads to these graphs. Variation graphs are bidirectional acyclic sequence 

graphs that represent overall sequence variation within a given population. The alignment of 

reads against variation graphs effectively removes reference bias and facilitates accurate 

annotation of antimicrobial resistance genes. Before aligning sequences against a variation 

graph, traversals within the graphs are indexed by either Burrows–Wheeler transform or 

hash-map (minHash), indexing algorithms that considerably improve the mapping rate of 

large-scale sequencing reads to the graphs48,57. The read-based approach is generally fast 

and less computationally demanding because it bypasses de novo assembly, protein-coding 

gene prediction and pairwise alignment to public databases. For this reason, read-based 

methods have gained traction in recent years, especially in clinical diagnostics where 

conducting real-time sequencing-based resistance prediction is crucial.

Choosing the right approach.

Presently, there is no consensus on which sequence analysis approach is better, and the 

choice of analysis mainly depends on the type of sequencing (WGS versus WMS), 

availability of computational resources and the study objective. Both approaches have trade-

offs, as assembly causes information loss compared with direct read analysis58 but enables 

identification of protein-coding genes and for investigation of upstream and downstream 

regulatory elements, whereas direct read analysis lacks the positional information required to 

analyse upstream and downstream factors of identified resistance genes. New sequencing 

technologies, such as long-read sequencing and chromosome conformation capture-derived 

assays, are helping to alleviate this information loss by improving assembly fidelity (BOX 

2).

The read-based approaches scale well with ever-increasing query sequences and 

antimicrobial resistance reference data. More importantly, they enable identification of 

antimicrobial resistance genes from low-abundance organisms present in complex 

communities, which may be missed by assembly-based methods owing to incomplete or 

poor assemblies. However, mapping reads directly to large data sets can inflate false-positive 

predictions, as reads derived from protein-coding sequences may spuriously align to other 

genes as a result of local sequence homology59. Thus, it is important that the reference 

databases are comprehensive and contain all variants of the reference genes. Database choice 

is especially critical when identifying antimicrobial resistance genes from large and complex 

communities such as soil and ocean, as novel or distant homologues of antimicrobial 

resistance genes present in understudied, less characterized environmental communities may 

be missed.

Well-studied sample types, such as the human gut, are now extensively characterized, even 

for low-abundance microorganisms and, thus, read-based approaches can be more 
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confidently applied60. However, analysis of diverse samples is confounded by the lack of 

reference sequences, so the antimicrobial resistance genes in these environments are likely 

underestimated. To address this problem, a marker-based method, Short, Better 

Representative Extract Dataset (ShortBRED)61, was developed that enables fast and accurate 

profiling of the resistome in metagenomic data sets. ShortBRED first identifies marker 

sequences (short peptide sequences) representative of antimicrobial resistance protein 

families from the reference database and then maps reads to these markers to quantify the 

relative abundance of the associated antimicrobial resistance protein families. Several studies 

have applied this method to quantify the abundance of resistance genes in large and complex 

metagenomic data sets, including human25,62, animal63 and environmental data sets64. 

Downstream analysis of resistomes from metagenomic samples can be performed similarly 

to taxonomic and functional profiling. A comprehensive discussion on processing and 

analysing metagenomic samples has been previously published60.

Antimicrobial resistance databases

Both assembly-based and read-based approaches for the computational prediction of 

antimicrobial resistance in pathogens and environmental bacteria depend largely on curated 

antimicrobial resistance gene databases that link known genetic determinants of resistance to 

the antimicrobials they confer phenotypic resistance against (TABLE 2). These databases 

usually represent information accumulated from multiple studies that include AST of 

bacteria harbouring specific antimicrobial resistance genes.

Generalized versus specialized databases.

Public databases vary considerably in the scope of the resistance mechanisms19 that they 

cover and in the type of information they provide for annotations. Generalized antimicrobial 

resistance databases, such as the now archived Antibiotic Resistance Genes Database 

(ARDB)65 or the active Antibiotic Resistance Gene Annotation (ARG-ANNOT)66 and 

Comprehensive Antibiotic Resistance Database (CARD)67, cover broad spectrums of 

antimicrobial resistance genes and mechanism information, whereas specialized 

antimicrobial resistance databases provide comprehensive information for specific gene 

families or species (TABLE 2). For example, targeted databases such as Lactamase 

Engineering Database (LacED)68,69, the Lahey database of β-lactamases70, National Center 

for Biotechnology Information (NCBI) β-Lactamase Alleles Initiative, and the 

Comprehensive β-Lactamase Molecular Annotation Resource (CBMAR)71 focus on β-

lactamases, a family of antimicrobial resistance enzymes that facilitate hydrolysation of the 

key β-lactam rings in β-lactam antimicrobials, thus protecting the bacteria from the 

antimicrobial activity. Resfinder72 is a web-based and standalone tool for detecting acquired 

antimicrobial resistance genes from sequenced or partially sequenced bacterial isolates 

(TABLE 1). Unlike other databases that require contigs as an input, Resfinder72 also accepts 

short reads as an input for comparison against known acquired resistance genes in bacterial 

genomes. In 2017, Resfinder72 updated its web-based service to enable identification of 

chromosomal mutations using PointFinder73. However, the identification of antimicrobial 

resistance-conferring chromosomal mutations is available for only a limited set of 

pathogenic microorganisms (Campylobacter, Escherichia coli, Mycobacterium tuberculosis, 
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Neisseria gonorrhoeae, Plasmodium falciparum and Salmonella). Similar to Resfinder72, 

CARD67 offers its own tool, known as Resistance Gene Identifier (RGI), which uses curated 

antimicrobial resistance detection models to predict intrinsic antimicrobial resistance genes, 

dedicated resistance genes and acquired resistance from mutations in drug targets. RGI uses 

two antimicrobial resistance detection models: Protein Homologue Model for detecting 

functional homologues of antimicrobial resistance proteins and Protein Variant Model for 

the detection of mutations conferring antimicrobial resistance in otherwise sensitive targets. 

ARGs-OAP (v2)74 uses a custom database constructed from ARDB65 and CARD67, called 

SARG, with a hybrid UBLAST and BLASTX algorithm, reflecting the critical need for a 

comprehensive database combined with lower identity matching for antimicrobial resistance 

gene annotation of metagenomic sequence data.

Species-specific databases exist for pathogenic or model bacteria such as M. tuberculosis 
(for example, Tuberculosis Drug Resistance Database75 or MUBII-TB-DB76) and E. coli 
(TABLE 2). These species-specific databases are invaluable for understanding resistance in 

these specific organisms but also highlight the importance of considering antimicrobial 

resistance genes in their phylogenetic context, especially as some bacteria can have intrinsic 

resistance to some antimicrobials (reviewed previously77). Species-centric databases enable 

rapid and effective curation of new antimicrobial resistance genes and chromosomal 

mutations and can offer quick preliminary screening for characterization. Such screening has 

proved highly effective for pathogens such as M. tuberculosis in which HGT events are rare 

and drug resistance originates mainly from chromosomal mutations78. The CRyPTIC 

Consortium and 100,000 Genomes Project demonstrated this effectiveness in M. 
tuberculosis with resistance predictions with over 90% sensitivity and specificity for all four 

first-line anti-tuberculosis drugs79.

While these tools are all steps in the right direction, a continuously updating and 

comprehensive database with extensive gene metadata and the ability to find both point 

mutation matches and remote homologues is needed.

Hidden Markov model-based databases.

One major limitation of these databases is that the antimicrobial resistance genes they 

contain are heavily biased towards human pathogens and easily cultivable model organisms, 

making it difficult to identify remote homologues or novel resistance sequences present in 

fastidious or uncultured bacteria80. This bias complicates antimicrobial resistance gene 

identification across less commonly studied bacteria, a difficulty that is magnified by the 

diverse and complicated mechanisms that cause resistance81. One potential solution to 

overcome this bias is to use hidden Markov model (HMM) databases. Derived from the 

multiple sequence alignment of known sequences, an HMM can find sequences with similar 

function but low sequence identity82. Resfams26 is an HMM database of antimicrobial 

resistance proteins derived from multiple sequence alignments of manually curated sets of 

representative antimicrobial resistance protein sequences obtained from the generalized 

CARD and the specialized LacED69 and Lahey database70 (TABLE 2). The authors of the 

Resfams26 database showed that it can identify a substantially greater number of novel 

antimicrobial resistance genes and remote homologues of known antimicrobial resistance 
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genes than other databases such as ARDB and CARD that rely on BLAST-based methods 

for gene identification. A direct comparison of manually curated antimicrobial resistance 

gene sets showed that Resfams26 identified 64% more antimicrobial resistance genes in both 

soil and human gut microbiota than the BLAST-based search of CARD and ARDB. This 

increased sensitivity demonstrates the versatility of the HMM in annotating sequences from 

non-clinical samples with sparser representation in publicly available resistance gene 

databases. However, HMM-based approaches may have poor specificity (yield higher 

number of false-positive hits) and may not be able to distinguish between protein families 

with closely related functions. This could occur owing to the higher probability of selecting 

sequences from other subfamilies on the basis of domains common to the family. To mitigate 

the lack of specificity, Resfams26 (like the Pfam database) uses curated thresholds (for 

example, a gathering threshold) for each profile HMM. These profile-specific gathering 

threshold values set an inclusion or exclusion bit score cut-off by comparing it with test data 

sets containing negative sequences. Currently, Resfams26 contains 166 profile HMMs that 

represent major antimicrobial resistance gene families. HMM-based antimicrobial resistance 

databases could be valuable in identifying large and diverse arrays of resistance determinants 

in understudied environmental samples compared with BLAST-based databases. However, 

current HMM-based databases do not identify resistance arising from chromosomal 

mutations. To further facilitate the detection of antimicrobial resistance genes in large 

complex environments, the Functional Antibiotic Resistance Metagenomic Element 

(FARME)83 database comprises a curated set of microbial sequences excluded from current 

databases but functionally screened to confer resistance in various functional metagenomics 

studies of different habitats. Apart from predicted protein-coding antimicrobial resistance 

sequences, the FARME database also includes regulatory elements, mobile genetic elements 

and predicted proteins flanking antimicrobial resistance genes.

A similar database, the functional resistance database (ResfinderFG)84, was built by 

aggregating data from four functional metagenomics studies selected against 23 

antimicrobials. When comparing this database with the Resfinder72 database, the authors 

noted that they found different results by total antimicrobial use; this observation may 

represent a difference in how resistance is conferred when putative resistance determinants 

are cloned into E. coli as compared with when they are expressed in their native bacterial 

host.

The Mustard85 antimicrobial resistance determinants database uses an innovative approach 

of incorporating 3D protein structure to help predict resistance genes. When this approach 

was applied to predicted proteins from metagenomic samples, it predicted >6,000 resistance 

genes compared with 67 genes identified by BLASTP and 50 by Resfinder72, suggesting 

higher sensitivity.

Remaining challenges.

Considerable developments in biocuration of antimicrobial resistance sequences have 

enabled the identification and characterization of antimicrobial resistance genes from 

genomes and metagenomes, but several limitations still preclude cost-effective and rapid 

antimicrobial resistance surveillance. One major bottleneck is the lack of effective curation 
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strategies. With few exceptions, antimicrobial resistance databases lack efficient and 

sustainable curation pipelines, so they tend to receive active maintenance for a few years 

before becoming outdated.

Many antimicrobial resistance genes can be assigned names on the basis of nucleotide 

sequences and protein sequences, leading to conflicting naming schemes. Conflicting gene 

names and synonyms create redundancy across databases and confuse users (for example, 

dihydrofolate reductase is referred to as dhfr in some databases and dfrA in others)86. This 

problem is exacerbated by assigning gene names by sequence identity. A plethora of 

different sequence identity-based systems exists for assigning nomenclature to a new 

resistance gene. These systems offer different cut-offs and are not in consensus with the 

reference87.

Antimicrobial resistance genomic data are an ever expanding data source. HGT events and 

selection pressures that proliferate new antimicrobial resistance mutations require active 

biocuration strategies whereby entries can be curated as they are recognized. The 

propagation of new colistin resistance mechanisms such as mcr-1, which was first described 

in 2016 from Chinese bacterial isolates9 and then subsequently identified worldwide in 

newly collected and previously stored isolates88–96, demonstrates the need for frequent 

database updating and curation. When properly implemented, they facilitate rapid collection 

of epidemiological data for recently discovered resistant determinants97. Indeed, 

antimicrobial resistance annotation should be a continuous effort, as all downstream 

analyses depend on the accuracy of reference databases. Establishing best practices for 

biocuration, systematically assigning annotations to newly discovered genes and preventing 

misinterpretations will pay dividends for public health and basic science.

Another important limitation of current antimicrobial resistance databases is their focus on 

the identification and characterization of protein-coding resistance genes; they ignore other 

potential antimicrobial resistance mechanisms such as genomic changes or de novo 

mutations in ribosomal RNA (rRNA) genes and regulatory elements and drug target 

mutations. Recent efforts by CARD67 and Resfinder72 have tried to address this issue.

Functional metagenomics

In addition to sequence-based metagenomics, functional metagenomics is a powerful, 

culture-independent, sequence-unbiased approach for characterizing resistomes98,99. In this 

method, a metagenomic library is generated by cloning the total community DNA extracted 

from a sample into an expression vector. This library is transformed into a susceptible 

indicator host strain and is assayed for antimicrobial resistance by plating on selective media 

that are lethal to the wild-type host. The selected inserts from the surviving recombinant, 

antimicrobial-resistant host cells are then sequenced, and resulting sequences are 

subsequently assembled and annotated (FIG. 3). Parallel Annotation and Reassembly of 

Functional Metagenomic Selections (PARFuMS)100 is a custom computational pipeline that 

assembles reads from functional metagenomic selections into contigs using the Velvet28 and 

Phrap101 assemblers and annotates the assemblies for antimicrobial resistance genes using 

MetaGeneMark102 and Resfams26. This approach enables high-throughput analysis of large 
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genomic content (up to 50 Gbp of unique metagenomic DNA interrogated per library), and 

antimicrobial resistance phenotypes can be associated directly with causative genes, 

obviating the need to culture individual antimicrobial resistance gene carriers.

Functional metagenomics has enabled the discovery of several new antimicrobial resistance 

mechanisms and their related genes103. One such example is the recently discovered 

tetracycline resistance mechanism by tetracycline destructases104, whereby soil functional 

metagenomics led to the discovery of nine genes that confer tetracycline resistance through 

enzymatic inactivation. Further analysis and biochemical characterization revealed that these 

enzymes catalyse tetracycline oxidation in an FAD-dependent manner, thereby inactivating 

tetracycline104.

While the preceding study shows the strength and usefulness of functional metagenomics, 

this approach has certain limitations. For example, a gene has to be functional outside its 

native microbial host to be identified by functional metagenomic selections. Many times, 

differences between a recombinant expression host such as E. coli and the original host (for 

example, some Gram-positive organisms) do not confer the same phenotype for the same 

gene. This problem was highlighted by studies showing effects of different hosts on the 

same metagenomic libraries97,105. Thus, there is a need to include a phylogenetically diverse 

group of hosts that can be used for functional metagenomic selections. In addition, genes 

outside their genomic context, such as syntenic regulatory elements, may have different 

phenotypes in the recombinant expression host from those in the original host106. Thus, it is 

important that novel antimicrobial resistance genes identified by functional metagenomics 

screens be characterized microbiologically and biochemically. Extension of the current 

functional metagenomics approach and development of new techniques to discover novel 

resistance genes are deserving research directions.

Machine learning for resistance prediction

Numerous studies have explored machine learning algorithms for studying antimicrobial 

resistance, highlighting its role in predicting resistance phenotype directly from genotype. 

Machine learning approaches can be implemented as supervised learning or unsupervised 

learning approaches. In supervised learning, the training data set with outcome of interest 

can be utilized to build a prediction model that can be further applied to query sequences to 

predict their outcome. Several studies have used gene presence or absence and AST 

outcomes as features to create the training set for models. In one study, a logistic regression 

approach was used to develop a model based on 14 gene parameters and 3 molecular typing 

markers that can differentiate between vancomycin-susceptible and vancomycin-

intermediate Staphylococcus aureus using publicly available genomic data and patient 

isolates107. The model performance was tested by a leave-one-out validation method, and it 

showed 84% classification accuracy. Although this accuracy level does not meet clinical 

standards, the approach provides an important proof of concept that motivates the 

development of more sophisticated models for identifying antimicrobial resistance. Another 

study evaluated a rules-based and a machine learning-based approach (that is, logistic 

regression) for predicting antimicrobial resistance profiles and showed that the machine 
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learning-based approach had higher accuracy with novel variants in known antimicrobial 

resistance genes than the rules-based approach24.

Recent studies and tools use k-mers derived from whole genomes of antimicrobial-resistant 

and antimicrobial-susceptible species along with their AST outcomes to develop prediction 

models. Mykrobe predictor108, a fast k-mer screening tool, is used to identify antimicrobial 

resistance genes and SNPs in S. aureus and M. tuberculosis. It utilizes the curated genetic 

information of resistant and susceptible alleles of the same species to build reference graphs 

(DBG) of these two categories and to map k-mers derived from sequencing reads to these 

graphs. Mykrobe predictor showed 99.1% and 82.6% sensitivity and 99.6% and 98.5% 

specificity for S. aureus and M. tuberculosis, respectively, on an independent validation set 

and provided important insights on potential antimicrobial resistance elements.

By contrast, Rapid Annotation using Subsystem Technology (RAST)109 is a k-mer-based 

tool that uses a machine learning classifier (AdaBoost) based on the Pathosystems Resource 

Integration Center (PATRIC) database to identify target-specific antimicrobial resistance 

genes in a specific collection of pathogens. RAST is trained on k-mer data derived from the 

contigs of each genome. These k-mer counts were converted to a binary matrix of 1s and 0s 

to depict whether a particular k-mer is present in that genome or not. The binary matrix 

along with AST outcome is then used to form a classifier model as well as to identify 

putative k-mers associated with resistance. The RAST classifier could identify carbapenem 

resistance in Acinetobacter baumannii, methicillin resistance in S. aureus and β-lactam and 

co-trimoxazole resistance in Streptococcus pneumoniae with accuracies of 88–99%109.

One major shortcoming of any machine learning classifier is its dependency on the training 

data or existing knowledge base. To apply machine learning classifiers in clinical 

diagnostics, a large data set of curated antimicrobial resistance genes that contains accurate 

genotypic data linked to curated AST data (Box 1) will be required to build an effective and 

robust machine learning-based classifier for antimicrobial-resistant organisms. In addition to 

differentiating between an antimicrobial-resistant and antimicrobial-susceptible organism, 

machine learning approaches are currently being applied to predict antimicrobial resistance 

genes in metagenomic data. DeepArgs110 is a newly established tool that applies deep 

learning111 to identify antimicrobial resistance genes. On the basis of curated data sets of 

CARD and ARDB combined with Uniprot protein data, DeepArgs built a dissimilarity 

matrix between antimicrobial resistance proteins and non-antimicrobial resistance proteins 

and used it to train two deep-learning models: DeepArg-LS for assembled genes and 

DeepArg-SS for short reads. These models can be used to predict antimicrobial resistance 

genes in new test data.

Although the application of machine learning to antimicrobial resistance prediction and 

classification is promising, these techniques have a long way to go before they can be used 

for rapid diagnostic purposes and replace traditional culture techniques and AST, which can 

take days or weeks to yield results.
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Conclusions and future perspectives

Antimicrobial resistance is a major public health threat. Monitoring and understanding the 

prevalence, mechanisms and spread of antimicrobial resistance are priorities for both 

individual patient care and global infection control strategies. Despite stellar advancements, 

hurdles for antimicrobial resistance detection and understanding persist. Costs are 

decreasing for sequencing and for automated antimicrobial resistance detection instruments, 

but start-up and operation costs still outstrip many health-care budgets. Further cost 

reductions for these technologies will be important for widespread adoption.

The accurate identification of resistance determinants and the correlation of antimicrobial 

resistance gene profiles to antimicrobial treatment outcomes will facilitate personalized 

approaches to developing treatment regimens. The success of this approach depends heavily 

on the comprehensiveness and quality of public antimicrobial resistance gene databases, 

which have major roles in the development of biological assays and computational tools that 

expand our ability to detect resistance genes in single isolates and in microbial communities. 

While progress has been made in building comprehensive antimicrobial resistance gene 

databases, lack of standardization across databases and long update intervals hold back their 

potential. Moreover, complex resistance mechanisms (FIG. 1b) are difficult to capture in 

antimicrobial resistance databases. For example, resistance can arise from epistatic 

relationships between multiple genes such as in the case of carbapenem resistance, which 

can arise from the combination of extended-spectrum β-lactamases and efflux pumps or 

porin impermeability112. Resistance can even occur via overexpression of normal genes such 

as those encoding efflux pumps, and detection of these resistance mechanisms requires 

transcriptional measurements113,114 (FIG. 1b,c). These complex resistance mechanisms, 

coupled with the fact that known antimicrobial resistance genes may not always be 

expressed, contribute to the difficulty in accurately predicting phenotypic antimicrobial 

resistance from genotypic antimicrobial resistance data. Machine learning algorithms have 

made headway in using isolate genomic sequence data and antimicrobial resistance gene 

databases to predict phenotypic resistance, but these techniques tend to be specialized to 

specific bacteria or are not accurate and consistent enough for general clinical deployment. 

To realize the goal of making phenotypic predictions from genotypic data, we need more 

comprehensive databases that link specific antimicrobial resistance genes to specific AST 

results. Importantly, these databases should include a broad diversity of bacteria with full 

sequence and antimicrobial resistance gene prediction metadata and report AST results with 

exact zone sizes or minimum inhibitory concentrations (BOX 1) rather than categorical 

guideline interpretations. Parallel improvements in AST and sequence-based antimicrobial 

resistance gene prediction will augment efforts to mitigate the clinical impact of 

antimicrobial resistance.

Although techniques for novel antimicrobial resistance gene discovery exist, such as 

functional metagenomics, these techniques still have major caveats in the types of 

antimicrobial resistance genes that they can detect. Innovative methods to determine other 

antimicrobial resistance gene mechanisms are sorely needed. Moreover, robust models to 

predict which resistance genes will spread both on the local level within a health-care setting 

and on the global scale between countries are needed. These models will likely need to 
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incorporate not only the antimicrobial resistance gene sequence and mechanism but also the 

genomic context, host bacterial species and geographic location.

Rapid and accurate identification of resistance genes in isolate and metagenomic samples 

would augment the ability of clinicians to make treatment plans for bacterial infections, 

facilitating a future where sequence-based personized medicine is routine. It would also ease 

antimicrobial resistance surveillance efforts and enable low-resource areas to benefit more 

fully from rapidly decreasing sequencing costs.
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Antimicrobial resistance

Bacterial ability to survive or grow in otherwise lethal or inhibitory antimicrobial 

concentrations.

Antimicrobial susceptibility testing

(AST). Challenge of bacteria with antimicrobials to determine whether they have 

phenotypic antimicrobial resistance.

Horizontal gene transfer

(HGT). Passage of resistance genes from one bacterium to another when neither bacteria 

is the parent or daughter cell. This process usually occurs through transduction, 

conjugation or transformation.

Metagenomes

Collections of genes from all organisms of a given habitat or sample.

Resistance exchange networks

Interconnected groups of environments or bacteria that transfer resistance genes with 

each other.

Phylogeny

The evolutionary ancestral relationships between organisms.

Contigs

Contiguous sequences assembled from sequencing reads.

De Bruijn graph

(DBG). Directional graphing algorithm commonly used for short-read assembly.

Euler’s path

A walk through a directed graph that crosses each edge in the graph only once. euler’s 

path is used to reconstruct genome sequences from De Bruijn graphs.

Isolate assembly

Gathering of sequencing reads from a bacterial isolate into longer contiguous sequences 

representative of their state within the bacterium.

Resistome

All antimicrobial resistance genes within a given sample of bacteria.

Annotation

Identification and labelling of genes within a genome.

Burrows–Wheeler transform
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A reversible data transformation algorithm to organize text with repeated sequences for 

efficient compression. This algorithm is implemented in bioinformatics software owing to 

frequent repeated sequences in biological data.

Metagenomic assembly

Deconvolution and assembly of sequencing reads from a metagenomic sample.

Hidden Markov model

(HMM). A probabilistic model of antimicrobial resistance process where hidden states 

emit observable outputs. These models are commonly used for sequence annotation.

Microbiota

A community of microorganisms from a given habitat or sample.

Functional metagenomics

A biological assay in which a metagenomic library of DNA is expressed in a naive host 

and then the host is exposed to a selection pressure to select for DNA that confers a 

fitness advantage against the selection pressure.

Biocuration

The collection and organization of biological data in a data structure useful for future 

analysis.

Carbapenem resistance

Resistance against the broad-spectrum carbapenem class of β-lactam antimicrobials, 

which are often used as drugs of last resort.

Methicillin resistance

Resistance against methicillin, a narrow-spectrum penicillin derivative. Methicillin 

resistance is often seen in the context of methicillin-resistant Staphylococcus aureus 
(MRSA), a common human pathogen. This resistance is commonly gained by horizontal 

transfer of a modified target protein (see Fig. 1b and 1c).

Deep learning

An extension of representational machine learning methods where the algorithm uses 

multiple transformation layers between raw data and output rather than one layer. This 

often improves results for more complex machine learning tasks.
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Box 1 |

Culture-based susceptibility testing

Bacterial culture has a long history as an integral part of clinical microbiology115. 

researchers cultivate bacteria on agar plates or in liquid broth to probe bacterial 

phenotypes and to discover novel bacterial functions. Hospital clinical microbiology 

laboratories can use data gained in these assays to inform clinical treatment decisions.

Current techniques

For phenotypic testing, bacteria are isolated from patient or environmental samples by 

non-selective or selective agar plating for pure colonies. Isolated bacteria are then directly 

challenged with antimicrobials to test for antimicrobial resistance. In liquid media 

microbroth dilution antimicrobial susceptibility testing (ast), bacteria are challenged with 

decreasing antimicrobial concentrations to find the concentration at which they grow 

successfully. The lowest antibiotic concentration that inhibits the bacterial growth is 

called the minimum inhibitory concentration. solid media techniques use antimicrobial 

Kirby–Bauer disc diffusion116 or gradient diffusion strips117 to measure the clearance of 

the bacteria from the source of the antimicrobial. the area around the antimicrobial disc 

or strip is called the zone of inhibition (culture-based phenotypic testing is reviewed in 

detail elsewhere118). standards published by the Clinical and Laboratory Standards 

Institute (CLSI) or the European Committee on AST (EUCAST) are used to convert 

minimum inhibitory concentrations or zones of inhibition measurements to categorical 

resistance determinations.

New, sequence-independent methods of resistance determination are also being 

developed. They include matrix-assisted laser desorption/ionization time of flight mass 

spectrometry (MALDI–TOF-MS)119–124, fluorescence in situ hybridization 

(FISH)125–129 and microfluidics-based techniques, which reduced AST to ~30 min in one 

study130–134. This rapid testing is especially valuable for slow-growing organisms such as 

Mycobacterium tuberculosis, for which ast can take weeks135.

Challenges and remaining gaps

while ast is useful to provide phenotypic resistance results, it is low throughput. For each 

sample, a clinical microbiologist needs to culture the bacteria and to set up and read the 

AST results. This is limiting because not all health-care centres have trained clinical 

microbiologists on staff. For some bacteria (for example, M. tuberculosis), current 

laboratory diagnostic techniques feasible in low-resource areas have low sensitivity136. 

susceptibility standards are also not published for all combinations of antimicrobials and 

infection-causing, culturable bacteria. Additionally, the standards themselves are not 

uniform across different countries. Culture techniques can also fail in situations where 

multiple bacteria may cause symptomatic disease. In such cases, the cultured bacteria are 

assumed responsible, but several metagenomic studies from patient samples indicate that 

the bacteria detected in culture may not be responsible for disease symptoms137–140. 

Finally, these phenotypic methods have lower resolution in examining resistance 
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determinants and provide less information about resistance gene epidemiology than 

whole-genome sequencing.

Innovations

Automation is rapidly being developed and implemented to conduct phenotypic assays, 

including ast141. Several systems, including VITEK142, ADAGIO143, accelerate 

Pheno144–147 and others, are already moving into clinical spaces. the automated 

platforms have several key advantages, including continuous monitoring systems, 

sensitive optical instruments for measuring susceptibility results148 and standardized 

internal clocks. these advantages can speed up susceptibility results for cultured 

bacteria118. they may also increase consistency of susceptibility results across different 

locations and reduce the burden of work for clinical microbiologists. Unfortunately, these 

automated platforms can be prohibitively expensive to set up.
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Box 2 |

Sequencing-based innovations

Chromosome conformation capture assays

Chromosome conformation capture uses crosslinking, ligation and short-read sequencing 

to understand the spatial relationships of genetic material within cells149,150. these 

methods have been applied effectively in bacterial isolates and in metagenomic 

samples151–155. Using spatial information from chromosome conformation capture, 

researchers can increase their understanding of antimicrobial resistance gene regulation 

and begin to untangle more complicated resistance mechanisms. For example, these data 

may help resolve epistatic antimicrobial resistance gene relationships because gene 

spatial colocalization may indicate coordinated function. Chromosome conformation 

capture is also useful for identifying plasmid genes from chromosomal genes. this is 

important for antimicrobial resistance in particular because of the role of plasmids in 

horizontal gene transfer (HGt). Perhaps most interesting is the applicability of 

chromosome conformation capture to metagenomic samples. In addition to the points 

mentioned above, crosslinking information in metagenomic samples greatly reduces the 

complexity of metagenomic assembly because it enables researchers to group sequences 

by cell. thus, antimicrobial resistance annotation methods that rely on assembled contigs 

are more viable if chromosome conformation capture information is also available.

Long-read sequencing

Long-read sequencing by single-molecule real-time sequencing (SMRT-seq) or nanopore 

sequencing can yield reads from 10 kb to over 100 kb (REFS156,157). these long reads 

have several advantages over short reads for studying antimicrobial resistance in bacterial 

isolates and metagenomic samples. Long-read sequencing can greatly reduce the 

complexity of assembly for both bacterial isolates and metagenomic samples and, in 

some cases, can provide finished bacterial genomes (higher error rates than short reads 

means that sometimes a combination of short-read and long-read sequencing is needed to 

achieve these results)158–162. Better assemblies enable stronger interpretation of genomic 

context, providing similar benefits as with chromosome capture. Also similar to 

chromosome capture, long-read sequencing provides easier resolution of plasmid 

sequences, enabling more in-depth studies to understand antimicrobial resistance HGt. 

additionally, both approaches give information about DNa methylation, which can inform 

genome assembly in metagenomic samples162–164. Finally, long-read sequencing run 

times tend to be faster than short-read sequencing. this is useful for potential clinical 

deployments where speed may affect patient outcomes. Nanopore sequencing in 

particular excels in this area owing to its real-time data; these real-time data have already 

been used to provide rapid (within minutes) antimicrobial resistance gene-agnostic 

antimicrobial susceptibility testing (AST) predictions in Streptococcus pneumoniae165.

Transcriptomics

Transcriptomics techniques such as RNA sequencing (RNA-seq) facilitate analysis of 

bacterial gene expression, and these expression data have the potential to fill 
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antimicrobial resistance knowledge gaps166–169. One major area where transcriptional 

data can contribute to antimicrobial resistance understanding is in connecting genotypic 

antimicrobial resistance data to phenotypic antimicrobial resistance results170. In cases 

where antimicrobial resistance genes are present but no resistance phenotype is found or 

in cases where no obvious antimicrobial resistance genes are present but antimicrobial 

resistance is confirmed, transcriptomic data may bridge the knowledge gap and point to 

novel antimicrobial resistance genes169,171–173. transcriptomics also has the potential to 

identify combinatorial gene effects resulting in antimicrobial resistance174. Finally, 

transcriptomics can successfully identify cases in which non-coding regulatory RNAs 

result in resistant bacterial phenotypes168,175.
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Fig. 1 |. Antimicrobial targets and resistance mechanisms.
a | Antimicrobials are grouped by target site. Drug classes are in bold, and example drugs 

from that class are in parentheses below the drug classes. Antimicrobial resistance 

mechanisms that act on that class are depicted left of the antimicrobial class according to the 

layout shown in part b. b | Mechanisms of antimicrobial resistance are depicted with 

susceptible organisms represented on the left and resistant organisms represented on the 

right. To the left of each labelled mechanism is the legend annotation position used in part a. 

c | Genetic underpinnings of antimicrobial resistance are illustrated.
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Fig. 2 |. Assembly versus read mapping.
a | The process for sequencing data generation for metagenomic and genomic samples. b | 

Steps for the read-based and the assembly-based methods of in silico resistance gene 

identification are contrasted. c | Examples of analysis that can be conducted on samples after 

resistance gene identification. CARD, Comprehensive Antibiotic Resistance Database.
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Fig. 3 |. Functional metagenomics to interrogate acquired resistance genes in different 
environments and human pathogens.
A summary of experimental and computational steps involved in functional metagenomics. 

First, sample collection and extraction occur. Metagenomic DNA is isolated from the sample 

(for example, soil or faeces). Second, functional selection using an expression vector and the 

host system is performed. The metagenomic DNA is sheared to a target size of 2–5 kb, and 

the fragments are then cloned into an expression vector and transformed into a host system 

(for example, Escherichia coli). The transformants are then selected using antimicrobials at 

concentrations that are inhibitory to the wild-type host system. Third, barcoded sequencing 
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of pooled DNA fragments is performed. The resistance-conferring fragments are PCR 

amplified, barcoded and pooled together for sequencing. The sequencing reads are 

computationally demultiplexed using barcode assembly and quality trimmed to obtain high-

quality clean reads. Fourth, iterative assembly of sequencing reads by sample is performed. 

The clean reads are assembled with computational pipeline Parallel Annotation and 

Reassembly of Functional Metagenomic Selections (PARFuMS), in which ensemble-based 

assembly is performed using multiple rounds of a short-read assembler (Velvet), and 

intermediate contigs are then used in a long-read assembler (Phrap) to give full-length 

contigs. Finally, resistance gene annotation of assembled reads is performed. The annotation 

of contigs is accomplished using BLAST-based and hidden Markov model (HMM)-based 

databases.
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