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Abstract: Polycomb group protein EZH2, a histone methyltransferase, is the enzymatic subunit of the Polycomb 
Repressive Complex 2 (PRC2) that catalyzes histone H3 lysine 27 methylation. They are epigenetic modifiers that 
mediate gene repression, or epigenetic silencing. EZH2 controls developmental regulators in embryonic stem cells 
and is essential for cell fate determination and transition. In the last two decades, EZH2 was reported upregulated 
in a variety of solid tumors, including prostate cancer, and mutated in multiple hematological malignancies, such 
as lymphoma. EZH2 represses the expression of a plethora of tumor suppressor genes in tumor cells, thereby pro-
moting cell cycle, cell proliferation, and cell invasion and driving cancer progression. Recently, evidence is emerging 
indicating important roles of EZH2 in immune cells. Here, we review EZH2 regulation of various immune cell types, 
the tumor microenvironment, immune responses, and cancer immunotherapies.
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Introduction

Polycomb group proteins (PcGs) are important 
epigenetic regulators of stem cell and cancer 
biology [1, 2]. There are two major complexes: 
the Polycomb Repressive Complex 1 and 2 (PR- 
C2). Histone methyltransferase Enhancer of 
Zeste homolog 2 (EZH2) is the catalytic subunit 
of PRC2 and catalyzes tri-methylation of his-
tone H3 at lysine 27 (H3K27me3) to silence 
target genes. Clinical investigations have sho- 
wn that EZH2 is aberrantly up-regulated in vari-
ous malignant tumors, including prostate and 
breast cancer, and is associated with advanced 
stages and poor prognosis [3, 4]. EZH2 has be- 
en shown to play important roles in the devel-
opment and progression of these cancers. EZ- 
H2 promotes cell survival, proliferation, epithe-
lial to mesenchymal transition, invasion, and 
drug resistance of cancer cells. Moreover, new 
roles of EZH2 in the tumor immune microenvi-
ronment (TIME) are emerging, which will be the 
focus of this review. We will summarize the di- 
verse immune modulatory functions of EZH2 in 

different cell types of the TIME and investigate 
the potential of targeting EZH2 as a cancer im- 
munotherapy. 

EZH2 regulation of immune cell types 

The composition of the tumor microenvironm- 
ent (TME) is complicated. It includes not only 
cancer cells, extracellular matrix, fibroblasts, en- 
dothelia and adipocytes, but also immune cells 
such as T-cells, NK cells, regulatory T (Treg) 
cells, tumor-associated macrophages (TAMs), 
and dendritic cells (DCs). Within the TME, cyto-
kines and chemokines, together with a dynamic 
immunosuppressive network formed by the 
interaction of immune cells and tumor cells, 
interrupt immunotherapies and promote cancer 
progression across all stages of tumorigenesis 
[5]. EZH2 is expressed in many immune cell 
types and has distinct functions [6].

EZH2 in T cells 

EZH2 plays critical roles in T cell response. The 
function of EZH2 in naive T cells is to maintain 
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the survival, proliferation and function of effec-
tor CD4+ and CD8+ T cells and inhibit Th1 and 
Th2 differentiation [7]. Low expression of EZH2 
in CD8+ T cells is associated with poor survival 
and prognosis in patients. Similarly, another 
study revealed that EZH2 is crucial to the devel-
opment and maintenance of T-cell memory pre-
cursors, which are correlated with enhanced 
tumor control [8].

The percentage of EZH2+/CD8+ T-cells is lower 
in the TIME than in peripheral blood and non-
malignant tissues, suggesting that TME inter-
feres with EZH2 expression in T-cells. One 
mechanism by which this occurs is that cancer 
cells restrict T-cell-mediated immunity by inhib-
iting EZH2 expression and limiting the glycoly-
sis pathway, leading to reduced survival of 
CD8+ T-cells in the TME [8]. For example, ovar-
ian cancer cells could suppress EZH2 expres-
sion in CD4+ and CD8+ T cells in the TME by 
inducing some micro-RNAs, thereby decreasing 
T cell survival and immune function [9]. There- 
fore, EZH2 inhibition may suppress survival, 
expansion and effect of tumor-specific effector 
T cells, thereby inhibiting anti-tumor immunity 
of TME. Zhao et al. demonstrated that targeting 
T-cell specific expression of EZH2 in the TME 
enables cancer cells to evade tumor surveil-
lance. This ultimately increases the tumor bur-
den and the metastatic potential in mouse 
models of ovarian cancer [9]. These tumor sup-
pressive effects of EZH2 should be considered 
during therapeutic design of EZH2 inhibitors.

EZH2 in Treg cells 

It has been demonstrated that tumor cells can 
secrete soluble factors, such as TGFβ, VEGF 
and GM-CSF in the TIME, and convert tumor-
infiltrating CD4+ T cells to Foxp3+ Tregs, which 
negatively impact anti-tumor immunity [10, 11]. 
EZH2-mediated epigenetic program was found 
critical for the recruitment and immunosup-
pressive function of activated Tregs [12]. The 
expression of EZH2 is upregulated in tumor-
infiltrating Treg cells as compared to the effec-
tor T cells or Treg cells in the peripheral blood. 
Goswami et al. [13] showed that ipilimumab, a 
human monoclonal immunoglobulin G1 anti-
body that blocks cytotoxic T lymphocyte associ-
ated protein 4 (CTLA-4), increases EZH2 expre- 
ssion in human T cells across various tumor 
types. Specific targeting of EZH2 in the Treg 

cells results in an increased anti-cancer immu- 
ne response and improved tumor control. For 
example, genetic depletion of EZH2 in the Fox- 
P3cre/EZH2fl/fl mice or the use of EZH2 inhibi-
tor CPI-1205 elicit phenotypic and functional 
alterations of Tregs. This leads to enhanced ef- 
fector-like T cell responses and effectivity of 
anti-CTLA-4 therapy. Therefore, it is important 
to investigate the regulation of EZH2 expres-
sion in Tregs in the TME.

EZH2 in natural killer (NK) cells

NK cells, as a component of the innate immune 
system, are able to respond quickly to a wide 
variety of pathological challenges, including for-
eign, infected, or cancerous cells, in the abse- 
nce of antigen presentation by MHC-I [14]. 
Some studies have demonstrated an epigene-
tic mechanism regulating NK cell development 
and NK-based cancer immunotherapies. Inhi- 
bition of EZH2 expression or activity in hemato-
poietic stem and progenitor cells increases NK 
precursors and mature progeny, which display 
up-regulated IL-2 receptor β (also termed IL- 
15R, CD122), NK cell-activating receptor NK- 
G2D, Toll-like receptors, and granzymes of NK 
cells. This leads to increased cell proliferation, 
activation and cytotoxicity against tumor cells 
[6, 15, 16].

EZH2 in dendritic cells (DCs)

DCs are antigen-presenting cells that function 
as an important interface between innate and 
adaptive immune systems [17]. Tian et al. [18] 
reported that EZH2 overexpression plays an 
important role in the tumorigenesis of a major-
ity of histiocytic and dendritic neoplasms, such 
as histiocytic sarcoma, follicular dendritic cell 
sarcoma, Langerhans cell histiocytosis, and in- 
terdigitating dendritic cell sarcoma. Additionally, 
Gunawan et al. [19] demonstrated that EZH2 
regulates integrin signaling and adhesion dy- 
namics of DCs to promote the development of 
experimental autoimmune encephalomyelitis. 
Donas et al. [20] found that inhibition of H3K27 
demethylation induced tolerogenic DCs to in- 
hibit inflammation and the development of ex- 
perimental autoimmune encephalomyelitis. Th- 
ese studies indicate a potential role of EZH2 in 
DC function. How EZH2 regulates the function 
of DCs and influences DC-based cancer immu-
notherapies should be further investigated. 
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EZH2 in tumor-associated macrophages (TAM)

Another innate immune cell type in the TIME 
are macrophages, so called tumor-associated 
macrophages (TAMs). TAMs can promote tumor 
progression directly by favoring tumor cell pro-
liferation and survival and indirectly by creating 
an immunosuppressive microenvironment [21]. 
Qiao et al. demonstrated that IFN-γ-induced ma- 
crophage activation is facilitated by EZH2-me- 
diated H3K27me3 and subsequent silencing of 
genes, such as MERTK and PPARG, which could 
otherwise promote deactivation of macroph- 
ages by M2 stimuli [22]. However, the mecha-
nism by which dysregulated EZH2 in TAM con-
tributes to tumor progression is still unknown.

EZH2 regulation of TIME/immune response 

There are two main immune regulatory func-
tions of EZH2 in tumor cells. One is the mainte-
nance of chronic inflammation, and the other 
the establishment of tumor immune tolerance 
[23]. Chronic inflammation can induce epigen-
etic reprogramming and promote oncogenic 
transformation. Conversely, genetic and epi-
genetic changes in tumor cells can generate an 
inflammatory microenvironment that further 
supports tumor progression [24]. For example, 
EZH2-dependent transcriptional activation of 
IL-6/TNF and repression of IFNGR1 promote 
tumorigenesis through the maintenance of ch- 
ronic inflammation [25]. Chronic inflammation 
upregulates EZH2 through NF-κB activation 
and promotes tumorigenesis [26]. In prostate 
cancer cells, the EZH2 complex switches from a 
repressor to an activator, as a result of EZH2 
phosphorylation at S21, which is mediated by 
PI3K-AKT signaling. EZH2 in turn activates 
NF-κB target genes, such as IL-6, IL-8 and TNF 
[27]. These events result in the activation of the 
chronic inflammation/NF-κB/EZH2 signaling lo- 
op and promote cancer progression. Cholan- 
giocarcinoma (CCA) is another lethal cancer 
associated with EZH2-regulated chronic inflam-
mation. Knockdown of EZH2 regulates the ST- 
AT3 signaling pathway by restoring the function 
of tumor suppressor miR-124 and induces 
autophagy-related cell death. Thus, the EZH2-
STAT3 signaling axis may be a potential thera-
peutic target in chronic inflammation-related 
CCA [28].

Chronic immune cells in the TME not only inter-
act intimately with tumor cells to promote onco-
genic activity, but also fail to mount an effective 
anti-tumor immune response [29]. Interferon-γ 

receptor 1 (IFNGR1) is directly repressed by 
EZH2 in a MYC-dependent manner in a subset 
of metastatic prostate cancers [30]. EZH2 kno- 
ckdown or EZH2 inhibition restored the expres-
sion of IFNGR1. The combination of EZH2 inhib-
itor with IFN-γ treatment can strongly activate 
IFN-JAK-STAT1 tumor suppressor signaling and 
robust apoptosis. Thus, EZH2-inactivated IFN 
signaling may represent a potential therapeutic 
target for patients with advanced prostate can-
cer driven by MYC. 

Peng et al. [31] showed that in ovarian tumor 
EZH2 and DNA methyltransferase 1 (DNMT1) 
are negatively associated with tumor-infiltrating 
CD8+ T cells and patient outcomes. EZH2-me- 
diated H3K27me3 and DNMT1-mediated DNA 
methylation repress the secretion of T helper 1 
(Th1)-type chemokines CXCL9 and CXCL10, 
and subsequently obstruct effector T-cell traf-
ficking to the TME. Treatment with epigenetic 
modulators increases the infiltration of effector 
T cells, slows down tumor progression, and im- 
proves the therapeutic efficacy of PD-L1 check-
point blockade and adoptive T-cell transfusion 
in tumor-bearing mice. A similar effect of EZH2 
was also observed in colorectal cancer [32]. In- 
hibition of EZH2 in colorectal cancer cells in- 
creased CXCL9 and CXCL10 expression and 
augmented the infiltration of effector T cells in 
TIME. Zingg et al. [33] showed that during anti-
CTLA-4 or IL-2 immunotherapy in mouse mod-
els, T cell infiltration and T cell dependent tumor 
necrosis factor-α (TNF-α) production in TIME 
result in EZH2 upregulation in melanoma cells. 
This EZH2 upregulation, in turn, silences essen-
tial immune-related genes, including those 
involved in melanocyte lineage, MHC-I, antigen 
processing and presentation machinery, immu-
noproteasome, and T-cell-attractant chemoki- 
nes, through methylation of H3K27. This even-
tually represses tumor immunogenicity and T- 
cell infiltration, leading to treatment failure. EZ- 
H2 inhibition using GSK503 or tumor cell-spe-
cific RNA interference can reverse this resis-
tance. Hence, the combination of EZH2 inhibi-
tion with anti-CTLA-4 and IL-2 immunotherapy 
can augment the infiltration of IFN-γ-producing 
PD-1low CD8+ T cells in TIME and improve tumor 
control. 

EZH2 as a target for immunotherapy in vari-
ous cancer

In recent years, cancer immunotherapy has un- 
dergone great advances. Several cancer immu-
notherapeutic strategies have been establi- 
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shed and validated for the treatment of aggres-
sive cancers [34]. However, a good percentage 
of patients do not respond to these therapies 
while some others relapse rapidly after initial 
response [35, 36]. Epigenetic reprogramming, 
especially through the activity of EZH2, is in- 
volved in a variety of escape mechanisms. The 
inherent reversibility of epigenetic modificati- 
ons makes this mechanism an attractive thera-
peutic target [6]. More and more EZH2-targeting 
drugs have been reported and shown to exhibit 
anti-tumor effects in various malignancies in in 
vitro biochemical/cellular assays, in vivo pre-
clinical model experiments, and in clinical trials 
in patients [6]. Additionally, EZH2 inhibitors su- 
ch as Tazemetostat (also known as EPZ-6438 
or E7438, Epizyme, Inc) [4, 37], CPI-1205 (Co- 
nstellation Pharmaceuticals) [38], GSK28161- 
26 (also known as GSK126, GlaxoSmithKline) 
[39], PF-06821497 (Pfizer) [40, 41], and SHR- 
2554 (Jiangsu HengRui Medicine Co., Ltd.) (So- 
urce: Clinicaltrials.gov; accessed 17 October 
2018) are currently in clinical trials to treat 
many malignant tumors, both hematologic tu- 
mors and solid tumors, including rhabdoid tu- 
mors, Sarcoma, Nervous System Neoplasm, He- 
patocellular Carcinoma and castration resis-
tant prostate cancer (CRPC). In one of these 
clinical trials, the effects of tazemetostat on 
tumor immune priming will be assessed in epi-
thelioid sarcoma (ES) (NCT02601950) (data 
not shown). 

Importantly, EZH2 can lead to distinct and 
opposite effects on tumor cells, Treg cells, and 
T-cells in anti-tumor immunity. For example, 
although inhibition of EZH2 contributes to re- 
versing immune resistance, it might also reduce 
T cell survival in the TIME [9, 31-33]. In addi-
tion, the role of EZH2 on immune cells might 
depend on the tumor type, the treatment used 
and the TME, because systemic inhibition of 
EZH2 did not affect T-cell proliferation and 
effector functions in mouse models of melano-
ma [33]. Thus, the use of EZH2 inhibitors with 
the goal to inhibit tumor growth will likely simul-
taneously alter the functions of immune cells in 
the TIME. Although EZH2 inhibitors might pro-
vide an attractive treatment in cancers with 
high EZH2 expression and activation, such 
approaches might have unpredictable effects 
on anti-tumor immunity, which should be taken 
into consideration with the systemic use of epi-
genetic therapies. 

Interestingly, the study of EZH2 inhibitors in 
vitro and in various pre-clinical models showed 
their capacity to regulate different pathways 
and molecules involved in the interaction of the 
immune system with cancer cells. For example, 
recently, immune-checkpoint blockers, includ-
ing anti-CTLA4 antibody, anti-PD1 (PDCD1) anti-
body and anti-PDL1 (CD274) antibody, are em- 
erging as a new class of cancer therapeutics 
that augment antitumor immunity [42]. Long et 
al. [43] identified that miR-26a expression is 
elevated in CTLs responding to TME secretome 
stimulation. Elevated miR-26a subsequently in- 
hibits EZH2, which impairs CTL function, indi-
cating miR-26a-EZH2 axis as a novel target to 
improve the efficacy of CTL-based cancer immu-
notherapy. Combining EZH2 inhibitors with im- 
mune-checkpoint blockers seems to be a po- 
tential and reasonable strategy in cancer thera-
py. These efforts are currently being translated 
through clinical trials of epigenetic-modifying 
drugs in combination with immune checkpoint 
inhibitors, such as in NCT03525795, a study of 
CPI-1205 with Ipilimumab (a monoclonal anti-
body that works to activate the immune system 
by targeting CTLA-4) in patients with advanced 
solid tumors previously treated with PD-1 or 
PD-L1 Inhibitors.

As EZH2 is overexpressed in several cancers, it 
has been suggested that EZH2 can function as 
a tumor-associated antigen (TAA). Indeed, stud-
ies have identified an immunogenic epitope of 
EZH2 in lung cancer, which is recognized by 
CD4 T-cells and could serve as a potent immu-
nogenic target inducing both CD4 and CD8 
T-cell anti-tumor responses [44]. In prostate 
cancer, although targeting the androgen re- 
ceptor signaling is an effective strategy [45], 
androgen ablation increases the levels of EZ- 
H2 in prostate cancer [46]. EZH2 could be a 
promising target in specific immunotherapy of 
prostate cancer patients, particularly in those 
with metastases or castration-resistant can- 
cer. Along this line, EZH2-derived peptides th- 
at can be used for peptide-based anti-cancer 
vaccine to reactivate CTLs for cancer patients 
with HLA-A2, -A24 or -A3 molecules have been 
reported [47, 48]. 

Conclusions and future perspectives 

In summary, EZH2 is a methyltransferase and 
the catalytic subunit of PRC2 that mediates 
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H3K27me3. EZH2 acts as an oncogene that 
promotes the development and progression of 
a variety of human cancers. In addition, EZH2 
plays complicated roles in tumor immunity, 
which should be the focus of future studies. 
Therapeutic targeting of EZH2 thus poses new 
challenges and systematic application of EZH2 
inhibitors should consider potential implica-
tions on host and tumor immunity. It may be 
advantageous to combine EZH2 inhibitors with 
immunotherapies in some cancers, which war-
rants further investigation. 
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