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Chia-Ying Chen and Trees-Juen Chuang (referred as CYC & TJC below) recently submitted

their comment [1] on our previous paper [2]. In their paper, they scrutinized the CircBase [3]

candidates that we used and pointed out several weak points of our paper. In summary, they

suggested that the positive dataset we derived from CircBase required further evaluation. They

also indicated that using all of these candidates as our dataset was not appropriate. They fur-

ther suggested that three main confounding factors may affect our assessment of circRNA

detection tools and that their performances should be re-evaluated.

Before we begin to discuss their comment, we will briefly introduce the positive dataset we

used. First, as stated in our previous paper, the 14,689 candidates detected in HeLa cells were

downloaded from CircBase and reported by the study of Salzman et al. [4]. These candidates

were not identified with the use of find_circ [5] tool. As described in the study of Salzman

et al. [4], all UCSC annotated exons in scrambled order were used to construct a custom data-

base and identify circRNA candidates. Second, in our positive dataset, constant coverage of

10× for the intervening sequence and a minimum of two read pairs (paired-end simulated

reads) to cross the back-spliced junction sites were generated for each candidate.

Now, we will discuss the three confounding factors they listed in their paper.

First, they suggested to remove 1046 candidates with unannotated exon boundaries from the

positive dataset, especially candidates without canonical splice signals, such as GT-AG, GC-AG,

or AT-AC, for the junctions. As mentioned above, CircBase-deposited circRNA candidates that

we used were identified by Salzman et al. [4]; the candidates identified by their method should all

match the exon boundaries. The discrepancies may be caused by inconsistent gene annotation

files used. Salzman et al. [4] used UCSC known genes [6], whereas CYC & TJC used NCBI

RefSeq-identified mRNA annotation files. We manually checked several candidates marked with

“junctions with unannotated exon boundaries” in CYC & TJC’s Supplemental Dataset S1. The

junction sites of these candidates were annotated as exon boundaries in UCSC known genes

annotation file (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/knownGene.txt.gz).

Thus, detection of circRNAs with annotated exon boundaries relies on the gene annotation files

used, and novel candidates may be missed because of the incompleteness of the current database

[7]. For example, Szabo et al. [7] reinforced an annotation-based algorithm with a de novo module

and discovered a validated circRNA from the not-fully-annotated RMST gene and several U12 cir-

cRNAs produced from unannotated boundaries. Such case was also demonstrated by Xiao-Ou

Zhang et al. [8]. They detected thousands of novel exons (non-RefSeq, non-Ensembl, or non-

UCSC known genes) in circRNAs by using an updated CIRCexplorere2 tool, and several of them

were confirmed by Northern blot analysis and Sanger sequencing after RT-PCR [8]. Other exam-

ples were shown by Salzman et al. [4], they found several noncoding RNA genes expressed
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circular isoforms in mouse and human [4]. Gao et al. also provided evidence of intronic or inter-

genic circRNAs [9]. Moreover, the well-known CDR1as [5, 10] is an intergenic circRNA by defini-

tion. To study the mechanism of circularization, Starke et al. observed that both canonical splice

sites are essential; however, they also cannot rule out the potential use of cryptic sites for circulari-

zation [11]. Their experimental data showed that when the normal 50 or 30 splice site was mutated,

circRNAs can also be formed with the use of cryptic, noncanonical 50 and 30 splice sites [11].

Given the above-mentioned evidence, excluding candidates with unannotated exon boundaries

or without canonical splicing sites is subject to discussion.

Second, they suggested the removal of 2316 candidates, of which the concatenated exon

sequences flanking back-spliced junction sites exhibited ambiguous alignments. We checked

these candidates on HeLa and Hs68 samples. As shown in Table 1, we found that some of

them were not depleted (� onefold enrichment) or even significantly enriched (� fivefold

enrichment) after RNase R treatment. (A Detailed discussion on two examples can be referred

to Section I of the Supplementary File.) Therefore, suggesting that all of the candidates with

ambiguous alignments are false calls and should be excluded from the analysis is inappropri-

ate. However, sequencing reads produced from these candidates may result in multiple hits

due to their ambiguous alignments, and it’s important to take into account of factors, such as

sequencing base quality, alignment mismatches, minimum number of bases overhang both

sides of the junction sites, and mapping uniqueness of the supporting back-spliced junction

reads [7].

Third, they suggested that “unqualified reads” with ambiguous alignments and different

supporting read counting methods of the tools affected our reported results. First, we would

like to clarify that the result of CIRI, MapSplice, and find_circ that we provided in our previous

paper [2] only included candidates with� 2 supporting back-spliced junction reads because of

the limited output with default parameter setting of the three tools. Thus, no circRNAs with

one supporting reads for these tools are included in Fig 3B of CYC & TJC’s comment paper. If

candidates with one supporting reads were reported by the three tools, then the total number

of CircBase circRNAs identified by all 11 tools is expected to be more than 3580 events (Fig 3B

Table 1. ‘2316 ambiguous CircBase circRNAs’ on HeLa and Hs68 samples.

Dataset HeLa Hs68

Tools RNaseR- RNaseR+ Not depleted Percent (%) Enriched Percent (%) RNaseR- RNaseR+ Not depleted Percent (%) Enriched Percent (%)

CF 110 168 79 71.82 24 21.82 102 407 85 83.33 59 57.84

CE 110 167 79 71.82 24 21.82 103 407 86 83.50 60 58.25

CIRI 148 217 111 75.00 27 18.24 126 390 112 88.89 81 64.29

DCC 96 137 64 66.67 17 17.71 91 330 81 89.01 53 58.24

FC 82 91 41 50.00 11 13.41 52 227 40 76.92 32 61.54

KNIFE 170 199 111 65.29 25 14.71 131 395 109 83.21 73 55.73

MS 88 122 61 69.32 11 12.50 70 249 61 87.14 42 60.00

NCLS 34 37 19 55.88 3 8.82 23 100 16 69.57 11 47.83

PF 186 206 114 61.29 26 13.98 141 449 118 83.69 84 59.57

SG 178 213 105 58.99 23 12.92 137 366 80 58.39 56 40.88

UB 55 63 20 36.36 3 5.45 29 64 5 17.24 4 13.79

Note: Candidates with� 2 supporting back-spliced junction reads were used in the analysis, and the number of supporting reads was normalized with sequencing depth

before fold change calculation. After RNase R treatment, detected candidates with� onefold enrichment was defined as ‘Not depleted’, while candidates with� fivefold

enrichment was regarded as ‘Enriched’. CF: circRNA_finder; CE: CIRCexplorer; FC: find_circ; MS: MapSplice; SG: Segemehl; NCLS: NCLScan; PF: PTESFinder; UB:

UROBORUS.

https://doi.org/10.1371/journal.pcbi.1006916.t001
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of CYC & TJC’s comment paper). As for “unqualified reads”, the 4 reads they listed in Fig 3C

of their paper were back-spliced junction reads generated by CIRI-simulator [9] to support

this circRNA. (A detailed discussion on two of these reads can be referred to Section II of the

Supplementary File.) As for “different counting methods” used by different tools, it possibly

affects the detection of circRNAs with small size. If the spliced length of the candidates is

smaller than the insert size of the sequencing library, then both mates of the paired-end reads

possibly cross the back-spliced junction sites. If both mates of the paired-end reads cross the

back-spliced junction site, then this case is beneficial to all tools because of increased opportu-

nities to detect the back-spliced junction event. For Fig 4 of our previous paper, by focusing

our analysis on common candidates with spliced length exceeding the insert size of the

sequencing library, we eliminated the influence of different counting methods. For Table 1 of

our previous paper, we generated sufficient (� 2) back-spliced junction reads for each cir-

cRNA in the positive dataset. And it was a common practice to keep candidates with� 2 sup-

porting reads for further analysis [12] [5, 9] [13], while reliable methods to reduce false-

positive circRNAs still remains to be developed. In summary, it’s feasible to assess the sensitiv-

ity of each tool by keeping candidates with� 2 supporting reads (Table 1 & Fig 4 of our previ-

ous paper).

Finally, CYC & TJC emphasized that either RTase- and non-RTase-based experiments or at

least two different types of RTase-based experiments should be conducted to validate the

authenticity of the circRNA candidates. We believe that the origins (from different tissues/cell

lines) of our collected circRNAs will not affect the fairness of our evaluation. However, we

acknowledge that not all of the 282 circRNAs, which we compiled from 17 published studies,

were validated using methods indicated by CYC & TJC, such circRNAs should be collected if

possible.

In our previous paper [2], to evaluate the performance of 11 circRNA detection tools, we

generated a synthetic positive dataset from 14,689 candidates deposited in CircBase [3] that

were previously identified from HeLa cells by using an annotation-based method [4].

Although the authenticity of these candidates still remains to be verified, they should all match

the exon boundaries annotated in UCSC knownGene database [6]. In CYC & TJC’s comment

paper, they further scrutinized these candidates. After analysis, they suggested that three main

confounding factors may compromise the fairness of our assessment. Consequently, they sug-

gested the removal of candidates with unannotated exon boundaries, particularly those with-

out canonical splice sites. In addition, they suggested to exclude candidates with ambiguous

alignments. As discussed in a previous study [14] and also shown by our data, although these

heuristic filtering steps can eliminate particular types of false positives, they may create blind

spots and reduce sensitivity. Third, they suggested that our evaluation of the tools was affected

by unqualified reads with ambiguous alignments and different supporting read-counting

methods. However, all the unqualified reads listed in Fig 3C of the comment paper are back-

spliced junction reads generated by CIRI-simulator [9]. The discrepancies may be caused by

the failure of BLAT [15] to detect supporting reads of which only a small portion spans the

back-spliced junction sites. In our previous paper, prior to further analysis, relevant steps were

adopted to minimize the effect of different counting methods. In summary, CYC & TJC

underlined several knowledge-based filtering steps and an experimental validation method to

address the bioinformatic and experimental challenges in detecting circRNAs, but whether

these heuristic filtering steps should be enforced still requires further discussion. Finally, we

reanalyzed the positive and mixed datasets with their suggested removal of ‘uncertain circRNA

candidates’. Data in Table 1 of our previous paper were updated as Table 2 below. In general,

our previous conclusions drawn from these two datasets are robust to the change.
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Supporting information

S1 File. (I) Examples of not-depleted or even enriched “ambiguous CircBase circRNAs” after

RNase R treatment. (II) Examples of back-spliced junction read pairs being mistaken as

“unqualified reads”.
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