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Background.  Clostridium (Clostridioides) difficile infection (CDI) is a health care–associated infection that can lead to serious 
complications. Potential complications include intensive care unit (ICU) admission, development of toxic megacolon, need for 
colectomy, and death. However, identifying the patients most likely to develop complicated CDI is challenging. To this end, we 
explored the utility of a machine learning (ML) approach for patient risk stratification for complications using electronic health 
record (EHR) data.

Methods.  We considered adult patients diagnosed with CDI between October 2010 and January 2013 at the University of 
Michigan hospitals. Cases were labeled complicated if the infection resulted in ICU admission, colectomy, or 30-day mortality. 
Leveraging EHR data, we trained a model to predict subsequent complications on each of the 3 days after diagnosis. We compared 
our EHR-based model to one based on a small set of manually curated features. We evaluated model performance using a held-out 
data set in terms of the area under the receiver operating characteristic curve (AUROC).

Results.  Of 1118 cases of CDI, 8% became complicated. On the day of diagnosis, the model achieved an AUROC of 0.69 (95% 
confidence interval [CI], 0.55–0.83). Using data extracted 2 days after CDI diagnosis, performance increased (AUROC, 0.90; 95% CI, 
0.83–0.95), outperforming a model based on a curated set of features (AUROC, 0.84; 95% CI, 0.75–0.91).

Conclusions.  Using EHR data, we can accurately stratify CDI cases according to their risk of developing complications. Such an 
approach could be used to guide future clinical studies investigating interventions that could prevent or mitigate complicated CDI.

Keywords.  Clostridium (Clostridioides) difficile infection; complications; electronic health records; machine learning; patient 
risk stratification.

Clostridium (Clostridioides) difficile infection (CDI) is a preva-
lent condition [1–3] that often arises in health care settings [4]. 
As a pathogen, C. difficile is genetically diverse [1], with some 
strains more associated with the development of complicated 
disease, including polymerase chain reaction (PCR) ribotypes 
027, 078/126, 056, and 018 [5, 6]. Clinically, the outcome of 
CDI varies across patients, ranging from complete recovery to 
mortality [7]. Currently, treatment decisions (eg, antimicrobial 
selection, admission to intensive care, and use of adjuvant 
therapies) are not informed by data-driven models of patient 
risk for complications, constituting a critical need [8].

Current clinical guidelines recommend treatment with 
vancomycin (125  mg orally 4 times per day) or fidaxomicin 

(200  mg twice daily for 10  days) on initial diagnosis. The re-
cently revised guidelines no longer recommend treatment with 
metronizadole, but data exist demonstrating that compared 
with vancomycin this antibiotic may be adequate for mild/
moderate disease at a lower cost and potentially lower risk of 
selecting for antibiotic resistance in clinically important bac-
teria such as Enterococcus species [9–11]. Given the complexity 
in treating patients with CDI, researchers have sought risk strat-
ification models in support of individualized treatments. To 
quantify patient risk for developing complicated CDI, previous 
models have used expert-curated sets of patient characteristics 
[12–15]. In light of the fact that many of the factors driving pa-
tient risk for complications are not well understood, we sought 
a more comprehensive approach.

We used the structured contents of the EHR and a machine 
learning approach to develop an intelligible predictive model 
for complicated CDI. Such a model has the capacity to make 
a prediction on the day of diagnosis and each day thereafter. 
Though, as the patient’s disease progresses, we expect the task 
to become easier as it shifts from prediction to recognition. We 
compared the discriminative performance of this model with 
a previously published, expert-curated model for the same 
outcome [13]. In parallel, we investigated patient characteris-
tics associated with increased risk for complications. Insights 
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from these analyses may guide the development of interpretable 
machine learning applications for supporting CDI treatment 
decisions in real time.

METHODS

Study Population

We considered a cohort of 1144 cases of CDI, as described in 
Rao et al. [13]. This study population included  adult inpatients 
diagnosed with CDI between October 2010 and January 2013 at 
the University of Michigan hospitals (UM). We linked each case 
of CDI from this cohort with structured EHR data available in 
the Research Data Warehouse at UM. We excluded a small frac-
tion of CDI cases for whom data were not readily available. This 
study was approved by the Institutional Review Board at the 
University of Michigan.

Model Outcome

As in Rao et  al., we considered a binary prediction task, in 
which CDI cases that became complicated were labeled 1, and 
0 otherwise [13]. Building on previous work, we defined CDI 
as complicated if it led to any of 3 adverse outcomes within 
30  days: admission to intensive care, colectomy, or mortality 
[12, 13, 16]. All cases were independently labeled through chart 
review by 2 clinicians, and adjudicated by a third if there was 
disagreement [13]. In this way, cases were labeled complicated 
only if the complication(s) were judged to have been caused by 
the CDI and not by other factors. Using data available before 
the time of prediction, we sought to learn a model that could 
accurately sort cases from low to high risk for this composite 
outcome. To facilitate comparison with the model produced by 
Rao et al., we evaluated predictions made 2 days after diagnosis. 
However, recognizing that earlier predictions are more useful, 
we considered 2 additional prediction times: the day of CDI di-
agnosis and the day after diagnosis. We hypothesized that pre-
diction will be more difficult near the beginning of a patient’s 
infection course, as fewer clinical indicators for mild or severe 
disease will have manifested. We identified the day of CDI diag-
nosis using the time-stamped laboratory test result for presence 
of toxigenic C. difficile.

Data Preprocessing

We extracted EHR data describing each patient admission in 
our study population from the Research Data Warehouse at UM 
using the patient’s medical record number and date of CDI diag-
nosis. Specifically, we extracted patient demographics (eg, age), 
patient history within the past 90 days (eg, diagnosis of diabetes 
within the past 90 days), admission details (eg, scheduled, ur-
gent, or emergency admission), and daily hospitalization details 
(eg, prescribed inpatient medications) (Supplementary Table 
1). To focus more on patient state than clinician suspicion, we 
removed variables that clearly encoded clinical suspicion of 
complicated CDI or could act as a proxy for any elements of 

our composite outcome, including those related to adminis-
tration of intravenous metronidazole, sodium chloride bolus, 
vancomycin enema, vancomycin-resistant Enterococcus culture 
(VRE), and methicillin-resistant Staphylococcus aureus culture 
(MRSA), as well as assignment to medical critical care units/
wards. We removed VRE and MRSA cultures, as they are strong 
proxies for any-cause admission to the intensive care unit.

For every case, we considered data collected on the day of the 
prediction, in addition to the 2 days leading up to the predic-
tion, with the goal of capturing recent trends. We represented 
all the data from this time period as a vector of binary features. 
These data included time-invariant features such as county of 
residence and time-varying features such as systolic blood pres-
sure. In the case of categorical data like hospital unit/ward, we 
mapped this information to binary features indicating whether 
the patient had been in that hospital location during the 3-day 
period. For continuous vital signs (eg, respiratory rate), we 
used expert-defined ranges to map the variable to binary 
features indicating the presence of any low, normal, or high 
measurements during the 3-day period. We discretized other 
continuous variables into quintiles, mapping quintiles to a bi-
nary feature (eg, having an age in the first quintile was mapped 
to a binary feature). Some variables exhibited a significant 
amount of skew (eg, many patients with 0 previous encounters 
in the past 90 days). In such cases, we grouped any nonunique 
quintiles together. EHR data are typically not missing at random. 
Thus, we included additional features encoding missingness for 
each variable and did not perform data imputation or case-wise 
deletion.

In addition to these EHR data, we also considered the man-
ually curated set of variables used in Rao et al. [13]. These data 
included 1 demographic characteristic (age) and information 
about the current hospitalization (eg, high-creatinine flag and 
metastatic cancer comorbidity). The curated feature set did not 
include information about previous hospitalizations, prior CDI 
exposure, or patient location within the hospital. However, it did 
include information about cancer diagnoses more than 90 days 
before the current admission, unlike the EHR model. For vital 
signs and laboratory results, each feature corresponded to ei-
ther the minimum or maximum measurement taken within 48 
hours of diagnosis. We processed these features like in the EHR 
model and concatenated them into a binary feature vector to be 
used as input to the predictive model. This yielded 2 different 
data representations (curated vs EHR) that could be used in 
making predictions.

Model Training and Evaluation

We trained models using the curated data, the EHR data, 
and a combination of both. To train and evaluate the predic-
tive models, we separated cases into train and held-out test 
partitions. We split the cases temporally, training the model on 
the earliest 80% of the data and evaluating on the most recent 
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20%. Compared with separating the cases randomly into train 
and held-out partitions, a temporal split better emulates how a 
predictive model may perform during prospective deployment.

Given the high dimensionality of our data set and the po-
tential to overfit, we used L2 regularization and k-best feature 
selection (explained below). We selected the regularization 
hyperparameter C from 10–5, 10–4, …, 105 using 5-fold cross-
validation on the training set with 5 temporally defined folds 
[17]. We used the same process to fit k, a hyperparameter 
selecting the number of features to keep, after ranking features 
based on how related they were with the outcome (calculated 
with Pearson’s chi-square statistic). We optimized k over a range 
that spanned 25–100 with step size 25, 100–1500 with step size 
100, and 1500–4000 with step size 500. The final model was 
trained using the C and k that led to the best average discrim-
inative performance across training set folds. Applied to the 
held-out test data, we measured the discriminative performance 
of the model in terms of the area under the receiver operating 
characteristic curve (AUROC). We also compared the models’ 
sensitivity, specificity, and average precision. We computed 
empirical 95% confidence intervals using 10 000 bootstrapped 
samples of the held-out set. We repeated the process above for 
each feature representation (curated, EHR, and a combination) 
and each possible prediction time. This resulted in 5 different 
models. Figure 1 illustrates our model training and evaluation 
pipeline. All analyses were performed in Python (Python 3.6), 
and our code is available at https://gitlab.eecs.umich.edu/mld3/
complicated_cdi_prediction.

RESULTS

Patient Characteristics

Of the cases in the original cohort from Rao et  al. [13], 26 
(<2.5%) could not be matched with data in the Research Data 
Warehouse. After excluding these cases, the final patient 

cohort involved 1118 cases of CDI, 89 (8%) of which were 
complicated CDI. The median length of stay was 9 days, and 
median time of CDI diagnosis was on the third day of hospi-
talization (Table 1).

Model Training

Models were trained on a training set of 894 cases and tested on 
a held-out set of 224 cases. As in Rao et al., the curated model 
used 23 features [13]. We extracted 4271 features from the EHR. 
After feature selection, the EHR models for making a predic-
tion at diagnosis, 1 day after, and 2 days after, retained 3000, 
800, and 900 features, respectively. Regarding regularization 
strength, the EHR models used C values of 10–3, 10–4, and 10–3, 
respectively.

Model Performance

Two days after CDI diagnosis, the EHR model resulted in 
better discriminative performance compared with the curated 
model (0.90; 95% CI, 0.83–0.95; vs 0.84; 95% CI, 0.75–0.92). 
The EHR model also had greater average precision (AUROC, 
0.30; 95% CI, 0.15–0.60; vs AUROC, 0.25; 95% CI, 0.09–0.47) 
(Supplementary Figure 1). At a threshold based on the 95th 
percentile of risk for each model, the EHR model had greater 
specificity (96.7% vs 95.3%) and sensitivity (41.7% vs 16.7%) 
(Figure 2). Combining the curated features with the EHR 
features did not improve discriminative performance 2  days 
after diagnosis (Table 2). Model performance decreased when 
tasked with making predictions earlier: AUROC, 0.79; 95% 
CI, 0.67–0.90 1 day after diagnosis and AUROC, 0.69; 95% CI, 
0.55–0.83 at diagnosis (Figure 3). Removing several variables 
clearly encoding clinical suspicion of complicated CDI did 
not substantially change model performance at any prediction 
time point (Supplementary Figure 2). Examining the learned 
coefficients, on the day of CDI diagnosis, high respiratory rate 
and obtaining an adult blood culture were strongly associated 
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Figure 1.  Predictive model training and evaluation flowchart. We split the data 80%/20% temporally, performed 5-fold cross-validation on the training data to select 
hyperparameters (step 1), and then, using these hyperparameters and all of the training data, learned a model (step 2). The model was evaluated on a held-out set of data 
(not used in selecting the model). Abbreviation: AUROC, area under the receiver operating characteristic curve.
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with development of complicated CDI (Table 3). Two days 
later, the factors most associated with risk included high and 
low respiratory rate, low systolic blood pressure, and low 
blood CO2. At both time points, normal respiratory rate and 
young age were associated with protection.

DISCUSSION

Automated patient risk stratification techniques that leverage 
EHR data have the potential to provide critical support for clin-
ical decision-making. In contrast to risk estimates that depend 
on manual chart review, risk estimates derived from the EHR can 
be automatically generated and updated throughout a patient’s 
hospitalization. In the context of CDI, predictive models have 
been developed for identifying patients at high risk for infec-
tion, recurrence, and complications [18–20]. We have previ-
ously shown how a model that leverages the structured contents 
of the EHR can outperform a curated model in predicting CDI, 
and we have demonstrated how these techniques can generalize 
across hospitals with different patient populations and different 
EHR systems [21, 22]. In the context of recurrent CDI, Escobar 
et al. compared machine learning and curated risk stratification 
models, concluding that neither approach could reliably predict 
first recurrence [18]. In this work, we focus on estimating pa-
tient risk for a complicated course of CDI.

The task of predicting complicated CDI is difficult, and 
current treatment guidelines do not incorporate data-driven 
estimates of risk. To this end, we sought to develop a system-
atic way to improve our ability to identify complicated cases by 
considering all structured data available in the EHR. This work 
represents a first step in that direction. We demonstrate that, 
using a machine learning approach, it is possible to accurately 
risk-stratify patients for complications early on in the course of 
disease.
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Figure 2.  Discriminative performance (A) and confusion matrices (B) of predictive models for a complicated course of CDI 2 days after diagnosis using either electronic 
health record (EHR)–based or curated features. Shaded regions in (A) represent empirical 95% confidence intervals. The EHR model dominates the curated model for nearly all 
values of specificity (1-FPR). At a threshold based on the 95th percentile of risk for each model (marked with dots), the EHR-based model yields better sensitivity, specificity, 
and positive predictive value. Abbreviations: CDI, Clostridium difficile infection; FN, false negative; FP, false positive; FPR, false-positive rate; PPV, positive predictive value; 
TN, true negative; TP, true positive.

Table 1.  Selected Patient Characteristics of Our Study Cohort

Characteristic Median (IQR) or No. (%)

No. of CDI cases 1118

No. of patients 966

Age, y 59 (46–69)

Female gender 611 (54.7)

LOS, d 9 (5–17)

Day of CDI diagnosis 3 (2–7)

Charlson-Deyo score 2 (0–3)

Inflammatory bowel disease diagnosed in the 
past 90 da

20 (1.8)

Solid organ transplant 179 (16.0)

Concurrent non-CDI antimicrobial use 745 (66.6)

Fluoroquinolone use from admission  
to diagnosis

378 (33.8)

Proton pump inhibitor use 775 (69.3)

Prior CDI within the past year 262 (23.4)

Prior CDI within the past 90 d 182 (16.3)

Failed initial CDI therapy within the past 14 d 22 (2.0)

BMI, kg/m2; missing No. (%) 26.3 (22.6–31.6); 131 (11.7)

aICD-9-CM codes 555 or 556.

Abbreviations: BMI, body mass index; CDI, Clostridium difficile infection; IQR, interquartile 
range; LOS, length of stay.
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The development and validation of EHR-based risk stratifi-
cation models for predicting complicated CDI could eventu-
ally help clinicians tailor treatments to individuals. On the day 
of CDI diagnosis, a patient’s estimated risk for complications 
could serve as an adjunct, easily obtainable resource for clin-
ical decision support. Treatment decisions such as whether to 
use high-dose vancomycin or perform a loop ileostomy with 
antegrade vancomycin infusions [23] often do not occur until 
complicated CDI has already set in. In severe cases, early ag-
gressive therapy can positively impact the course. However, 
invasive treatments such as enemas (fecal microbiota transplan-
tation or vancomycin) and surgery are optimally used in only 
select patients, and such decisions lack the rigorous guidelines 
associated with initial treatment.

In addition to potentially guiding more drastic and inva-
sive treatment, accurate risk prediction for complicated CDI 
could guide initial antibiotic therapy. The new US guidelines on 
treating CDI promote vancomycin or fidaxomicin over metro-
nidazole [24]. In the inpatient setting, this shifts nearly all cases 
to vancomycin therapy due to the expense of fidaxomicin. This, 
in turn, could increase VRE selection pressure and disrupt the 
microbiome, leading to subsequent infections [25]. As even 

more narrow-spectrum CDI treatments in the pipeline become 
available [26], a model that could enable targeted vancomycin 
or fidaxomicin use in a cost-effective way could help alleviate 
these potential adverse consequences.

Though identifying effective interventions that prevent or 
mitigate complicated CDI would require extensive additional 
studies, tools like the one developed here play an important 
role. The statistical power of cohort studies and randomized 
controlled trials (RCTs) is often limited when the primary 
outcome is infrequent. Risk stratification tools can help target 
patients with a higher risk of adverse outcomes and increase the 
feasibility of such important trials.

Based on thousands of variables, the EHR-based model pro-
vided better risk estimates than one that relied on a curated 
set alone. In this study, we sought to test the feasibility of a ma-
chine learning approach to generate early and accurate predictions 
of a patient’s risk for complicated CDI; reassuringly, the model 
features with highest weight align with those a clinician would 
identify. Even if such models do not identify new risk factors, 
they consider a much larger set of patient characteristics than any 
1 clinician can consider simultaneously. As the amount of data 
collected in hospitals continues to increase, it will be important 
to equip clinicians, who are already faced with many competing 
priorities, with the tools necessary to identify patterns and distill 
the data into actionable knowledge. For example, operating in the 
background, a model for predicting complications could alert the 
care team if a patient’s risk increases unexpectedly. In parallel, if 
many patients in the same hospital unit are identified as being 
at heightened risk, this could inform hospital unit/ward cleaning 
practices or strategic transferring of patients to private rooms.

These results should be interpreted in the context of sev-
eral limitations. First, given that these are merely associations, 

Table 2.  Comparison of EHR, Curated, and Merged Models for 
Complicated CDI 2 Days After Diagnosis

Model No. of Features AUROC on Held-Out Set (95% CI)

Curated 23 0.84 (0.75–0.92)

EHR 900 0.90 (0.83–0.95)

EHR + curated 923 0.88 (0.81–0.95)

Abbreviations: AUROC, area under the receiver operating characteristic curve; CDI, 
Clostridium difficile infection; CI, confidence interval; EHR, electronic health record.
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Figure 3.  Discriminative performance of electronic health record–based complicated CDI model across time. As more data become available and are integrated into the 
model, the model achieves better discriminative performance. Error bars represent empirical 95% confidence intervals. Abbreviations: AUROC, area under the receiver oper-
ating characteristic curve; CDI, Clostridium difficile infection; CI, confidence interval.
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additional investigation is required to establish the direction of 
the true underlying relationships (eg, through RCTs). Moreover, 
despite the removal of many variables that could serve as 
proxies for our composite outcome, some model features may 
not be true risk factors but rather markers for the beginning of 
complicated CDI itself. This may be elucidated by tracking the 
evolution of a patient’s risk over multiple days of their hospi-
talization; automated EHR models enable these kinds of future 
analyses. Second, our analysis is retrospective. As a following 
step, prospective studies are necessary for understanding how 
such models perform in real time. Third, the results are based 
on a small sample size from a single institution. Though this 
has implications regarding the generalizability of the model, it 
does not diminish the generalizability of the approach. As pa-
tient populations, clinical protocols, and in turn risk factors can 
vary across institutions, we encourage researchers to focus on 
tailoring models to the populations in which the model will ul-
timately be deployed [22]. On a related note, the definition of a 
complicated course of CDI is not universal. We used the CDC 
surveillance definition [16], the same definition as in Rao et al., 
which includes a stipulation that the specific adverse outcomes 
be attributable to CDI (requiring clinical review). Future work 
should investigate the appropriateness of definitions of com-
plicated CDI derived solely from the EHR. Fourth, we cannot 
exclude the possibility that patients may experience the out-
come at another hospital, and thus we may have potentially 
underestimated the extent of complications from CDI. In ad-
dition, although CDI testing was recommended only for symp-
tomatic patients during our study period and this was further 
validated by chart review, some positive CDI tests might reflect 
asymptomatic carriers. We hypothesize that our model learns, 
in part, to differentiate asymptomatic carriers from those who 
will experience complicated disease. Finally, beyond the struc-
tured content, the EHR contains data from pathogen genomic 
sequencing, free-text clinical notes, and/or wearable technology 
that could provide a more complete picture of a patient’s clinical 
state. For example, the Xpert C. difficile diagnostic test has a gene 
target that can report whether the strain is NAP1 or non-NAP1. 
In the future, integrating both biological and administrative 

data like these has potential for improving models of disease 
progression.

In summary, we demonstrated how a machine learning ap-
proach could be used to learn an EHR-based predictive model 
for accurately estimating a patient’s risk of developing compli-
cated CDI. Our approach leverages thousands of variables that 
can be readily extracted from the EHR. This approach has many 
potential applications, including guiding future clinical studies. 
Prospective evaluation and deployment of models such as these 
offer important opportunities to aid clinicians in real time and 
tailor patient therapy.
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3 Age (<41 years old; Q 1/5) 3 Missing phosphorous level measurement

Please see Supplementary Table 2 for the model coefficients associated with these features.

Abbreviations: BP, blood pressure; CDI, Clostridium difficile infection; PTT, partial thromboplastin time; RDW, red cell distribution width.
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