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Abstract 5-hydroxymethyl-2-furaldehyde (5-HMF) is an

important substance that affect quality of honey and shows

toxicity for humans and honey bees. The pathway of

5-HMF formation in honey is still unknown. In this study,

we tested the effect of thermal treatment (at 90 �C for 4 h)

on the formulation of 5-HMF formulation in rapeseed with

varied honey composition. 5-HMF content of honey

increased at higher water content, Ca2? and Mg2? content

and lower pH. However, the formation of 5-HMF was not

significantly influenced by glucose, fructose, Na?, or K?

contents. Furthermore, different content of proline, the

most abundant amino acid in honey (a substance in Mail-

lard reaction), had no effect on 5-HMF formation. Free

acids in honey can catalyze fructose and glucose to form

5-HMF. These results suggest that dehydration of glucose

or fructose, instead of the Maillard reaction, is the main

pathway of 5-HMF formation in honey. This study gives

new insights for the mechanisms of 5-HMF formation and

provides method for reducing 5-HMF formation during

honey processing.

Keywords 5-hydroxymethyl-2-furaldehyde (5-HMF) �
Formation pathway � Thermal treatment � Hexose
dehydration � Maillard reaction

Introduction

Honey is a natural sweet substance, transformed from

nectar or honeydew via dehydration and breakdown of

sucrose to simple sugars by enzymatic reactions (Ball

2007). Honey has been used as a traditional medicine for

its antioxidant and antimicrobial activity, and for immu-

nity-improving and antitumor activity (Fukuda et al. 2010).

From a chemical point of view, honey contains about 80%

sugars (glucose, fructose, sucrose, maltose and higher

sugars), 19% water (Majtan 2014) and 1% other compo-

nents. pH values of honey ranges from 3.4 to 6.1. In honey,

the most abundant amino acid is proline, counting for

around 70% of the total amino acids (Rückriemen et al.

2015). The total amino acid content accounts for about

1/1000 of the dry matter (Pätzold and Brückner 2006).

Furthermore, various flavor compounds and pigments are

also present (da Silva et al. 2016).

A well-known heterocyclic compound in honey, 5-hy-

droxymethyl-2-furaldehyde (5-HMF), is usually formed

during long time storage or after exposing high temperature

or both. Formation of 5-HMF has been proven as one of the

most important factors that reduce the quality of honey and

produce the precursor of polymer such as pigment (As-

lanova et al. 2010). 5-HMF formation in honey was

thought to be due to the Maillard reaction whereby acids

catalyze degradation of reducing sugars (Capuano and

Fogliano 2011). This was inferred from 5-HMF formation

in sugar solution with organic or amino acids. But there is
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no data in honey directly, so the exact formation pathway

of 5-HMF in honey is probably still unknown.

5-hydroxymethyl-2-furaldehyde is a potential toxin,

mutagen, and carcinogen for humans (Michail et al. 2007)

and is highly toxic to honey bees (LeBlanc et al. 2009).

5-HMF increases the incidence of aberrant crypt foci in rat

colon, skin papillomas in mice, lipomatous tumors in rat

kidney (Capuano and Fogliano 2011), small intestine

adenomas in mice (Svendsen et al. 2009), hepatocellular

adenomas in female mice (NTP 2010), and has mutagenic

effects on S. typhimurium (Lee et al. 1995). 5-HMF can be

catalyzed by sulfotransferase to 5-sulphoxymethylfurfural

(SMF), which is genotoxic (Severin et al. 2010), and

nephrotoxic (Bakhiya et al. 2009). SMF also increases

small intestine adenomas potential in mice (Svendsen et al.

2009) and regeneration and atypical hyperplasia of tubules

and hepatotoxic effects and serositis of peritoneal tissues

(Bauer-Marinovic et al. 2012). Humans may be more

sensitive to 5-HMF because sulfotransferase, which can

transform 5-HMF into SMF, is expressed in extrahepatic

tissues at higher levels than rodents (Teubner et al. 2007).

The estimated daily intake of 5-HMF for humans is

approximately 2.5 mg/kg body weight as 5-HMF is also

present in dried fruits, coffee, cereals, and baked products

(Capuano and Fogliano 2011). It is thus important to

reduce 5-HMF levels in honey so that total intake of

5-HMF can be reduced for humans.

5-hydroxymethyl-2-furaldehyde formation is influenced

by processing temperature and duration, types of honey,

storage condition and other factors. 5-HMF contents in

honey was less than 24.87 mg/kg after 6 months storage

but increased to 1131.6 mg/kg after 24 months storage

(Khalil et al. 2010). 5-HMF contents in different types of

honey varied widely after thermal treatment at the same

temperature and duration (Lu et al. 2006; Singh and Bath

1997, 1998), which was correlated with their chemical

characteristics such as: pH, free acids, total acidity and

lactones (Fallico et al. 2004) and metal cations (Fe, Mg,

Mn and Zn or mixture) (Anam and Dart 1995). However,

for the same type of honey, how do different components

of honey affect 5-HMF formation has not yet been inves-

tigated. It is unknown that which one of the Maillard

Reaction and acids catalyze degradation of reducing sugars

is the dominant pathway of 5-HMF formation during

thermal treatment or longtime storage. In order to investi-

gate the primary and secondary factors affecting 5-HMF

formation and the dominant pathway of 5-HMF formation,

in the present study how could pH, and amount of water,

glucose, fructose, proline, initial 5-HMF, K?, Na?, Ca2?

and Mg2? contents differently affect 5-HMF formation

under the same thermal treatment, and then investigated the

possible mechanism of the formation of 5-HMF in honey.

Materials and methods

Reagents

Standards for 5-HMF, glucose and fructose (analytical

reagent, AR grade) were purchased from Sigma-Aldrich

Com. HPLC grade methanol and acetonitrile and other

chemicals (AR grade) were purchased from SCRC (Sino-

pharm Chemical Reagent Co., Ltd, China).

Honey samples

Rapeseed honey (Brassica napus L.) was bought from an

apiary in Yunnan province, China. Fresh honey samples

were packaged in different plastic bottles (2L) and placed

at 4 �C before component modification and thermal treat-

ment. Pre-treatment was carried out in a water bath at

50 �C until crystallization was liquefied. All measurements

were carried out in triplicates (n = 3). Sample analyses

were carried out within the later four months.

Measurements of pH and moisture, glucose,

fructose, proline, 5-HMF, K1, Na1, Ca21, and Mg21

contents in honey samples

pH

Honey samples (10 g) were diluted to 75 mL distilled

water to measure pH at 20 �C using a pH-meter (PHS-3C,

INESA Scientific Instrument Co., Ltd) (Terrab et al. 2004).

Water content

Water content of honey was measured by an Abbe

Refractometer (WYA-2 W, INESA Scientific Instrument

Co., Ltd, China) set at 40 �C with water tube connected to

a water bath (de Almeida-Muradian et al. 2013).

Glucose, fructose and proline contents

Glucose and fructose contents were determined by HPLC

(LC-20A, Shimadzu, Japan) with an InertsilNH2 column

(5 lm, 4.6 9 250 mm, Shimadzu-GL) and RID-10A

detector (Shimadzu) after it was filtered through a Millex-

HN nylon clarification kit (0.45 lm pore size, Tianjin

Jinteng Experiment Equipment Co., Ltd, China) (de

Almeida-Muradian et al. 2013).

The proline content of honey was determined by using a

color comparison according to a method using proline

standard curve with a UV Spectrophotometer (T6, Beijing

Purkinje General Instrument Co., Ltd, China) (Meda et al.

2005).
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Contents of potassium, sodium, calcium and magnesium

cations

Honey samples (500 mg) were dissolved with 20 times of

reverse osmosis (RO) water (w:w) and filtered by a 0.22 lm
filter (Tianjin Jinteng Experiment Equipment Co., Ltd,

China). The content of potassium (K?), sodium (Na?),

calcium (Ca2?) and magnesium (Mg2?) was determined by

the standard curve method with ion chromatography (Dio-

nex ICS-2100; Thermo Scientific) (de Caland et al. 2012).

HPLC analysis of 5-HMF

Honey samples (0.1 g) were dissolved in 10 mL water. The

solution (10 g/L) was filtered with a Millex-HN nylon

clarification kit (0.45 lm pore size) for analysis by an

HPLC–PDA system (LC-20A, Shimadzu, Japan) with a

WondaSilC18-WR column (5 lm, 4.6 9 250 mm, Shi-

madzu-GL) and PDA detector (Shimadzu). The injection

volume was 20 lL. The mobile phase was 100% water for

0–10 min, then a linear gradient of 100% water to 100%

methanol, from 10 to 55 min, and 100% methanol from 55

to 65 min at a flow rate of 0.5 mL/min. Column tempera-

ture was set at 25 �C. Spectral data from all peaks were

accumulated in the range of 200–800 nm, and chro-

matograms were recorded at 284 nm for 5-HMF (Ajlouni

and Sujirapinyokul 2010).

Adjustments of honey compositions and thermal

treatment

The moisture contents in honey samples were modified to

21.12%, 23.12%, 25.12% and 27.12% using RO water. Na-

citrate or citric acid solution (1 M) was added to modify

sample pH to 3.44, 3.95, 4.36, 4.87 and 5.48. Glucose

powder was added to change its contents in honey to 35.05,

36.05, 37.05, 38.05 and 39.05%. Fructose contents was also

adjusted to 38.40, 39.40, 40.40, 41.40 and 42.40% (w/v).

Mental cations contents were modified by adding KCl,

NaCl, CaCl2 and MgCl2 to increase the content of K?,

Na?, Ca2? and Mg2? for 10, 20, 40 and 80 ppm of each

cation in the honey.

Proline solution (0.1 g/ml) and RO water were added in

order to adjust the final proline contents in honey as 254.3

to 654.3 mg/kg at 100 mg increments.

Initial 5-HMF content was obtained by adding 5-HMF

standard to honey, with the final contents as 15 ± 0.31,

30 ± 0.14, 45 ± 0.21 and 60 ± 0.26 mg/kg.

After these adjustments, honey samples were heated at

90 �C for 4 h. These heated honey samples (10 g) were

taken out and cooled by ice-water. After that the samples

were stored at 4 �C before further tests within 72 h. 5-HMF

contents in heated honey were then determined by HPLC.

Statistical analysis

The results are reported as mean ± standard error (± SE).

The relationships between 5-HMF content and water,

fructose, glucose, proline, initial 5-HMF, K?, Na?, Ca2?

and Mg2? contents and pH were determined by regression.

All analyses were done using StatView for Windows

(Version 5.0.1, SAS Institute Inc. 1992–1998, NC, USA).

Results and discussion

Honey composition

Rapeseed honey (N = 3 determinations for all parameters)

pH was 3.95 ± 0.02 and contents of water, glucose (re-

tention time, RT = 11.3 min), fructose (RT = 9.2 min) and

proline in rapeseed honey sample were 19.12 ± 0.01%,

35.05 ± 0.03%, 38.40 ± 0.02% and 0.025 ± 0.001%,

respectively. The water, proline, glucose and fructose

contents in samples were close to a previous report of

rapeseed honey in the same province (Chen et al. 2010).

During the HPLC analysis to measure 5-HMF contents,

the linear range was 0.73–14.6 lg/mL (RT: 14.15 min).

5-HMF was not detected in pre-treated honey (N = 3) with

a detection limit of 0.64–14.67 mg/kg, which means there

were no effect of pretreatment on 5-HMF in samples.

The contents of K?, Na?, Ca2? and Mg2?, which RT

were 5.83, 4.19, 11.58 and 9.37 min, in pre-treated honey

samples were 514.12 ± 22.49, 72.80 ± 2.10,

111.91 ± 2.77 and 29.87 ± 0.88 mg/L, respectively

(N = 3 per measurement). The contents of Mg2? in rape-

seed honey sample were close to coffee honey in South

Yunnan province, China (Wei et al. 2016). Other iron

contents were higher than other species honey South

Yunnan province (Wei et al. 2016), which may due to

different nectar plant (Nanda et al. 2003) and geographical

origin (Tuzen et al. 2007).

5-HMF contents in heated honey

5-HMF content in honey with different moisture contents

5-hydroxymethyl-2-furaldehyde formation was signifi-

cantly influenced by water content. Water content and

5-HMF concentration showed a direct and linear relation-

ship (Fig. 1; F1, 14 = 93.91, P\ 0.0001). The regression

equation between water content (X) and 5-HMF yield

(Y) is Y = 5.565X (R2 = 0.998). The R2 decreased to 0.88

(Y = 4.862X ? 16.489) if a ‘‘zero’’ intercept was not

chosen, the SE of intercept is 11.72 (not significantly dif-

ferent from 0, P = 0.183). Previous studies yielded con-

flicting results, but those studies did not use honey directly
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(Sun et al. 2011; Kong et al. 2013; Li and Yang 2014; Cao

et al. 2015). Higher moisture content caused higher 5-HMF

content in a tetrahydrofuran solution system (Sun et al.

2011; Kong et al. 2013; Cao et al. 2015). 5-HMF yields

increased with increasing moisture contents from 60 to

90% (Sun et al. 2011; Kong et al. 2013) in reaction systems

of acid and fructose, which is in line with present results

(Fig. 1). However, in another study, water content had a

negative effect on the reaction system of fructose and

sucrose to 5-HMF with proline-derived ionic liquids under

thermal conditions at 90 �C for 60 min (Li and Yang

2014). The 5-HMF formation in honey is in line with

5-HMF in reaction systems of acid and fructose. So we can

conclude that 5-HMF is transformed from the dehydration

of fructose and glucose in honey.

5-HMF content of honey at varied pH

5-hydroxymethyl-2-furaldehydecontents were remarkably

affected by pH of honey. There was a multiple regression

relationship between 5-HMF content and pH (Fig. 2;

F2, 12 = 42.98, P\ 0.0001). The regression equation

between pH (X) and 5-HMF yield (Y) is

Y = 9712.248 - 6171.84 X ? 1315.882 X2 - 93.279 X3

(R2 = 0.96), the SE of intercept is 1653.848 (significantly

different from 0, P = 0.0001). 5-HMF content was signif-

icantly higher when honey pH was at 3.44 in this work.

This result was in line with previous report (Singh and Bath

1997), which showed that 5-HMF formation in the Tri-

folium honey (pH 4.1) was higher than other two types of

honey (pH 4.76 or 4.25) under the same thermal treatment

condition even though these later honeys have higher water

content. 5-HMF was also related to pH of four types of

honey (Fallico et al. 2004). There was the same results in

other reaction systems of acid and fructose solutions. In

AlCl3-H2O/THF biphasic medium, the introduction of HCl,

formic, acetic or lactic acids enhanced the reaction rate of

fructose dehydration to 5-HMF (de Souza et al. 2012). Low

pH enhanced 5-HMF formation in HCl-catalyzed fructose

solution (27 wt%) treated with microwave at 130 �C for

5 min (Hansen et al. 2009). Higher 5-HMF development

was also measured in lower pH in aqueous solutions

ranging from 7 to 1.5 (de Souza et al. 2012). There are

organic acids (such as: gluconic, formic, butyric, malic,

succinic, lactic and pyroglutamic acids) (Stinson and

Subers 1960; Suarez-Luque et al. 2002) and phenolic acids

(such as: ellagic, p-hydroxybenzoic, syringic, o-coumaric

and gallic acids) (Andrade et al. 1997) which can enhance

the reaction rate of fructose dehydration to 5-HMF. But

there is no effect of pH on 5-HMF formation in a solution

with glucose and amino acids (Ajandouz and Puigserver

1999). So we can conclude that 5-HMF formation pathway

was the dehydration of fructose and glucose but glucose

and amino acids model system (Maillard reaction).

5-HMF content in honey with different glucose

and fructose contents

5-hydroxymethyl-2-furaldehyde contents were not influ-

enced by the initial glucose (F1, 13 = 3.32, P = 0.09) and

fructose (F1, 13 = 0.56, P = 0.47) contents. The regression

equation between glucose content (X) and 5-HMF yield

(Y) is Y = 320.575 - 5.259X (R2 = 0.203), the SE of

intercept is 320.575 (significantly different from 0,

P = 0.0103). The regression equation between fructose

content (X) and 5-HMF yield (Y) is

Y = 199.013 - 1.672X (R2 = 0.041), the SE of intercept

is 199.013 (significantly different from 0, P = 0.0469).

Previous studies generated two views about 5-HMF for-

mation in other reaction systems. These results are puz-

zling. On one hand, the formation of 5-HMF from fructose

was 31.2 times higher than from glucose over 22 days

when their concentrations were 0.5 M in 0.05 M citric acid

at pH 3.5 (Kuster 1990). On the other hand, enolization of

hexose into enediol is the rate-limiting step for 5-HMF

Fig. 1 The correlation between initial water contents (19.12, 21.12,

23.12, 25.12 and 27.12%) and 5-HMF formation in honey heated at

90 �C for 4 h. Each data point was based on one independent

experiment
Fig. 2 The correlation between initial pH (3.44, 3.95, 4.36, 4.87 and

5.48) and 5-HMF formation in honey heated at 90 �C for 4 h. Each

data point was based on one independent experiment
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formation (Kuster 1990). Enolization rate of glucose is

lower than that of fructose because glucose can form a very

stable ring structure. We can deduce that higher fructose

content in pre-treated honey should result in higher 5-HMF

content. But present results showed that there was no effect

of fructose content on 5-HMF formation. The results in this

work seemed to be against 5-HMF formation via the

dehydration of fructose and glucose, which may be due to

enough fructose (more than 30.9% in honey) (Ball 2007) to

take part in the dehydration and enolization reaction for

5-HMF development.

5-HMF development in honey with different initial contents

of Mg2?, Ca2?, K? and Na? cations

5-hydroxymethyl-2-furaldehyde formationwas enhanced by

increasing the initial contents of Ca2? (Fig. 3; F1, 11 = 11.32,

P = 0.0072, R2 = 0.53, Y = 111.09 ? 0.25X, X denotes

Ca2? content and Y 5-HMF yield, the SE of intercept is 3.46

(significantly different from 0, P\ 0.0001)) and Mg2?

(Fig. 3; F1, 11 = 59.13, P\ 0.0001, R2 = 0.855; Y =

104.41 ? 0.18X, X presents Mg2? content and Y 5-HMF

yield, the SE of intercept is 1.06 (significantly different from

0, P\ 0.0001)). But 5-HMF development were not affected

by different initial contents of K? (Fig. 3; F1, 11 = 0.06,

P = 0.81, R2 = 0.006, Y = 128.33 ? 0.03X, X denotes K?

content and Y 5-HMF yield, the SE of intercept is 6.09

(significantly different from 0, P\ 0.0001)) and Na?

(Fig. 3; F1, 11 = 1.61, P = 0.23, R2 = 0.14, Y = 128.97 ?

0.21X, X means Na? content and Y 5-HMF yield, the SE of

Fig. 3 The relationship between 5-HMF formation and different

initial amounts of metal cations Na? (a), K? (b), Ca2? (c) and Mg2?

(d) on in honey heated at 90 �C for 4 h. Each data point was based on

one independent experiment

Fig. 4 No correlation between initial proline contents (254.3, 354.3,

454.3, 554.3 and 654.3 mg/kg) and 5-HMF formation in honey heated

at 90 �C for 4 h. Each data point was based on one independent

experiment

Fig. 5 The correlation between different initial 5-HMF amounts (15,

30, 45 and 60 mg/kg) and final 5-HMF content (a) or 5-HMF

formation (b) in honey heated at 90 �C for 4 h. Each data point was

based on one independent experiment
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intercept is 7.47 (significantly different from 0,

P\ 0.0001)). Previous reports showed that 5-HMF content

was significantly increased as the higher amount of cations,

especially Ca2? and Mg2? in glucose or fructose solution

(Gökmen and Şenyuva 2007). Sodium chloride accelerated

the formation of 5-HMF in the processing of model biscuits

(Fiore et al. 2012) and thermal treatment of fructose solution

(Gomes et al. 2015). This suggests that Ca2? and Mg2?

function similarly in both honey and sugar solutions in

enhancing 5-HMF production, but the effect of Na? varies

depending on the reaction system. This may be due to the

higher catalytic reaction rate and stronger interaction

between hexose and metal cations due to the surface charge

increases and the ionic radius decreases (Seri et al. 2001;

Marcus 1994; Anam and Dart 1995) in aqueous solutions.

Fig. 6 Proposed mechanism for catalytic dehydration of fructose and

glucose to 5-HMF and its degradation products (Adapted from Li and

Yang 2014; Capuano and Fogliano 2011; Perez Locas and Yaylayan

2008). Solid arrows indicate formation pathway of 5-HMF and broken

arrows indicate its degradation
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5-HMF development in honey with different initial proline

contents

Initial proline content had no influence on the formation of

5-HMF in heated honey (Fig. 4; F1, 14 = 0.003, P = 0.96,

R2 = 0.0002, Y = 115.23 - 0.001X (X denotes proline

content and Y 5-HMF yield, the SE of intercept is 4.40

(significantly different from 0, P\ 0.0001))). It has been

reported that glucose and amino acids were combined to

form 5-HMF in the Maillard reaction (Fiore et al. 2012).

Proline is the predominant amino acid in honey, which

accounts for 70% of the total free amino acids (Rückriemen

et al. 2015). Given that proline content did not enhance

5-HMF production, present results do not support that

glucose-proline model system (Maillard reaction) is the

main pathway of 5-HMF formation in honey.

5-HMF development in honey with different initial 5-HMF

contents

The total 5-HMF contents was increased with the increase

in the initial 5-HMF contents after 4 h treatment at 90 �C
(Fig. 5 A; F1, 11 = 107.57, P\ 0.0001, R2 = 0.92, Y =

125.14 ? 0.694X, X denotes initial 5-HMF content and Y

5-HMF yield, the SE of intercept is 2.75 (significantly dif-

ferent from 0, P\ 0.0001)).However, if we only consider

the net 5-HMF formation (subtracting the initial 5-HMF

from the total), the latter would decrease with increasing the

initial 5-HMF contents (Fig. 5 B; F1, 11 = 20.97, P = 0.001,

R2 = 0.68, Y = 125.14 - 0.306X, X denotes initial 5-HMF

content and Y net 5-HMF formation, the SE of intercept is

2.75 (P\ 0.0001)). More initial 5-HMF may enhance its

transformation to other compounds such as: levulinic acid

(LA), formic acid (FA) and humins in acidic solution (Gir-

isuta et al. 2006). Because the color of honey became darker

than pretreated honey, which is also observed and due to the

increase of certain polyphenols or pigments (Karabagias

et al. 2018).

In conclusion, a significant increase of 5-HMF content

was observed in honey with higher water content, lower pH

and higher Ca2? and Mg2?contents. Initial 5-HMF content

decreased its formation. Fructose, glucose, K?, Na? and

proline contents had no effect on 5-HMF formation. Higher

water content may provide more activity of reactant and

accelerates the formation of 5-HMF in honey (present

study). pH of honey ranged from 3.4 to 6.1 due to gluconic,

formic, butyric, malic, succinic, lactic and pyroglutamic

acids (Stinson and Subers 1960; Suarez-Luque et al. 2002;

Andrade et al. 1997). These acids can catalyze fructose and

glucose to form 5-HMF. 5-HMF formation rate from

fructose was 31.2 times higher than glucose (Kuster 1990).

However, different amounts of proline, a substance in

Maillard reaction, had no effect on 5-HMF formation. We

therefore conclude that dehydration of fructose or glucose,

especially fructose, is the main pathway of 5-HMF for-

mation in honey (Fig. 6, the mechanism of dehydration of

fructose or glucose to 5-HMF; Adapted from Li and Yang

2014; Capuano and Fogliano 2011; Perez Locas and

Yaylayan 2008.), while it was traditionally thought that

5-HMF formation in honey is due to the Maillard reaction

pathway via the rearrangement of Amadori compounds. In

order to liquefy crystallized honey, delay crystallization,

destroy the microorganisms in honey or facilitate pro-

cessing, thermal treatment condition should be considered

to control 5-HMF according to pH, water content and metal

ions contents in honey.
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