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Summary

Innate immune responses vary in a circadian manner, and more recent

investigations aim to understand the underlying molecular mechanisms.

Cytokine production varies significantly over the course of a day depend-

ing on the time of stimulation by pathogens or Toll-like receptor ligands,

and multiple signaling pathways linked to the cell-autonomous circadian

clock modulate innate immunity. Recognition of foreign material, espe-

cially by innate immune cells, engages a myriad of receptors, which trigger

inflammatory responses, as well as endocytosis and degradation and/or

processing for antigen presentation. Because of the close connection

between particle engulfment and inflammation, it has been proposed that

phagocytic uptake may drive cytokine production in phagocytes. Here we

show that bacterial particle ingestion by mouse peritoneal macrophages

displays temporal variation, but is independent of the cell-intrinsic circa-

dian clock in an ex vivo setting. Although cytokine production is depen-

dent on phagocytosis, uptake capacity across 12 hr does not translate into

24-hr rhythms in cytokine production. In vivo, time-of-day variations in

phagocytic capacity are not found, whereas a time of day and clock-

dependent cytokine response is maintained. These data show that effi-

ciency of bacterial phagocytosis and the 24-hr rhythmicity of cytokine

production by macrophages are independent of one another and should

be studied separately.
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Introduction

Circadian rhythmicity in higher organisms is controlled

by a hierarchical structure, where a master clock in the

suprachiasmatic nucleus responds to environmental sig-

nals, such as diurnal changes in light, and signals to cellu-

lar clocks in peripheral tissues to ensure synchrony of the

organism with solar time.1,2 Cell intrinsic, autonomous

molecular clocks exist in most cells and are comprised of

interlocked, transcriptional–translation feedback loops.

Brain and Muscle ARNT-Like 1 (BMAL1) dimerizes with

CLOCK3 and binds to E-box (CACGTG) motifs in DNA4

to induce transcription of clock genes, such as Period

(PER), Cryptochrome (CRY) and RAR Related Orphan

Receptor (ROR) and Reverb.5 Following translation, PERs

and CRYs translocate to the nucleus to inhibit the

BMAL1:CLOCK dimer, thereby inhibiting their own tran-

scription, while RORs and REV-ERBs directly regulate

transcription of Bmal1, the only non-redundant clock

component that, when deleted, by itself results in a com-

plete functional breakdown of the molecular clock.6 Com-

ponents of the molecular clock, such as BMAL1, can

further bind to thousands of sites within the genome to

induce expression of clock-controlled genes; it is esti-

mated that up to 43% of the transcriptome may be clock

controlled.7

Circadian variation in innate immune responses and

susceptibility of mouse models to septic shock have been

known for many years8–10 and more recent studies have

demonstrated a significant role for the molecular circa-

dian clock and specific clock components in innate

immune responses to pro-inflammatory stimulation. The

abundance of immune cells in the circulation,11,12 and

immune cell subsets such as Ly6Chigh inflammatory

monocytes,13 natural killer cells,14 eosinophils15 and T

cells16,17 fluctuate over the course of the day, which may

contribute to the intensity of an immune response. Cyto-

kine production following inflammogenic stimulation has
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also been attributed to the circadian system and deletion

of clock components such as Reverba and Cry2, which

both display sustained overall functionality of the clock,

increase interleukin-6 (IL-6) production in macrophages

in an in vitro, as well as an in vivo, model.18,19 This

argues for a pathway that cannot be fully ascribed to a

single clock component and emphasizes that our under-

standing of how the circadian system may regulate cyto-

kine response is still lacking.

In sepsis models, the production of cytokines following

an immune stimulation is critical in the response to infec-

tion. Cytokine levels are therefore widely used as indica-

tors for the intensity of an immune response and in

accordance with rhythmic mortality upon stimulation with

lipopolysaccharide (LPS) and tumor necrosis factor,8,9 the

intensity of cytokine production similarly correlates with

the time of immunological innervation.13,19–23

The initial induction of an immune response and cyto-

kine production relies on the engagement of inflammo-

genic material with surface receptors on immune cells, and

this interaction also often results in internalization of these

materials, particularly when they are in particulate form

such as bacteria.24 Macrophages, the immediate responders

to an inflammatory insult, which are often studied in the

context of LPS-induced inflammation, are professional

phagocytes with a significant capacity for particle inges-

tion. Considering the correlation of the type of material

encountered to the inflammatory response induced, as well

as the mechanism by which it is internalized,25 phagocytic

uptake and cytokine production – which are not necessary

interdependent26 – may be coupled across the daily cycle.

The capability of immune cells to internalize inflammo-

genic material has also been studied in the context of cir-

cadian biology.27–29 Daily oscillations in the capacity of

peritoneal cells to phagocytose Zymosan27 and clock reg-

ulation of Streptococcus pneumoniae and Serratia marces-

cens phagocytosis in Drosophila28 among others were

described. Further, melatonin, a hormone primarily pro-

duced by the pineal gland under the control of the

suprachiasmatic nucleus, which projects lighting informa-

tion to tissues throughout the body, has been identified

as a potent regulator of particle ingestion in a variety of

cell types.30–32 However, whether the cell-intrinsic clock

regulates circadian oscillations in phagocytosis, and the

relationship between phagocytosis and inflammatory cyto-

kine production by macrophages is not well understood.

Here we have studied the influence of daily time and the

molecular clock on phagocytosis of bacterial and other

particles by peritoneal macrophages both ex vivo and

in vivo, the relationship between efficiency of phagocytosis

and cytokine production, and the dependence of these

responses on the cell-intrinsic molecular clock. Although

particle phagocytosis by macrophages ex vivo varied across

12 hr, phagocytosis was not regulated by the cell-autono-

mous clock, and time-of-day variations in cytokine

response were regulated independent of particle ingestion.

These results show that cytokine production and inflam-

matory responses are not linked to phagocytic capacity of

macrophages, and provide a new perspective on the origin

of variation in innate immunity over time of day.

Material and methods

Mice

Cd36 knockout mice (B6.129S1-Cd36tm1Mfe/J stock num-

ber 019006) and control C57BL/6J mice (stock number

000664) were obtained from the Jackson Laboratories (Bar

Harbor, ME). Bmal1 floxed animals (B6.129S4(Cg)Arntlt-

m1Weit/J stock number 007668) and LyzM-Cre mice

(B6.129P2-Lyz2tm1(cre)Ifo/J stock number 004781) were pur-

chased from the Jackson Laboratory on C57BL/6J back-

ground and were intercrossed to generate BMAL1fl/flLyzM-

Cre+/+, which lack the Bmal1 gene in the myeloid lineage.

BMAL1fl/flLyzM-Cre�/� mice served as controls with an

intact Bmal1 gene. Animals were housed in 12 hr : 12 hr

light : dark conditions (~70 Lux at times of illumination),

in rooms accessible under red lights during the dark period.

Studies were conducted using male and female mice and

no differences were apparent between sexes.

To control for technical variation, a reverse-light-room

was used in some experiments in which time-points that

were 12 hr apart were compared. The light schedule in

this room was anti-phasic to the regular mouse holding

room, allowing ZT0 versus ZT12 experiments to be per-

formed simultaneously. Mice were acclimatized for at

least 3 weeks in the reverse-light-room before they partic-

ipated in any study to allow full recovery of the circadian

clock, whereas mice from conventional rooms were accli-

matized for at least 1 week.

All animal procedures have been approved by the

appropriate regulatory body.

Peritoneal lavage

Mice were killed and decapitated at the indicated time-

points. After skinning the abdomen to expose the

peritoneum, 5 ml of ice-cold phosphate-buffered saline

(PBS), together with 1 ml of air were rapidly injected into

the peritoneum with a 21-gauge needle. Then, the liquid

was retrieved back to the needle and the cell suspension

was kept on ice until it was centrifuged at 863 g at 4°.
The cell pellet, which contained mainly B cells and

macrophages, was then used for further experiments.

Bone-marrow-derived macrophages

Mice were killed using CO2 and the rear leg bones were

dissected from surrounding tissue. The bone marrow

was flushed into a 50-ml Falcon tube using a G25
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needle until the bone appeared white. The cell suspen-

sion was centrifuged for 5 min at 486 g and the cell pel-

let was resuspended in 3 ml ACK Lysis buffer for

3 min. Then, 17 ml Dulbecco’s modified Eagle’s medium

(DMEM) was added to stop the reaction and the sus-

pension was strained through a 100-lm cell strainer and

subsequently pelleted by centrifugation for 5 min at 486 g.

The cell pellet was resuspended in 30 ml DMEM supple-

mented with 1% penicillin/streptomycin, 10% fetal calf

serum (FCS) and 20% L929 conditioned medium and

distributed to three 10-cm Petri dishes to allow macro-

phage differentiation for 7 days at 37°, 5% CO2 in a tis-

sue-culture incubator. On day 4, 1 ml L929 conditioned

medium was added to each plate. On day 7, the cells were

washed with 5 ml PBS before they were scraped in 5 ml

ice-cold PBS from the culture plate using a cell scraper

and transferred into a Falcon tube. After centrifugation for

5 min at 486 g, the cell pellet was resuspended at 1 million

cells per ml in DMEM with 10% L929 conditioned med-

ium, 10% FCS, 1% penicillin/streptomycin and plated for

use on day 8. L929 conditioned medium was made by cul-

turing previously confluent L929 cells at 0�5 9 106 cells/

ml RPMI-1640 with 10% FCS, 1% penicillin/streptomycin

for 7 days. The supernatant was then filtered and stored at

�20° until use.

LPS stimulation

Peritoneal cells (0�5 9 106) were stimulated with 100 ng/ml

Escherichia coli O111:B4 LPS (Sigma, St Louis, MO; Cat#

L2630 Lot# 014M4018V) in DMEM (with 1% penicillin/

streptomycin) for 1 hr or 24 hr before the supernatant was

collected and stored at �20° until analysis. Cells were lyzed
in RLT buffer (Qiagen, Venlo, Netherlands, Cat# 79216)

and stored at �80° for subsequent RNA extraction. LPS

solutions were freshly prepared and sonicated before use.

In vivo uptake

Heat-inactivated, fluorescent Staphylococcus aureus

[0�4 9 106 or 20 9 106 cells; multiplicity of stimulation

(MOS) 0�1 or 5, respectively, assuming four million

macrophages per peritoneum based on previous peri-

toneal lavage counts] were injected intraperitoneally at

the indicated time-points in 200 ll sterile PBS. After

1 hr, peritoneal cells were harvested and vigorously

washed three times before they were stained for subse-

quent flow cytometry or microscopy analysis.

Ex vivo uptake

Peritoneal leukocytes (0�5 9 106) were treated with

2�5 9 106 fluorescent, heat-inactivated S. aureus particles,

for an MOS of 5 (Life Technologies, Carlsbad, CA; Staphy-

lococcus aureus BioParticles Alexa Fluor 488 or 594

conjugate, Cat# S23371 or S23372), or 5 9 106 fluores-

cent, heat-inactivated E. coli particles (MOS 10) (Life

Technologies; Escherichia coli BioParticles Alexa Fluor 488

or 594 conjugate, Cat# E13231), or Vybrant (Life Tech-

nologies; Vybrant Phagocytosis Assay Kit, Cat# V6694), or

2�5 9 108 latex beads (MOS 500) (Life Technologies;

Beads FluoSpheres polystyrene, 1�0 lm, yellow green, Cat#

F13081, Lot# 1421042), or 2�5 9 108 living green fluores-

cent protein-expressing E. coli (kind gift from Jay Hinton)

(multiplicity of infection 500) for 1 hr if not indicated

otherwise. For uptake inhibition studies, indicated concen-

trations of Latrunculin A (Invitrogen, Carlsbad, CA; Cat#

L12370 Lot# 796178) were added to the cells 10 min

before the addition of the particles and remained in the

cell medium until the end of the study (1 hr for uptake

measurements and 4 hr for cytokine measurements). Devi-

ating particle concentrations are indicated in the figure

legends. Cells were vigorously washed three times for sub-

sequent quantification of fluorescence by flow cytometry,

microplate reader or microscopy.

Flow cytometry

Cells were vigorously washed three times with PBS to

remove bacterial particles from the cell surface, before

they were treated with Fc-block (BioXCell, West Lebanon,

NH; Cat# CUS-HB-197-A02) for 10 min at 4° and

stained for F4/80 PE-Cy7 (BioLegend, San Diego, CA;

Cat# 123114) and Live/Dead blue fixable stain (Life Tech-

nologies; Cat# L23105) for 30 min at 4°. Following two

additional washes, the cells were fixed with 3% Parafor-

maldehyde for 10 min at room temperature, washed once

more and subsequently analyzed on an LSR Fortessa (BD

Bioscience, Franklin Lakes, NJ, USA). The gating strategy

is shown in the Supplementary material (Fig. S1).

Fluorescence plate reader

Following adherence of 0�1 9 106 cells to a flat-bottom

96-well plate overnight (bone-marrow-derived macrophages)

or for 30 min (peritoneal cells), cells were stimulated with

5 9 107 living green fluorescent protein-labeled E. coli, or

5 9 107 latex beads, or with Vybrant (commercially avail-

able phagocytosis kit including inactivated E. coli) particles

according to the manufacturer’s instructions. Extracellular

signal was quenched with Trypan Blue for 1 min at room

temperature immediately before fluorescence was deter-

mined by a FLUOstar OPTIMA fluorescent plate reader

(BMG Labtech, Ortenberg, Germany). Data are presented

as relative fluorescence intensity.

Confocal microscopy

Cells were vigorously washed three times with PBS to

remove bacteria from the cell surface and allowed to
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adhere to Poly-L-Lysin-coated cover glasses for 30 min at

room temperature. After 10 min Fc-blockage (50 ll,
60 lg/ml) at 4°, the cells were stained with a fluorescein

isothiocyanate-conjugated anti-S. aureus antibody (50 ll,
1:200) (Abcam, Cambridge, UK; Cat# ab68950) for

30 min at 4°, followed by a wash and subsequent incuba-

tion with CellMask 1:1000 (Invitrogen; Cat# C10046) and

Hoechst 33342 1:200 (Sigma; Cat# 14533) for 5 min at

room temperature. The cells were then washed twice and

fixed with 3% PFA for 10 min at room temperature.

Mounted cells (Mounting medium Vectashield; Vector

Laboratories, Burlingame, CA; Cat # H- 1000)) were

sealed with nail polish and stored at 4° until visualized

using a Leica SP5 NLO confocal system. Three-dimen-

sional analysis was performed using IMARIS software (Bit-

plane, Zurich, Switzerland). Permeabilized samples were

similarly prepared, except that cells were permeabilized in

200 ll freshly prepared 0�1% Triton X-100 in PBS for

6 min at room temperature and washed once with warm

DMEM before the fluorescein isothiocyanate-conjugated

anti-S. aureus antibody was added for staining.

FACS purification

Peritoneal macrophages were isolated and stained for F4/

80 and propidium iodide to discriminate dead cells and

were then sorted on a MoFlow cell sorter according to

F4/80 positivity or negativity in two separate, RLT-con-

taining tubes. Only propidium-iodide-negative, single

cells were considered and sorted cells were kept on ice

until further processing.

RNA isolation

RNA from cell cultures was isolated using the commer-

cially available RNeasy Mini Kit (Qiagen, Venlo, Nether-

lands; Cat# 74106). Cells were washed with PBS before

350 ll RLT buffer was added to the cells. To improve cell

lysis, the cell suspension was then placed at �80° for at

least 1 day and vigorously pipetted up and down several

times after being defrosted. The RNA was precipitated by

addition of 525 ll (1�5 volumes) of 100% pure ethanol

and loaded onto an RNeasy spin column. During a 15-

second spin at 8000 g the RNA was enriched within the

column and washed twice with 500 ll RPE buffer. The

column was centrifuged at 8000 g for 15 seconds during

the first, and 2 min during the second wash, and the flow

through was discarded after each spin. Remaining ethanol

was removed by an additional centrifugation at full speed

for 1 min, while using a fresh collection tube. Lastly, the

column was placed into an RNase-free Eppendorf tube

and the RNA was eluted in 25 ll RNase-free H2O during

a 1-min centrifugation at 8000 g. The eluted RNA was

re-loaded onto the column for a second elution step to

maximize the yield of recovered RNA.

Reverse transcription PCR and quantitative PCR

Complementary DNA was prepared from RNA using the

commercially available kit iScript (BioRad, Hercules, CA;

Cat# 170-8841) according to the manufacturer’s instruc-

tions using 500 ng RNA. Following reverse transcription,

the cDNA was stored at �20°. Before use in a quantitative

polymerase chain reaction (PCR), the cDNA was diluted in

the range of 1 : 2 to 1 : 10 in ultra-pure water. During the

procedure, the RNA and resulting cDNA were kept on ice.

Real-time PCR was performed using TaqMan Primer/

Probe sets purchased from ThermoFisher (Waltham, MA)

and Sso Advanced Universal Probes Supermix (BioRad;

Cat# 172-5284) in a CFX384 Touch Real-Time PCR Detec-

tion System (BioRad; Cat# 1855485). The cycle number

that resulted in a fluorescence signal above threshold (CT)

was recorded and data were normalized to the average CT

of three housekeeping genes that have previously been vali-

dated in a circadian setting (RPS18, Actin and GAPDH)

(data not shown). To generate more useful axis ranges,

mRNA abundance was normalized to the average of all

data points of the gene of interest in a given experiment.

Cytokine measurement

In vivo cytokines were measured at the indicated time-

points by terminal blood collection following decapita-

tion. Serum was separated in Z-gel micro tubes (Sarstedt,

N€umbrecht, Germany; Cat# 41.1500.005) after a 30-min

incubation and centrifugation at 10 000 g for 5 min.

Serum was stored at �20° until use. Supernatants from

ex vivo stimulations were separated from the cells by cen-

trifugation for 5 min at 863 g at 4° and stored at �20°
until further use. Cytokines were measured using the Bio-

Plex system (BioRad) in a multiplex assay according to

the manufacturer’s instructions. In short, appropriate

magnetic capture beads were washed twice with wash buf-

fer in a magnetic plate washer, before the samples and

standards were added to the plate and incubated for

30 min while shaking. Following three washes, the respec-

tive biotinylated detection antibodies were added for

30 min while shaking, before the plate was washed three

times. Lastly, phycoerythrin-conjugated streptavidin was

added for 10 min before the magnetic beads were washed

three times and resuspended in 125 ll assay buffer. The

conjugates were then analyzed using a Bio-Plex MagPix

Multiplex Reader (BioRad).

Statistics

Error bars represent the standard error of the mean. For

pairwise, non-parametric statistical analysis, Mann–Whitney

U-test was performed using PRISM6 (www.graphpad.com).

For comparing multiple variables, analysis of variance

and post hoc test were used as appropriate, with the P-
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value of main interaction given, unless indicated other-

wise. To identify rhythmic data sets, JKT Cycle (Freeware

provided by the Hughes Laboratory)33 was used.

Results

Ingestion of heat-inactivated bacterial particles is
affected by the time of the day ex vivo and
phagocytosis is required for cytokine production

To investigate uptake capacity of tissue-resident macro-

phages across the daily cycle, cells were isolated from the

peritoneum of mice at zeitgeber time 0 (ZT0, the begin-

ning of the light phase) or ZT12 (start of the dark phase)

and incubated for 1 hr with fluorescently labeled, heat-

inactivated bacteria. Both Gram-positive (S. aureus), and

Gram-negative (E. coli) bacteria were tested. Strikingly,

the mean fluorescence intensity (MFI) per cell for both

bacterial species was increased in macrophages harvested

at ZT12 compared with ZT0 (Fig. 1a,b). The percentage

of peritoneal macrophages that were able to ingest one or

more particles was thereby similar between those two

time-points (Fig. 1c,d). These data show increased effi-

ciency of particle uptake by F4/80-positive macrophages

at ZT12 compared with ZT0.

Among cells in the peritoneal fluid, macrophages (identi-

fied by F4/80; see Supplementary material, Fig. S1)

accounted for most of the particle uptake (Fig. 2a,b),

whereas their abundance, as well as the overall basal

composition of cell subsets in the peritoneal cavity, such as

B cells, eosinophils, small/large peritoneal macrophages

and dendritic cells, remained steady over the course of the

day (see Supplementary material, Fig. S1b). To determine

whether the temporal variation seen with bacterial phago-

cytosis is seen with non-bacterial stimuli, peritoneal cells

were incubated for 1 hr with a variety of particles, includ-

ing inert latex beads (~1 lm in diameter) and the percent-

age of uptake-positive cells was recorded. As with bacteria,

uptake of fluorescently labeled Vybrant particles (heat-

inactivated E. coli) and latex beads was also predominantly

seen in F4/80-positive cells (Fig. 2c,d), and analysis of the

MFI showed that these particles were also ingested to a

greater extent by peritoneal macrophages at ZT12 com-

pared with ZT0, with ZT6 being intermediate (Fig. 2e,f).

To confirm that the signal detected by cellular fluores-

cence was indeed derived from internalized as opposed to

surface-bound bacterial particles, we visualized macro-

phages after particle uptake by confocal microscopy. The

majority of particles were internalized relative to the

plasma membrane as visualized with the membrane stain

CellMask and were inaccessible to an anti-S. aureus anti-

body (Fig. 3a,b, and in a three-dimensional rendering, see

Supplementary material, Video S1). Permeabilization of

the cells before the addition of the anti-S. aureus anti-

body confirmed the ability of this antibody to label intra-

cellular S. aureus particles (Fig. 3c). These data show that

the MFI of bacterial particles measured by flow cytometry

does indeed reflect phagocytosis.
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Similar to particle uptake, macrophages stimulated with

bacteria or bacterial products such as LPS secrete cytoki-

nes in a manner dependent on the circadian time, with

more cytokines secreted at the end of the light phase (see

Supplementary material, Fig. S2a,b).20,22,23 To confirm

that cytokine production is dependent on phagocytosis,

peritoneal cells were pre-incubated with increasing con-

centrations of Latrunculin A, which inhibits actin poly-

merization and phagocytosis. Both the efficiency of

S. aureus uptake and production of IL-6, IL-10 and

tumor necrosis factor were reduced by Latrunculin A in a

dose-dependent manner (Fig. 4a,b), confirming that func-

tional phagocytosis at least partly contributes to the mag-

nitude of cytokine release. Induction of mRNA for these

cytokines was also inhibited by Latrunculin A, showing

that reduction in cytokine production is affected at the

level of transcription when phagocytosis is inhibited

(Fig. 4c). This result underscores the possibility that oscil-

lations in particle uptake may regulate oscillations in

cytokine production by peritoneal macrophages ex vivo.

Uptake capacity ex vivo over 12 hr is independent of
the cell-autonomous circadian clock and the
scavenger receptor CD36

Daily changes in phenotypes observed in a particular cell

type may be controlled by the cell-intrinsic clock, but

extrinsic, systemic signals also have the potential to pro-

gram cells for different responses at certain times of the

day. Peritoneal lavage cells exhibit diurnal variation in
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ysis using Kruskal–Wallis one-way analysis of variance and Dunn’s post-hoc multiple comparison, ** P < 0�01.
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gene expression of Bmal1 (Fig. 5a), and most of this

oscillation originates from macrophages, as only F4/80-

positive cells display significant variation in Bmal1 over

12 hr (Fig. 5b). This is also seen for Reverba, another

central component of the clock, which fluctuates out of

phase from Bmal1 (Fig. 5c).

To further investigate the role of the macrophage clock

in particle uptake across 12 hr, we used mice where the

circadian clock is specifically disrupted in the myeloid

lineage (BMAL1fl/flLyzM-Cre+/+). As expected, deletion of

Bmal1, as previously confirmed on protein and transcrip-

tional level throughout the day,23 abrogated fluctuations

in Reverba (Fig. 6a,b), indicating successful disruption of

the molecular clock. Bmal1 mRNA remained detectable at

steady levels in knockout samples, as transcription was

measured in the entire peritoneal washout, which includes

non-myeloid cells that continue Bmal1 expression in

BMAL1fl/flLyzM-Cre+/+ animals (Fig. 6a).
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Figure 3. Confocal microscopy demonstrating internalization, rather than surface binding of particles. Microscopy analysis of mouse peritoneal

macrophages stimulated for 1 hr with fluorescent Staphylococcus aureus bioparticles (red) and stained with a cell-membrane-impermeable anti-

S. aureus antibody (green) as well as membrane (grey) and nuclear (blue) dyes. (a) Representation of an S. aureus-loaded cell. Arrow: particle

within a phagocytic cup, as identifiable by the membrane stain (grey), is accessible to an anti-S. aureus antibody (green). (b) Analysis of cells

with (right) or without (left) membrane stain. (c) Co-localization of S. aureus particles (red) and anti-S. aureus stain (green) in cells permeabi-

lized before anti-S. aureus staining.
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When we analyzed particle and bacterial uptake in peri-

toneal cells from Bmal1 conditional knockout mice, they

displayed similar levels in the amount of ingested mate-

rial, as well as the percentage of uptake-positive macro-

phages compared with controls, with more efficient

uptake at ZT12, despite lacking cell-intrinsic clock func-

tion (Fig. 6c). We found similar uptake of Vybrant and

latex particles as well as S. aureus in Bmal1-deficient

macrophages, confirming that this was not unique to a

particular type of particle (Fig. 6d–f). Kinetics of phago-

cytosis were similar between control and Bmal1 knockout

peritoneal as well as bone-marrow-derived macrophages,

further supporting that uptake is independent of the cell-

intrinsic molecular clock (see Supplementary material,

Fig. S3a–c). Notably, ex vivo uptake kinetics in peritoneal

macrophages display continuously low uptake over the

first 30 min, arguing for a defect rather than a delay in

ZT0 compared with ZT12 stimulated cells (Fig. 4d). As

comparable percentages of the F4/80+ macrophages were

found in the peritoneal washout of BMAL1fl/flLysM-Cre+/+

and BMAL1fl/flLysM-Cre�/� animals (see Supplementary

material, Fig. S3e), uptake capacity between wild-type and

knockout samples also did not appear to be affected by

population heterogeneity.

Recently, the class B scavenger receptor CD36, which

was originally identified as mediating ingestion of modi-

fied low-density lipoprotein34 has been implicated in

uptake of bacteria35 and regulation of inflammatory
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pathways,36 making CD36 a potential candidate to mediate

daily oscillations in phagocytosis and cytokine response.

CD36 was highly expressed in F4/80+ peritoneal macro-

phages and although CD36 mRNA was modestly increased

at ZT6, surface levels of CD36 were significantly elevated

at ZT12 over other time-points (Fig. 7a,b), correlating

with the time where we observed increased particle phago-

cytosis. However, phagocytic uptake of E. coli and S. au-

reus bioparticles was similar in CD36 wild-type and

knockout peritoneal macrophages ex vivo, as well as in vivo

(Fig. 7c,d), with the absence of CD36 confirmed by flow

cytometry (Fig. 7e). Hence, these data do not support a

role for CD36 in phagocytosis of these bacterial particles.

Particle ingestion in vivo is independent of the time
of day and the molecular clock

To investigate how these findings applied to in vivo uptake

of bacteria more generally, we injected S. aureus bioparti-

cles intraperitoneally at concentrations comparable to

ex vivo studies at different times of the day, and measured

uptake by peritoneal macrophages harvested 1 hr later.

Unexpectedly, macrophages in the peritoneum did not

recapitulate the variations in particle uptake that we

observed ex vivo between ZT0 and ZT12. Even over a time

course with data-points every 3 hr over the course of a

day, uptake was similar at these time-points (Fig. 8a). As

the percentage of uptake-positive macrophages was almost

100% (Fig. 8a), and therefore significantly higher com-

pared with the previous ex vivo studies (Figs 1d, 2b, 6f),

we titrated the amount of injected bioparticles to find a

dose recapitulating the initial percentage of uptake-posi-

tive macrophages (see Supplementary material, Fig. S4b).

At the optimized lower dose of 0�4 9 106 particles per

injection these experiments also failed to yield time-of-day

variation in particle uptake (Fig. 8b), and this lack of vari-

ation did not appear to be related to differences in peri-

toneal cell subsets at different times of the day, as the

percentage of selected immune cell populations following

intraperitoneal stimulation with bacterial particles was

similar independent of time of day (see Supplementary

material, Fig. S4c–e).
Congruent with our ex vivo findings, the cell-autono-

mous macrophage clock also did not affect uptake capac-

ity of bacteria in vivo as S. aureus was phagocytosed

similarly in BMAL1fl/flLyzM-Cre+/+ and control mice

(Fig. 8c,d). Together these data demonstrate that particle

uptake in vivo – in contrast to ex vivo – is not dependent

on time of day and the molecular clock.

Macrophage cytokine production in response to
bacteria is dependent on time-of-day in vivo

Although macrophage phagocytic capacity did not dis-

play time-of-day variation in vivo, we investigated

whether cytokine production in response to bacterial
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particle stimulation in the peritoneum was still depen-

dent on time-of-day. Consistent with previous studies

with LPS,20,22,23 induction of serum IL-6, tumor necrosis

factor and IL-10 was increased after intraperitoneal stim-

ulation with heat-inactivated S. aureus at ZT12 com-

pared with ZT0 (Fig. 9a). Transcript levels of these

cytokines in peritoneal cells were similarly increased at

ZT12 compared with ZT0, paralleled by the expected

circadian expression of the clock genes Dbp and Reverba

without bacterial stimulation (Fig. 9b,c). Furthermore,

following in vivo stimulation with heat-inactivated S. au-

reus at ZT0, when Bmal1 expression is elevated in wild-

type animals, mRNA levels of Il6, Tnf, Il10 and Il1b in

peritoneal cells extracted from BMAL1-deficient

BMAL1fl/flLyzM-Cre+/+ mice were increased compared

with BMAL1-sufficient BMAL1fl/flLyzM-Cre�/� control

animals (Fig. 9d). Taken together with the data showing

that phagocytic capacity of Bmal1 wild-type and knock-

out cells are similar (Fig. 8c,d), this provides compelling

evidence that cytokine production is dissociated from

macrophage phagocytic capacity in vivo.

Discussion

Here we investigated the influence of the circadian system

on phagocytosis by peritoneal macrophages and the
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consequences for production of pro-inflammatory cyto-

kines. We found that phagocytic ingestion of bacterial par-

ticles by peritoneal macrophages is independent of the cell-

intrinsic molecular clock, and shows time-of-day variation

ex vivo, but not in vivo, whereas temporal changes in the

cytokine response are seen in both situations. This suggests

that mechanisms other than phagocytic uptake regulate

time-dependent variation in cytokine responses. This disso-

ciation of phagocytosis and cytokine response has already

been identified in other models26 and considering the

abundance of distinct macrophage subsets in the peritoneal

cavity,37 such as large and small macrophages, this may be

further pronounced in peritoneal exudate cells.

A multitude of circadian outputs, from gene regulation

to post-transcriptional modification, are mediated directly

by the cell-intrinsic molecular clock.38–40 However, sys-

temic signals that are used to synchronize pacemakers

within an organism may also directly induce circadian

outputs independently of a functional cell-autonomous

clock. Such signals may range from temperature cycles to

metabolites and could target the phagocytic machinery,

actin-dependent membrane changes or the presence of

uptake receptors on the surface. CD36, a scavenger recep-

tor that has been implicated in uptake of Gram-positive

and Gram-negative bacteria,35 did not display variation

on mRNA level across 12 hr, but was increased at the cell

surface at times when mice appear most susceptible to

inflammatory stimulation.8,9 Protein levels may be regu-

lated by systemic cues, such as the feeding cycle, and

indeed protein abundance and subcellular localization of
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CD36 have previously been demonstrated to be modu-

lated by nutritional cues.41–43 However, we did not find

phagocytosis of the bacterial particles tested to be depen-

dent on CD36, arguing against the possibility that CD36

mediates changes in the phagocytic capacity of peritoneal

macrophages at different times of the day.

Although the independence of bacterial uptake of

CD36 was consistent between in vivo and ex vivo studies,

we found that uptake capacity by peritoneal macrophages

was only variable at different times of the day ex vivo but

not in vivo. A number of possibilities may explain this

discrepancy. The process of cell extraction may affect the

cell state differently at different times of the day (altering

poising of the cell), or, mechanisms that are only in place

in an in vivo environment, such as temperature fluctua-

tions, autocrine or humoral and neuronal signals, may

mask the differences that are seen ex vivo.44,45 The trauma

of injection may also induce an inflammatory response

that can potentially intensify uptake in vivo and overcome

changes seen ex vivo. Notably, a possible role for mela-

tonin was eliminated as all mice we used carry a naturally

occurring deletion in the serotonin N-acetyltransferase

(arylalkylamine N-acetyltransferase, AANAT) gene, caus-

ing a defect in the production of melatonin.46

Another mechanism that may potentially explain differ-

ences between in vivo and ex vivo results would be Fc-

receptor47 and complement-mediated ingestion.48,49 Natu-

ral antibodies and opsonins are present in the serum and

can bind material to enhance clearance by phagocytes. In

the serum-free conditions that we used in the ex vivo

assays throughout this study, these factors are not present

to prevent Fc- receptor and complement-mediated

uptake, and it is possible that Fc- or complement-

mediated uptake in vivo masks cell-intrinsic diurnal
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Figure 9. In vivo cytokine production is dependent on time of day and an intact molecular clock. Cytokine abundance 1�5 hr after intraperi-

toneal stimulation with 2 9 107 Staphylococcus aureus particles or phosphate-buffered saline (PBS) control at the indicated times. (a) Serum

cytokines in wild-type (WT) mice. Interleukin-6 (IL-6), tumor necrosis factor (TNF), IL-10. (b) mRNA expression levels in peritoneal cells of

WT mice. Il6, Tnf, Il10, Il1b. Statistical analysis using two-way analysis of variance (ANOVA) and Sidak’s multiple comparisons test. (c) Dbp (left)

and Reverba (right) mRNA expression in peritoneal cells isolated from control PBS-stimulated WT mice. (d) mRNA abundance in peritoneal cells

from BMAL1fl/flLyzM-Cre+/+ or BMAL1fl/flLyzM-Cre�/� control animals stimulated at ZT0. Compiled data from two independent experiments

1.5–2 hr post stimulation. Statistical analysis was performed using Mann–Whitney test, *P < 0�05, **P < 0�01, ***P < 0�001, ****P < 0�0001).
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variation in macrophage phagocytic capacity. Genetic

deletion of Fc-receptors on phagocytes or core comple-

ment factors in vivo could be used to investigate these

possibilities. Whatever the explanation for the divergence

between diurnal variation in macrophage phagocytosis

ex vivo and in vivo, our findings demonstrate that in the

context of infection, ex vivo studies may not recapitulate

the in vivo state to allow translation of findings to an

intact animal or human, and suggests that chrono-immu-

nological findings obtained ex vivo should be confirmed

with in vivo experiments.

As this study is limited to peritoneal macrophages, it

should be noted that it is possible that macrophages from

other tissues or other cell types may act differently in

terms of circadian control of phagocytosis, and in vivo

daily oscillations in phagocytosis have indeed been previ-

ously described in Drosophila.28 Further, F4/80 was used

as the identifier of macrophages although other cell types,

such as eosinophils and dendritic cells, can also express

this marker. Considering the very low abundance of these

cell types in the peritoneum at all circadian times (see

Supplementary material, Fig. S1b), these cell types do not

appear to be contributory. In some experiments, treat-

ments at the different ZTs were not performed simultane-

ously, but at different times of the day. However, as

experiments using mice harvested simultaneously from

reverse and conventional light cycle rooms (Figs 1 and 8)

generated similar results compared with sequential testing

throughout the day, the differences that were seen in

ex vivo uptake studies cannot solely be accounted for by

this technical variation.

Although in vivo uptake in the wild-type state was inves-

tigated thoroughly with 3-hr time-points over a full diurnal

cycle, the remainder of the study focused on two to three

time-points over a 24-hr interval. Although this limited

sampling substantiates the existence of temporal variation

in phagocytosis, it cannot confirm a diurnal or circadian

phenotype. Two complete 24 hr cycles with several sam-

pling times would be necessary to conclude diurnal rhyth-

micity, and only a similar approach under constant

conditions would suffice for circadian oscillations.

It is clear that the circadian system regulates many

aspects of physiology on multiple levels, ranging from

epigenetic modifications and metabolic state, to post-

transcriptional and post-translational regulation of speci-

fic proteins.50–52 In recent years, much progress has been

made understanding different aspects of this in the

immune system, and a multitude of phenotypes, such as

cytokine production19,23,53,54 were attributed to the cell-

autonomous clock. Our data suggest that phagocytosis is

regulated independently of the molecular clock and does

not necessarily translate into variation in cytokine pro-

duction. The diurnal, molecular clock-dependent cytokine

production in vivo as well as ex vivo13,19–23 paralleled by

significantly different patterns in uptake capacity between

these two models additionally underscores that cytokine

production can be regulated independently of phagocytic

particle ingestion and argues that other pathways, such as

Toll-like receptor signaling,55 may be of greater impor-

tance for rhythmic cytokine response than phagocytic

capacity. Considering that the response to bacterial infec-

tion is a balancing act between immune suppression to

limit tissue damage and the benefits of promoting clear-

ance of the infectious agent as well as cell corpses from

apoptotic cells, the differential regulation of cytokine

response and phagocytic capacity we have found may

provide a strategy to target the cell-intrinsic myeloid

clock to inhibit pro-inflammatory function, while main-

taining the beneficial properties of phagocytosis in bacte-

rial clearance. More generally, this study accentuates the

importance of considering the circadian clock in future

macrophage research.
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