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Abstract

High-throughput, comprehensive, and confident identifications of metabolites and other chemicals 

in biological and environmental samples will revolutionize our understanding of the role these 

chemically diverse molecules play in biological systems. Despite recent technological advances, 

metabolomics studies still result in the detection of a disproportionate number of features that 

cannot be confidently assigned to a chemical structure. This inadequacy is driven by the single 

most significant limitation in metabolomics, the reliance on reference libraries constructed by 

analysis of authentic reference materials with limited commercial availability. To this end, we have 

developed the in silico chemical library engine (ISiCLE), a high-performance computing-friendly 

cheminformatics workflow for generating libraries of chemical properties. In the instantiation 

described here, we predict probable three-dimensional molecular conformers (i.e., conformational 

isomers) using chemical identifiers as input, from which collision cross sections (CCS) are 

derived. The approach employs first-principles simulation, distinguished by the use of molecular 
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dynamics, quantum chemistry, and ion mobility calculations, to generate structures and chemical 

property libraries, all without training data. Importantly, optimization of ISiCLE included a 

refactoring of the popular MOBCAL code for trajectory-based mobility calculations, improving its 

computational efficiency by over 2 orders of magnitude. Calculated CCS values were validated 

against 1983 experimentally measured CCS values and compared to previously reported CCS 

calculation approaches. Average calculated CCS error for the validation set is 3.2% using standard 

parameters, outperforming other density functional theory (DFT)-based methods and machine 

learning methods (e.g., MetCCS). An online database is introduced for sharing both calculated and 

experimental CCS values (metabolomics.pnnl.gov), initially including a CCS library with over 1 

million entries. Finally, three successful applications of molecule characterization using calculated 

CCS are described, including providing evidence for the presence of an environmental degradation 

product, the separation of molecular isomers, and an initial characterization of complex blinded 

mixtures of exposure chemicals. This work represents a method to address the limitations of small 

molecule identification and offers an alternative to generating chemical identification libraries 

experimentally by analyzing authentic reference materials. All code is available at github.com/

pnnl.

Graphical Abstract

The capability to routinely measure and identify even a modest fraction of biologically and 

environmentally important small molecules within all of chemical space, greater than 1060 

potential compounds4, remains one of the grand challenges in biology and environmental 

monitoring. This long-term challenge is best met by analytical approaches capable of 

measuring broad classes of molecular species, referred to here as untargeted metabolomics. 

The technologies and driving concepts behind metabolomics have existed for nearly 40 years 

and have their origins in early metabolic profiling5–11 and metabolic flux studies,12,13 as 

well as detection of metabolic defects and diagnosis of associated inborn errors of 

metabolism.14–16 However, despite the solid foundation and the great strides made in 

metabolomic approaches over the past 20 years, present capabilities still fall short of 

comprehensive and unambiguous chemical identification of detected metabolites.

For example, NMR-based structural elucidation is an established method for unambiguous 

chemical structure assignment of novel molecules but requires high sample concentration 

and purity. This limits its usefulness for high throughput and comprehensive structural 

elucidation. Synthesis of chemical reference standards for suspected novel molecules is 

another alternative but is costly, often difficult, and time-consuming.
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For identification of known molecules, the analytical methodologies that have proven to be 

the most efficient in confident identification of large numbers of metabolites in high 

throughput metabolomic studies have been GC–MS, LC–MS, and NMR and comparison of 

experimental data to reference libraries containing data from analyses of authentic chemical 

standards using identical analytical methods. Such approaches adhere to the 

recommendations of the Metabolomics Standards Initiative of the Metabolomics Society for 

confident molecular identification17,18 but depend on data from analysis of pure compounds. 

This represents a significant limitation, because authentic chemical standards are not 

available for the majority of metabolites.19 For example, approximately 92% of the HMDB 

4.0 molecules do not have authentic chemical standards (verified through custom Python 

scripts to search known vendors), and the HMDB only represents <5% of the estimated total 

metabolite space across multiple organisms.20,21 Further, ChemSpider,22 PubChem,23 and 

American Chemical Society’s chemical abstracts service (CAS) databases24 contain entries 

for tens-of-millions of chemicals, yet one of the largest repositories of authentic reference 

spectra, the Wiley Registry/NIST Mass Spectral Library,25 contains data for roughly 730 

000 unique compounds, <1% of known chemicals.26

The most practical approach for dramatically increasing the size of libraries is through in 

silico calculation of molecular attributes. The metabolomics community has made great 

strides in predictions of chromatographic retention times and tandem mass spectra.27–31 

While the associated tools and methods have demonstrated important proofs-of-concept, 

challenges remain with relying on these predicted attributes for metabolite identification. For 

example, GC and LC separations involve interactions of molecules with surfaces, and 

degradation of chromatographic stationary phases will result in a mismatch of experimental 

to predicted retention times. Tandem mass (MS/MS) spectra are gas-phase molecular 

properties, less susceptible to the chemical interactions and artifacts that can affect retention 

time stabilities in GC and LC, and have good reproducibility between laboratories. MS/MS 

spectra for small molecules can be predicted with reasonable accuracy given appropriate 

training data,31–35 enabling the generation of short lists of molecules whose MS/MS spectra 

might match to experimental spectra. However, most MS/MS prediction methods rely on 

machine learning or deep learning approaches, and therefore, they can be limited by the size 

of the training data sets.35,36 MS/MS spectra for molecules that are not chemically similar to 

compounds used in the training set may not be accurately predicted. New methods to 

accurately predict molecular properties that are also measured with high experimental 

reproducibility and without loss of data quality through time are required to transition 

metabolomics from the current paradigm to one applicable to global comprehensive 

chemical identification.

Quantum chemistry, i.e., the application of quantum mechanics to the understanding of 

molecules, holds great promise for the calculation of molecular properties in support of 

global chemical identification. For example, infrared spectra,37 nuclear magnetic resonance 

chemical shifts,38 and molecular collisional cross sections (CCS) can be calculated from 

first-principles, showing success where machine learning approaches39 have 

underperformed. CCS is a measurable, calculable property of three-dimensional (3D) 

chemical structures that can contribute to the unambiguous identification of even positional 

and cis/trans isomers.40,41 CCS is a measure of the apparent surface area of a chemical ion 
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and is related to the molecular gas-phase 3D conformation of that ion. It is reported as an 

area in angstroms (Å2). Ion mobility (IM) spectrometry separates ions based on the extent of 

their interactions with an inert gas (usually N2 or He) as they travel under the influence of an 

electric field.42 Ions of smaller CCS have shorter drift times, while ions of larger CCS have 

longer drift times. CCS is highly sensitive to molecular shape, showing measurable 

differences between even positional and cis/trans isomers.40 Ultrahigh resolution IM 

separations coupled with mass spectrometry (IM–MS), such as structures for lossless ion 

manipulations (SLIM),43–48 are capable of resolving compounds with only slight differences 

in stereochemistry and measuring mass and CCS with high accuracy. The gas-phase 

separations made by IM instruments have several advantages over conventional GC and LC 

platforms. The keys among these are extremely high reproducibility between instruments 

and laboratories (0.2% relative standard deviation);49 no column degradation over time; 

separation principles sufficient to resolve constitutional, positional, and cis/trans isomers;40 

and platforms currently advancing to provide separation resolution 5-fold higher than 

conventional platforms.
43–48

Currently, in silico methods for property prediction, including CCS, are limited by 

throughput, accuracy, and/or a reliance on large training sets. These obstacles hinder the 

rapid expansion of in silico libraries, particularly for molecules outside of any known 

training set (i.e., “out of sample”). To help advance methods of building in silico libraries, 

which may be used to provide evidence of the presence of molecules in samples, we 

introduce the in silico chemical library engine (ISiCLE), a quantum chemistry-based 

computational infrastructure for predicting molecular properties, including NMR chemical 

shifts50 and CCS. We describe the development, optimization, and validation of the CCS 

calculation module of ISiCLE. We have architected ISiCLE for use on super-computing 

resources, including a refactoring of the popular MOBCAL51–53 code for trajectory-based 

mobility calculations, and validated the calculation of 1983 CCS values against experimental 

data. Calculation accuracy is compared to similar first-principles approaches54,55 as well as 

the property-based machine learning tool, MetCCS.39 Finally, we provide a growing 

database of calculated CCS values, available at metabolomics.pnnl.gov, and a demonstration 

of the utility of calculated CCS in three examples.

MATERIALS AND METHODS

Validation Set Molecules.

Lists of molecule standards and their measured CCS were collected from in-house data and 

from the literature.56–62 Values were tabulated (see the Supporting Information) along with 

their associated CCS relative standard deviation, observed mass, IUPAC International 

Chemical Identifiers (InChI),63 SMILES string, formula, chemical name, source citation 

DOI, and chemical class information. For details on how InChI were obtained and 

processed, please see the Supporting Information Methods section. Only CCS collected on 

drift tube IM (DTIM) instruments with nitrogen (N2) buffer gas were included, and only 

protonated, [M + H]+, deprotonated, [M − H]−, and sodiated [M + Na]+ molecules were 

considered. If the CCS of the same compound and adduct ion (herein simply referred to as 

“adduct”) was measured by two different sources, their CCSs were included as two separate 
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entries. All CCS values that were obtained in-house were collected using an Agilent 6560 

Ion Mobility Q-TOF MS (Agilent Technologies, Santa Clara) with seven stepped electric 

field voltages, as described by Zheng et al.64

After analysis by ClassyFire,1 our validation set was found to have 14 chemical superclasses 

and 76 classes. Chemical class composition of the validation set is shown in Figure 1. A 

total of 1308 unique compounds are included with masses ranging from 68.0374 to 

1072.3806 Da.

ISiCLE CCS Calculation Module.

CCS values were calculated using ISiCLE, a high-throughput, automated computational 

pipeline built using the Python Snakemake framework,65 enabling scalability, portability, 

provenance, fault tolerance, and automatic job restarting. Snakemake is a workflow 

management system that provides a readable Python-based workflow definition language 

and execution environment that scales, without modification, from single-core workstations 

to compute clusters through as-available job queuing based on a task dependency graph. See 

the SI Discussion for a more thorough discussion on the benefits and justification for using a 

workflow engine. ISiCLE offers three calculation methods, Lite, Standard, and AIMD (ab 

initio molecular dynamics), each increasing in calculation accuracy and computational 

complexity. This work focuses on the Standard method, though Lite and AIMD methods are 

introduced and discussed. ISiCLE source code is available in the SI, and up-to-date versions 

are available for download on GitHub (github.com/pnnl/isicle).

The ISiCLE module for calculating IM CCS started with the generation of 3D structures of 

ionized compounds (in .mol and .mol2 file formats) from a chemical structure identifier, 

such as the InChl of neutral parent compounds, and ended with the calculation of CCS 

values for various conformers of the ionized compounds using the trajectory method.51 A 

conformer is any unique 3D arrangement of atoms for a molecule with the same bonding 

connectivity; i.e., a conformer is one of many constitutional stereoisomers of a molecule. For 

this work, protonated, deprotonated, and sodiated forms were considered for each molecule, 

but ISiCLE can be used to process other adducts as well (e.g., [M + K]+ and [M + 2Na]2+).
41

The Standard pipeline, depicted in Figure 2, involves a series of intermediate steps for 

conformer generation using molecular dynamics (MD) simulations and geometry 

optimization using quantum chemical calculations, via density functional theory (DFT), on 

PNNL supercomputing resources. Each step of the CCS calculation pipeline was executed 

using a series of Python and shell scripts developed in-house, all coordinated through the 

Snakemake workflow. The details of each step in the Snakemake workflow are described 

below.

InChl to 3D Structure Creation.

Each processed (desalted, neutral, and major tautomer) InChI was converted into a two-

dimensional (2D) representation of the compound using OpenBabel.66,67 Three-dimensional 

structures were then generated and subsequently optimized using the generalized amber 

force field (GAFF) in OpenBabel. Ionized forms of the neutral structures were generated by 
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identifying ionization sites in each parent 3D structure based on pKa values, which were 

automatically calculated inline using the ChemAxon command line tool, cxcalc.3 The 

strongest acidic atom (lowest pKa) was assigned as the deprotonation site, and the strongest 

basic atom (highest pKb) was assigned as the protonation and sodiation sites. All ionized 

structures were saved in the .mol2 file format.

Conformer Generation and Geometry Optimization.

During experimental analysis of authentic chemical reference standards, a continuous 

distribution of CCS values, or even multiple CCS values, could be observed for a single 

ionized molecule or complex. This necessitated the use of in silico conformer sampling 

methods to capture the CCS distribution, lest in silico predictions failed to achieve the 

required levels of accuracy.69 Our approach ultimately selected a set of 30 total conformers, 

three each from a series of 10 simulated annealing MD steps. Twenty of the 30 conformers 

were chosen such that they sampled the extremities of geometrical space, whereas the 

remaining 10 were chosen to represent the most common regions of geometrical space. 

Briefly, ionized structures were used to seed conformer generation by in vacuo MD 

simulations, using SANDER (simulated annealing with NMR-derived energy restraints) 

from AmberTools17,70 which raised the temperature such that energy barriers between 

conformation populations could be overcome, and subsequently cooled the system as a 

means of producing low-energy, stable conformers. For MD and simulated annealing details, 

please see the SI Material and Methods. Ten conformers from the low-temperature 

equilibration stage (300 K) of each simulated annealing cycle were randomly selected and 

then down-selected to three by identifying the two most dissimilar conformers and the single 

most similar conformer, leading to a total of 30 conformers. The dissimilar conformers were 

determined as the two conformers with the largest pairwise root-mean-square deviation 

(RMSD) of their atomic positions, while the most similar conformer had the lowest pairwise 

RMSD sum among the 10 conformers. The three selected conformers were sufficiently 

representative of the ten conformers in a single simulated annealing step.40 Thus, a total of 

30 conformer geometries were used for subsequent geometry optimization with DFT using 

NWChem.

Density Functional Theory Calculation.

To further optimize the resulting molecular geometries, quantum chemical DFT calculations 

were performed using NWChem, an open-source, high-performance computational 

chemistry software developed at PNNL, similar to the methods described in previous 

studies.41,71 The B3LYP exchange-correlation functional was used for all energy and 

geometry optimization calculations.72–75 All basis sets were obtained from the 

Environmental Molecular Sciences Laboratory (EMSL) Basis Set Exchange,76,77 which 

included the Pople basis set at the 6-31+G** level (a double-ζ valence potential basis set 

having a single polarization function).78–80

CCS Calculation via MOBCAL-SHM.

CCS values of the geometry-optimized conformers were calculated using the trajectory 

method, as implemented in our new version of MOBCAL, called MOBCAL-SHM (shared 

memory; see the Results section). MOBCAL-SHM source code and binaries are available in 
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the SI, and up-to-date versions are available for download on GitHub (github.com/pnnl/

mobcal-shm). MOBCAL51–53 was selected among comparable alternatives as its 

implementation of the trajectory method is generally accepted to be the “gold standard” for 

computational CCS calculation.81–85 The original version of MOBCAL is computationally 

intensive; therefore, to improve computational efficiency, we developed and optimized the 

parallel MOBCAL-SHM, written in C. For details on the modifications made to speed up 

MOBCAL, please see the SI Material and Methods.

Averaging Calculated CCS Values of Conformers for Comparison to Experimental Values.

Reported CCS values are normally a single value per adduct and often chosen based on 

experimental signal strength, centroid analysis, and relative CCS peak location (e.g., to 

avoid selecting the CCS of a multimer). Thus, to calculate a single CCS value for each 

ionized structure from a set of conformers, a number of methods were evaluated, including 

methods similar to those implemented by Paglia et al.54 and Bowers et al.55 Putative 

methods resulted from the Cartesian product of three sets, (i) optimization scheme, (ii) 

number/type of conformers used in the average, and (iii) averaging method.

Optimization Scheme.—The optimization scheme explored whether the final geometry 

optimization by DFT was necessary to achieve lowest error, as it was the most 

computationally intensive step in the pipeline. Thus, we performed DFT calculations for 

each conformer to two levels of efficacy, optimization for energy only and optimization for 

energy and structure.

Number/Type of Conformers.—Methods of sampling conformers from the MD step, 

which produces two least-similar conformers and a single most-representative conformer for 

each of the 10 simulated annealing steps, were also evaluated. This set therefore includes the 

use of all sampled conformers (30), only the least similar conformers (20), and the most 

representative conformers (10).

Averaging Method.—Averaging methods included the mean and median CCS of 

conformers for each ionized structure, as well as three energy-based methods, (a) CCS of the 

lowest energy conformer, (b) the mean CCS of those conformers with relative energy less 

than 5 kcal/mol, and (c) the sum of each conformer’s CCS contribution, Boltzmann-

weighted by relative energy. We hypothesized that Boltzmann weighting, based on 

calculated DFT energies, would shift the overall CCS distribution toward higher probability 

conformers, thus creating CCS distributions that are characteristic of IM experiments.

Combined, the two optimization schemes, three conformer sampling methods, and five 

averaging methods resulted in 30 putative approaches for reducing a distribution of CCS 

values across conformers to a single CCS value per ionized structure. A comparison of these 

approaches with respect to mean absolute error (MAE) is summarized in Table S1, which 

includes results of similar approaches. The method introduced by Paglia et al. is similar to 

taking the lowest-energy conformer among all sampled conformers, DFT optimized for 

energy only. The method introduced by Bowers et al. is similar to averaging all energy- and 

structure-optimized conformers with relative delta energy less than 5 kcal/mol. Additional 
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steps were taken to account for inaccuracies in the various components of the pipeline, 

including calibration. Please see the details in the SI Material and Methods.

Lite and ab Initio Molecular Dynamics (AIMD)-Based Method.

For applications that do not require as high CCS accuracy, a Lite method was created for 

rapid calculation. For applications that require higher CCS accuracy, at the cost of additional 

computational time, an AIMD-based method was created. Details on both of these methods 

are provided in the SI Material and Methods.

In Silico Library and Online Database.

In addition to the validation set, ISiCLE was used to calculate CCS values for the HMDB, 

Universal Natural Product Database (UNPD),86 and the Distributed Structure-Searchable 

Toxicity (DSSTox) Database.87 CCS values (protonated, deprotonated, and sodiated forms) 

were calculated using the ISiCLE Lite method for compounds from several databases that 

fell within the 50–1100 Da mass range (~80k from the HMDB, ~205k from the UNPD, and 

720k from the DSSTox). Additionally, some compounds from the HMDB were run through 

ISiCLE Standard CCS calculations. All of these values are available at 

metabolomics.pnnl.gov, which is being regularly updated to expand the number of 

compounds and to replace Lite CCS values with Standard CCS values as they become 

available.

RESULTS

The efforts detailed in this work produced ISiCLE to address long-standing challenges 

hindering identification of the vast set of features in complex biological samples for which 

standards do not exist. Identification of small molecules requires accurate libraries of 

chemical properties that can be reliably measured experimentally, such as CCS. The 

essential tool for identification is an accurate library of properties for matching, not the 

authentic reference material itself. Authentic reference materials have been the preferred 

approach for obtaining libraries because the error in the features in the library are limited to 

relatively small experimental errors. Where computational tools can produce libraries with 

known errors, those libraries can be of value for providing evidence for the presence of a 

molecule in a sample, similar to a library made from experimental analysis of authentic 

compounds with known instrument error.

In silico methods must have validated error ranges and are also fast enough to make 

scientific contributions on a meaningful time scale, especially when cultivating libraries of 

in silico properties large enough for robust and comprehensive compound identification. 

Moreover, when possible, methods should attempt to reduce reliance on reference standards 

or training sets, as these impose limitations on novel molecule identification and discovery. 

The following results demonstrate ISiCLE’s success in terms of accuracy, achieving 3.2% 

unsigned error; throughput, processing molecules in a matter of hours; and out-of-sample 

generalization in cases where other approaches have failed.
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Mobility Calculation Improvements.

Increasing the speed of MOBCAL was one of the key factors for improving the throughput 

of CCS calculations. Briefly, our new MOBCAL-SHM reduced average CCS computation 

time from 10.8 to 0.08 node-hours, amounting to a 135-fold increase in efficiency. For 

comparison, Zanotto and co-workers recently reported a 48-fold efficiency increase in a 

refactored version of MOBCAL.88 Full results regarding the mobility calculation 

improvements and computational efficiency can be found in the SI Results.

Validation.

Among our explored approaches for averaging calculated CCS values of conformers (Table 

S1), the lowest error was similar for the top several methods. These included (i) DFT 

optimization of energy and structure, (ii) averaging over either 20 or 30 conformers, and (iii) 

averaging by taking the minimum-energy conformer or by Boltzmann weighting. Because 

Boltzmann weighting by energy offers theoretical improvements over minimum-energy 

methods,38 it was selected for the Standard method of ISiCLE. Additionally, following 

linear calibration, the Boltzmann method yields the lowest error. Figure 3 shows calculated 

CCS results for the validation set, plotted against m/z.

ISiCLE achieves 3.2% MAE when evaluated against experimental CCS values. Compared to 

other methods of CCS calculations on the same set of molecules, ISiCLE performs 

significantly better. Methods developed by Paglia et al.54 and Bower et al.55 achieve errors 

of 5.3 and 5.2%, respectively. The MetCCS approach achieved a MAE of 3.3%.

Applications.

To demonstrate the utility of ISiCLE, we used calculated CCS, mass, and other properties in 

three example applications involving real samples.

Application 1: Degradation Products in Sediment.—Environmental samples of New 

York/New Jersey Waterway Sediment (NIST SRM 194489) were analyzed by DTIM-MS, 

with determination of accurate mass and CCS features for multiple compounds. CCS was 

calculated in silico using the Lite method of ISiCLE for 21 possible degradation products 

(e.g., 2-hydroxyfluorene, 3-hydroxyflourene, and 4,5-pyrenediol90–92) of 9 polycyclic 

aromatic hydrocarbons (e.g., fluorene, pyrene, and 1,6-dimethylphenanthrene) present in the 

sediment. Evidence for the presence of the parent compounds and predicted degradation 

products was built by comparing measured and calculated accurate mass and CCS. For 

example, experimental data for 4,5-pyrenediol90–92 matched the predicted values within 

1.1% (Table 1, representative data shown in Figure S4).

Application 2: U.S. Environmental Protection Agency (EPA) Non-Targeted 
Analysis Collaborative Trial (ENTACT) Challenge.—We participated in the ENTACT 

interlaboratory challenge,93 designed for the objective testing of nontargeted analytical 

chemistry methods using a consistent set of blinded synthetic mixtures. Each mixture 

contained an unknown number of chemicals (later revealed to be 95–365 compounds) in 

dimethyl sulfoxide. All compounds were selected from the EPA ToxCast chemical library.94 

Further details on ENTACT are outlined in Sobus et al.95 and Ulrich et al.96 We used 
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calculated CCS in part to provide evidence for the presences of compounds in each synthetic 

mixture, along with high resolution mass and isotopic signature.93 For CCS calculations, the 

ISiCLE Standard method was used for 16% of molecules in the ToxCast chemical library, 

and the Lite method was used for the remaining molecules. In the end, our ToxCast CCS 

library had values for 11 633 adducts. The addition of calculated CCS to either the 

combination of mass and isotopic signature information or to mass or isotopic signature 

alone increased the confidence in correctly determining that a molecule was present in a 

sample for 84% of molecules. The increase in confidence was determined by finding the 

percent of true positives that had higher confidence scores due to at least one feature with a 

measured CCS within 5% of the predicted CCS, showcasing the importance of CCS in this 

multiattribute approach. Compared to the true positive experimental standards spiked in 

these samples, calculated CCS errors for Standard and Lite methods of ISiCLE were 3.1 and 

5.4%, respectively (Table 1). This out-of-sample test demonstrates consistent CCS error 

values compared to the initial validation set. Experimental and calculated CCS values from 

this study are available in the library introduced below.

Application 3: High Accuracy CCS for Positional and cis/trans Isomers of 
Chlorogenic Acids.—We recently reported the ability of SLIM-MS to provide ultrahigh 

resolution IM separations40 of positional and cis/trans isomers of dicaffeoylquinic acids 

(diCQAs), chlorogenic acids with reported anti-HIV and anti-inflammatory benefits.40 

Experimental CCS and CCS calculated using the ISiCLE AIMD-based method were 

compared for 3,5-diCQA isomers. To further evaluate the accuracy of ISiCLE, we expanded 

the calculations to encompass all eight reported diCQA isomers, including 1-trans,3-trans; 1-

trans,5-trans; 3-trans,4-trans; 3-cis,5-cis; 3-cis,5-trans; 3-trans,5-cis; 3-trans,5-trans; and 4-

trans,5-trans-diCQA. Resulting MAE were 4.8, 2.6, and 0.8% for Lite, Standard, and 

AIMD-based methods of ISiCLE (see Figure S5), respectively, compared to 6.4% for 

MetCCS. This out-of-sample set. i.e., set of compounds not present during model training, 

clearly demonstrates the performance-accuracy trade-off and reveals sub-1% error when the 

AIMD-based method is used. All CCS calculations in the near future could be performed 

with the AIMD-based method as computational power increases. This example also reveals 

one of the drawbacks of machine learning approaches that do not consider 2D or 3D 

molecular structures in their CCS calculation, such as MetCCS. The training parameters for 

these methods do not sufficiently differ between isomers to accurately distinguish their CCS 

values. Conformer consideration and 3D electron structure calculations alleviate this issue 

and can more accurately reflect the experimentally observed CCS values.

In Silico Library and Online Database.

CCS values for [M + H]+, [M − H]−, and [M + Na]+ adducts are made available at 

metabolomics.pnnl.gov, currently totaling 1455 and over 1 million entries for experimental 

and calculated values, respectively. This community resource will be updated as more values 

become available. The website provides additional information, including chemical name, 

SMILES, InChI, 2D structure, formula, and mass.
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DISCUSSION

In Silico Libraries Contributing to Molecular Identification.

We have developed ISiCLE as an additional tool97–100 for the in silico generation of 

chemical property libraries. These tools are facilitating the departure from complete reliance 

on experimentally derived chemical properties for complex mixture characterization by 

potentially offering evidence for the presence of comprised molecules. Experimental 

characterization of authentic reference materials is an expensive, time-consuming practice 

that cannot accommodate candidate molecules that are (i) without a form available for 

purchase, (ii) without a protocol to synthesize, or (iii) as of yet undiscovered. ISiCLE 

therefore enables expansion of chemical property libraries through calculation, and although 

initially dependent on experimental standards for calibration and validation, it will 

ultimately see use as a generative approach for creating significantly larger chemical 

property libraries than are currently possible.

Through the incorporation of computationally derived libraries in small-molecule 

identification pipelines, the comprehensive characterization of complex samples becomes 

tractable with a sufficiently representative library. As ISiCLE evolves toward greater 

accuracy and diversity of calculated properties (CCS, NMR chemical shifts,50 and beyond), 

and more molecules are added to the in silico library, compound identification may be 

confidently made without reliance upon data from experimental analysis of authentic 

compounds. It will be the work of institutions, such as the Metabolomics Standards Initiative 

and metabolomics societies, to establish frameworks and criteria for assessing the 

confidence of “identifications” made with in silico libraries. As an estimated >99% of 

metabolites are currently undiscovered,4,101–103 accommodation of computational methods 

with confidence is imperative for the advancement of our fields.

Library for the Molecular Universe?

The over a million compound library reported here is a transformational increase over 

existing reference libraries. Nonetheless, as a minor fraction of chemical space and of 

chemical properties, libraries of its size and composition alone are not sufficient for 

identifying all reported features in complex biological samples. We recognize the likelihood 

that features will emerge from untargeted analyses that cannot be resolved based on a 

combination of CCS and mass and that match no library entries because they represent a 

currently unknown chemical structure. For these latter cases, measured attributes, such as 

high accuracy mass and isotopic signature, can be used to generate plausible molecular 

formulas that can then be correlated to possible chemical structures, for example, through in 

silico metabolism simulators,104 deep learning-based neural networks,105 or with more 

effort, combinatorial searching of a given formula.106 Additional attributes of these new 

molecular structures, CCS, NMR chemical shifts,50 retention times, and MS/MS spectra, can 

then be calculated and, where sufficient data exist, be used to identify the subset most likely 

to represent the feature. Thus, ISiCLE can be used to generate attributes of probable 

chemical structures, with errors small enough to support down selection and provisional 

identification. A growing library of these new compounds would eventually come to 

represent an increasing portion of molecular space.
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Rapid and extensive growth of in silico libraries is also an attractive approach to reduce the 

number of unidentifiable features in complex samples. Processing all molecules available in 

databases, such as HMDB, UNPD, PubChem, and others,22,24,25 using tools like ISiCLE 

would establish libraries of our known or recorded molecular universe. This level of library 

expansion would eventually cover the majority of known biologically relevant molecules to 

include those for which authentic chemical standards are not available.

Comparison with Other CCS Calculation Methods.

Structure-based approaches that utilize first-principles of quantum chemical calculations 

leverage our understanding of the underlying physics to predict chemical properties directly. 

Compared to approaches that predict chemical properties without first-principles simulation, 

such as the machine learning-based MetCCS, ISiCLE performs comparably with decreased 

CCS error but with increased computation time. However, ISiCLE offers promise in that it 

will theoretically generalize more effectively to out-of-sample characterizations, a critical 

factor in growing an in silico chemical property library. Machine learning methods, like 

MetCCS, are limited by the size and scope of the initial training set, and thus ultimately 

limited to the number of authentic chemical standards available for purchase. Furthermore, 

machine learning is challenged by chemicals with similar properties and similar structures, 

such as constitutional and configurational isomers (e.g., cis/trans isomers), as demonstrated 

above in application 3 with diCQA. The input properties required for MetCCS were nearly 

identical for all 8 isomers, despite CCS values for this set spanning a range of over 43 Å2, 

leading to predicted CCS errors as high as 9.5% (1-trans,5-trans-diCQA). We have 

demonstrated that our approach can surmount this challenge and with high accuracy (MAE 

of 0.8% for this set). In addition, ISiCLE offers scalability across HPC resources, portability, 

provenance, and fault tolerance.

It is important to note, that CCS and m/z are highly correlated in most cases (Pearson 

product-moment correlation coefficient of 0.96 for our validation set of molecules, 0.92 in 

Marklund et al.107). Because of this, even a simple linear regression model can achieve an 

MAE of 4.4% compared to experimental values. However, this type of model predicts the 

same CCS for a given formula, preventing its use entirely when trying to distinguish 

between molecules with the same formula (such as the diCQA isomers), and this model has 

a very long tail of high error predictions (e.g., 56% larger variance compared to the ISiCLE 

Standard method). To that point, for molecules that fall far from the linearity zone 

(regression residual greater than 10%), the MAE using the linear model reaches 12.9%, 

compared to 6.2% for ISiCLE Standard. Thus, the use of molecular structure is useful in 

reducing CCS error generated from machine learning methods, which include linear 

regression, that only consider molecular properties.

Additional discussions are located in the SI Discussion section, including a discussion 

regarding the different ISiCLE methods (i.e., Lite, Standard, and AIMD-based methods) as 

well as their computational efficiency.
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CONCLUSION

In this article we present the development of ISiCLE, a computational tool for accurate and 

supercomputing-enabled prediction of chemical properties using quantum chemical 

methods. This work offers (1) the first open-source, scalable (from desktop to HPC 

resources), and portable quantum chemistry-based collision cross section calculation 

workflow for the community; (2) an advanced conformer sampling method for higher 

accuracy property prediction, based on Boltzmann weighting to ensure that highly probable 

conformers are more represented; (3) a refactoring of the gold standard mobility calculation 

method (MOBCAL) with a speedup of over 2 orders of magnitude; (4) a validation of the 

whole pipeline on the largest experimental data set in the literature to date (unique values); 

(5) a comparison of our approach with those in the literature, including competing machine 

learning approaches; and (6) a public library of over 1 million entries, covering the Human 

Metabolome Database, the EPA DSSTox exposure database, and the Universal Natural 

Product Database.

The transformation of the field of metabolomics toward global comprehensive identification 

of compounds in complex samples is underway. Among the many innovations that are 

necessary to reach this goal, e.g., ultrahigh resolution separation and higher throughput 

NMR, the development of in silico libraries of chemical properties to provide evidence for 

the presence of the multitude of compounds for which authentic standards do not exist is a 

critical step. Development of ISiCLE, including MOBCAL optimization, is an important 

first step toward meeting the goal of establishing large scale in silico libraries. ISiCLE has 

an easy to use software package for calculating chemical properties, including CCS, 

incentivizing adoption.

ISiCLE’s AIMD-based method produced CCS values with absolute errors of 0.8%, 

approaching measurement error where the less computationally intensive implementations 

each had absolute errors less than current methods. Looking forward, ISiCLE’s reliance on 

first-principles and full 3D chemical structures may provide advantages over machine 

learning approaches derived from 2D structural information, particularly for positional 

isomers. Our successful use of ISiCLE for identification of the diCQA positional isomers 

highlights this import point for the field.

Recent funding of Compound Identification Development Cores by the National Institutes of 

Health reflects growing recognition of the challenge to the community that our limited 

libraries and availability of chemical standards pose. As momentum in the development of 

new methodologies for chemical identification through innovations in computational and 

experimental methods grows, a parallel need to consider best practices for use of these 

methods for chemical identification will also have to be fostered. In addition, it is clear to us, 

that calculation of additional attributes, e.g., NMR chemical shifts, IR spectra, and others, 

will be necessary to increase the dimensionality of the array of attributes for chemical 

identification. Together, these improvements will help bring about the required paradigm 

shift away from the reference-material-based library building and, as a consequence, a rapid 

advancement in compound identification and biomedical discovery.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Validation set property distribution and chemical space coverage. (a) Superclass distribution 

of compounds, as determined by ClassyFire.1 (b) Mass distribution with mass labels 

corresponding to [X-200, X]. (c) Adduct distribution. (d, e) Comparison of the validation set 

to the Human Metabolome Database (HMDB),2 with black points corresponding to 

compounds found in the validation set, and gray points corresponding to compounds found 

in the HMDB (v4.1, only those with masses 50–1200). (d) Distribution of predicted 

properties, with the ring bond percentage (number of bonds in rings divided by the total 

number of bonds), log P, pKa, Balaban index, and Harary index calculated using cxcalc.3 (e) 
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Independent component analysis performed on the properties plotted in (d), with properties 

normalized to have a mean of 0 and standard deviation of 1.
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Figure 2. 
Schematic overview of the ISiCLE module for CCS calculation. Major computational tasks 

are listed for the Standard method and, where appropriate, the associated method used. Tasks 

include preparation of input geometry from InChI, adduct formation, conformer generation 

by molecular dynamics, structure optimization by density functional theory, CCS calculation 

by the trajectory method, and finally, final CCS prediction by Boltzmann weighting across 

conformers.
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Figure 3. 
Calculated CCS versus m/z. Visual representation of CCS values calculated by ISiCLE 

Standard for the validation set, plotted against m/z by adduct ion, colored by chemical class 

as determined by ClassyFire.1
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