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Purpose: To investigate the use and efficiency of 3-D deep learning, fully convolutional networks
(DFCN) for simultaneous tumor cosegmentation on dual-modality nonsmall cell lung cancer
(NSCLC) and positron emission tomography (PET)-computed tomography (CT) images.

Methods: We used DFCN cosegmentation for NSCLC tumors in PET-CT images, considering both
the CT and PET information. The proposed DFCN-based cosegmentation method consists of two
coupled three-dimensional (3D)-UNets with an encoder-decoder architecture, which can communi-
cate with the other in order to share complementary information between PET and CT. The weighted
average sensitivity and positive predictive values denoted as Scores, dice similarity coefficients
(DSCs), and the average symmetric surface distances were used to assess the performance of the pro-
posed approach on 60 pairs of PET/CTs. A Simultaneous Truth and Performance Level Estimation
Algorithm (STAPLE) of 3 expert physicians’ delineations were used as a reference. The proposed
DFCN framework was compared to 3 graph-based cosegmentation methods.

Results: Strong agreement was observed when using the STAPLE references for the proposed
DFCN cosegmentation on the PET-CT images. The average DSCs on CT and PET are
0.861 4 0.037 and 0.828 =+ 0.087, respectively, using DFCN, compared to 0.638 £ 0.165 and
0.643 £ 0.141, respectively, when using the graph-based cosegmentation method. The proposed
DFCN cosegmentation using both PET and CT also outperforms the deep learning method using
either PET or CT alone.

Conclusions: The proposed DFCN cosegmentation is able to outperform existing graph-based seg-
mentation methods. The proposed DFCN cosegmentation shows promise for further integration with
quantitative multimodality imaging tools in clinical trials. © 2018 American Association of Physicists
in Medicine [https://doi.org/10.1002/mp.13331]
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1. INTRODUCTION

Positron emission tomography and computed tomography
(PET-CT) have revolutionized modern cancer therapy. Sev-
eral studies have demonstrated that the estimate of tumor
extent and distribution is most accurate when functional
and morphological image data are combined using PET-
CT.'? Outcomes are reported to improve with PET-CT
guided radiotherapy.*’ To make full use of both PET and
CT image modalities, accurate tumor delineation on PET-
CT images is vital for tumor staging, response prediction,
treatment planning, and prognostic assessment. The current
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standard of care for radiation therapy target determination
relies on manually contouring the CT portion of combined
PET-CT image dataset often combined with a threshold
method for volume definition on the PET images. The
manual contouring on CT is performed visually on a slice-
by-slice basis by the radiation oncologist for tumor delin-
eation. They have very limited support from automated seg-
mentation tools and threshold determined volumes on PET
often require significant manual editing. The development
of standardized and highly reproducible PET-CT segmenta-
tion techniques would be immensely valuable for clinical
care and for research.®
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Although PET-CT images are routinely used in clinic,
many clinically available PET-CT segmentation algorithms
only work for a single modality or work for the fused PET-
CT images. A major challenge in CT segmentation is that the
pathological and physiological contrast uptake cannot be dis-
tinguished; meanwhile, the pathological and physiological
changes are often more differentiable using molecularly
based PET radiotracers. The American Association of Phy-
sics in Medicine (AAPM) Task Group (TG) 211° and the
MICCAI challenge'® have published recommendations for
PET image segmentations. To take advantage of the dual
modality nature of PET-CT imaging, cosegmentation aims to
simultaneously compute the tumor volume defined on the CT
image as well as that defined on the PET image by combining
physiological information from the PET image with the
anatomical information from CT image."""'? Substantial pro-
gress has been made in automating the tumor definition
extracted from PET-CT scans.'' *® Although these methods
showed promise, there are still limitations when adapting
them for clinical use. Most previous methods depend on
user-defined foreground seeds belonging to the tumor.'"'?
Secondly, features modeling components in graph-based
cosegmentation algorithms were designed to complement
human experience or more complicated clinical priors.'>?*%>
Therefore, finding optimal parameters and features is difficult
especially with the presence of lesions. These challenges
have restricted clinical application. Efforts to automate PET-
CT tumor segmentation are consequently needed in modern
radiotherapy.

Due to inherent differences in PET and CT imaging
modalities, the tumor boundary defined in PET does not
always match that in CT. Therefore, simultaneously segment-
ing tumors in both PET and CT while admitting the (subtle)
difference of the boundaries defined in the two modalities is
a more reasonable approach than using fused PET-CT images
where identical tumor boundaries are assumed. Figure 1
shows the tumor boundary differences between CT and PET
images in a lung tumor.

In this work, we attempt to address these challenges and seek
data-driven deep learning solutions for automatically delineat-
ing features directly from PET-CT scans to develop a computer-
aided automatic processing tool for tumor segmentation. Deep
learning is able to outperform most conventional approaches
and is able to manage many medical tasks.’*>* Several

publications detail the potential power of this approach.***" In
this paper, we focus on investigating 3D-UNet, deep-fully con-
volutional networks (DFCN) for tumor delineation in PET-CT
scans. The 3D-UNet for semantic segmentation’*** performs
voxel-wise classification and was adopted to label each voxel as
lesion or background. To achieve PET-CT tumor cosegmenta-
tion, we propose a novel DFCN network which integrates two
coupled 3D-UNets within an encoder-decoder architecture. One
3D-UNet performs the PET tumor segmentation and the other
is used for performing CT tumor segmentation. The two U-Nets
communicate with each other to allow the complementary fea-
tures from both modalities to “flow” between the two U-Net
networks to produce more consistent tumor contours. To
demonstrate the applicability and performance of our method,
we evaluate the proposed segmentation approach on PET-CT
scans of nonsmall cell lung cancer (NSCLC) patients and com-
pare its results to manual segmentation, which is the standard of
care for NSCLC segmentation in PET-CT volumes.

2. METHODS AND MATERIALS
2.A. Image data

A total of 60 NSCLC patients who received stereotactic
body radiation therapy (SBRT) were analyzed in this study
following institutional review board (IRB) approval. All
patients had PET-CT images for simulation and received fol-
low-up CT images between 2 and 4 months after radiother-
apy treatment. Fluorine 18-fluorodeoxyglucose (18F-FDG)
PET and CT images were obtained using a dual PET/CT
scanner (Siemens Biograph 40, Siemens Medical Solutions,
Erlangen, Germany). All patients were injected with
370 BMq + 10% of 18F-FDG with an uptake time of
90 min £ 10%. In all cases, subjects fasted for more than
4 h and had a blood glucose of less than 200 mg/dl. The
gross tumor volume (GTV) for each of the PET and CT
image datasets was separately delineated by three radiation
oncologists on both CT and 18F-FDG PET images, with the
guidance of the corresponding images in the other modality.
All contouring was completed using VelocityAl (Varian
Medical System, Inc., Palo Alto, CA). In this study, while
physicians referred to the other modality to define the tumor
contours on either PET or CT, they did not visualize the cor-
responding PET and CT scans at the same time using the

FiG. 1. Tumor contours are different in computed tomography (CT) (left), positron emission tomography (PET) (middle), and the fused PET and CT images
(right). Due to the inherent differences between molecular imaging (PET) and morphological images (CT), the tumor boundary as defined between PET and CT

images may differ. [Color figure can be viewed at wileyonlinelibrary.com]
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software’s fusion feature. The reference standard for each
scan was then generated by applying the STAPLE algo-
rithm*? to the three manual delineations.

2.B. Methods
2.B.1. Data preprocessing

In our experiments, we first resampled each pair of the
registered PET-CT scans with an isotropic spacing in all 3D,
and then cropped a fixed size of each 3D volume (that is,
96 x 96 x 48 voxels) centered at each lesion. In order to
remove unrelated image details, we took a similar intensity
thresholding strategy as that used by Zhong et al.”® For the
CT images, we truncated the intensity values of all scans to
the range of [—500, 200], and for the PET images, we trun-
cated the SUV of all scans to the range of [0.01, 20.0].

2.B.2. DFCN-based cosegmentation

The proposed DFCN-based cosegmentation framework
(briefly called DFCN-CoSeg) consists of two coupled 3D-
UNets with an encoder-decoder architecture, as illustrated in
Fig. 2.

Each 3D-UNet is used to handle the tumor segmentation
in PET or in CT, and both are communicating with each other
to share the complementary features from the other modality.
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In this work, we mainly employ the 3D version of the
original two-dimensional (2D) U-Net with encoder-decoder
architecture,” for single-modality segmentation, (CT-only or
PET-only). This consists of a number of down-sampling (en-
coder) and up-sampling (decoder) modules,™ as depicted in
Fig. 2 and Table 1. Given an input image cube with a size of
96 x 96 x 48, the first convolutional layer which produces 32
features maps is mainly adopted to extract the low level features.
Based on these feature maps, a U-type network architecture is
formed, in which the encoder module contains four convolu-
tional and max-pooling (for down-sampling) layers with 64,
128, 256, and 512 feature maps, respectively; and the decoder
module contains four de-convolutional (for up-sampling) and
convolutional layers with 256, 128, 64, 32 feature maps respec-
tively. For each convolutional layer, the size of all convolutional
kernels is 3 x 3 x 3; while for all max-pooling layers, the
pooling size is 2 x 2 x 2 with a stride of 2. In all deconvolu-
tional layers, we up-sample the input features maps by a factor
of 2. Using a technique similar to that described by Cicek
et a1.31, the feature maps are concatenated after deconvolution
with those corresponding features in the prior encoder module.
More specifically, using the CT data as the input, the first con-
volutional layer produces 32 feature maps (denoted by F1), the
encoder 1 produces 64 feature maps (denoted as F2), and so on
and so forth. Then, in the corresponding decoder module, we

concatenate them to ensure maximizing information flow
between layers, which helps improve the gradient flow
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FiG. 2. A schematic illustration of our proposed deep learning, fully convolutional networks (DFCN)-CoSeg network with feature fusion for positron emission
tomography (PET)-computed tomography (CT) cosegmentation. Two parallel 3D-UNets are built for CT and PET respectively. In DFCN-CoSeg, all feature maps
produced by all the encoders of either the CT or PET branch are concatenated in the corresponding decoders, as depicted by the dotted arrow lines. [Color figure

can be viewed at wileyonlinelibrary.com]
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TaBLE 1. Architecture of a basic three-dimensional (3D)-UNet.

Feature size 3DUNet
Input 1 x 96 x 96 x 48
Conv 1(F1) 32 x 96 x 96 x 48 Conv,3 x 3 x 3,32, stride 1

Encoder 1(F2) 64 x 48 x 48 x 24  Conv,3 x 3 x 3, 64,
maxpool, stride 2
Encoder 2(F3) 128 x 24 x 24 x 12 Conv,3 x 3 x 3,128,
maxpool, stride 2
Conv, 3 x 3 x 3,256,
maxpool, stride 2
Conv, 3 x 3 x 3,512,
maxpool, stride 2

Encoder 3(F4) 256 x 12 x 12 x 6

Encoder 4(F5) 512 x 6 x 6 x 3

Decoder 4 256 x 12 x 12 x 6  Deconv,

concat(F4), 3 x 3 x 3,256, conv
Decoder 3 128 x 24 x 24 x 12 Deconv,

concat(F3),3 x 3 x 3,128, conv
Decoder 2 64 x 48 x 48 x 24  Deconv,

concat(F2),3 x 3 x 3, 64, conv
Decoder 1 32 x 96 x 96 x 48  Deconv,

concat(F1),3 x 3 x 3, 32, conv
Output 2 x 96 x 96 x 48 Conv, 1 x 1 x 1,2, conv, stride 1

computation and the network training. After the decoder, a soft-
max classifier implemented by the fully convolutional operation
is used to generate voxel-level probability maps and the final
predictions. After that, the probabilities and predictions were
given as inputs to the loss functions. In this work, two kinds of
well-known loss functions were studied:

1. The cross-entropy loss function (denoted as CELoss),
which is defined as:

1 N2
Leg = — ]T/Z > ¥ logpf,
i=1 c=1
where p¢ denotes the probability of each voxel i belongs to
class ¢ (i.e., nontumor or tumor), y{ indicates the ground truth
label for voxel i.

2. The dice coefficient loss function (denoted as DICE-
Loss), which is defined as:

1 & |AN B
L = — 1—-2—
Nz( )

i=1

where A is the reference standard volume (ground truth), and
B is the predicted volume.

To facilitate the complementary feature flow between the
two 3D-UNets to achieve PET/CT tumor co segmentation, we
propose a feature-level fusion scheme, which takes advantage of
skipping connections between layers. Figure 2 shows the orga-
nization of the proposed feature fusion scheme. The network
has two parallel 3D-UNets, one for CT and the other for PET,
which share the same network architecture as previously

Medical Physics, 46 (2), February 2019

described. For feature fusion, we concatenate the feature maps
from the corresponding encoders from both CT and PET
branches using either the CT or the PET decoder in each
branch. In this way, the decoder module can incorporate the
complementary features each modality extracted in their respec-
tive encoder modules, which maximizes the information flow
between either short or long range connections while preserving
the various low-mid-high semantic scales of the levels of the
layers. In contrast with the single 3D-UNet, the DFCN-CoSeg
network simultaneously generates two tumor label predictions:
one for CT and the other for PET. During the process of net-
work training, the DFCN-CoSeg loss function is the sum of the
two separate losses for CT and PET.

The 3D-UNets were implemented using the open source
TensorFlow-GPU* package. All networks ran on NVIDIA
GeForce GTX 1080 Ti GPU with 11GB of memory. The 3D-
UNets were trained by the Adam optimization method with a
mini-batch size of 4 and for 21 epochs. For the proposed
DFCN-CoSeg network, the mini-batch size is set to two due
to the GPU memory limit. The learning rate was initialized as
10~* and half-decreased according to a piecewise linear
scheme. With regard to weight initialization, we adopted the
truncated normal distribution with zero mean and a standard
deviation of 0.01. To avoid overfitting, the weight decay was
adopted to obtain the best performance on the test set.

2.B.3. DFCN-CoSeg network training

Of the total 60 pairs of PET-CT scans, 38 pairs were used as
the training set, and the remaining 22 pairs were used as the test
set. The selection procedure began by sorting all scan pairs
according to the size of the tumor volume. Then three scan pairs
out of every five pairs in that order were selected to be in the
training set. The test set consisted of the remaining 22 scans.
This stratified strategy ensured that the training set is representa-
tive of the whole dataset in terms of tumor volume. All parame-
ters were tuned on the training set. All reported results were
obtained on the test set. Among the 22 cases of the test set, 10
cases were selected as the validation set to observe the learning
curves for single- modality 3D-UNets and DFCN-CoSeg.
Based on the learning curves, their best models on the valida-
tion set were determined and used to evaluate their performance
on the whole test set (22 cases). None of the 22 cases in the test
set were employed for training the networks.

Due to the extremely limited annotated data, several data
augmentation methods were adopted to enhance the training
set. For each pair of coregistered PET-CT scans in the training
set, a number of rigid translation, rotation and flip operations
were performed to obtain additional training datasets. To per-
form rigid translation, the corresponding region-of-interest
(ROI) bounding boxes were cropped by shifting the gravity
mass center in a fixed voxel range in (5, 10, 15, 20). This shift
occurred along the eight combinations of the three axis direc-
tions. For each original ROI this resulted in 32 translated ROIs.
The rotation and flip operations were extended to those ROIs to
further enlarge the training set. For the rigid rotation operation,
each ROI image was rotated 90°, 180°, and 270°



623 Zhong et al.: Simultaneous cosegmentation of tumors in PET-CT using DFCN

counter-clockwise around the z axis (slice-axis) to generate new
ROI images. In addition, each ROI image was flipped horizon-
tally and vertically to generate new ones. In this augmentation
process, the duplicated ROIs were removed.

See Fig. 3 for detailed some examples of these data aug-
mentations.

(a) Original image

2.C. Compared methods

We conducted quantitative comparisons for three semiauto-
matic graph-based cosegmentation approaches: (a) the
graph-based PET-CT cosegmentation method,'> (b) the ran-
dom-walker-based cosegmentation method®® and (c) the

(b) 90° rotation

Fic. 3. Illustration of some examples using data augmentation. And these augmentation operations were conducted in the X-Y plane. [Color figure can be

viewed at wileyonlinelibrary.com]
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matting-based cosegmentation method.”® For these semiauto-
matic methods, a few manual seeds should be defined on the
tumor. In our experiment, the same initialization procedure
was employed as described by Song et al.'* The user needs to
specify two concentric spheres with different radii to serve as
object and background seeds. All voxels inside the smaller
sphere were used as the object seeds. All voxels outside the lar-
ger sphere were used as background seeds. For the hyper-para-
meters, a grid search strategy based on a training set was used.

The proposed DFCN-CoSeg method was compared to the
deep learning-based method, where 3D-UNet was directly
applied to segment the tumor boundaries using either PET or
CT.

According to AAPM TG2116 recommendations,** the
segmentation performance was evaluated using three criteria:

1. Accuracy score (Score), which is defined as the
weighted average sensitivity (SE) and positive predic-
tive value (PPV). Following the characterization of Hatt
et al?®, we computed the accuracy Score as
Score = 0.5 x SE + 0.5 x PPV.

2. Dice similarity coefficient (DSC), which measures the
volume overlap of two segmentations, A and B. It is
defined as 2|A N BJ/(JA| + |B|), with a range of [0,1].
The higher the DSC is, the better volume overlap the
two segmentations have.

3. Average symmetric surface distance (ASSD), which is
defined as:

Y wea Minpepd(a,b) + 3, pmingeq d(a, b)

ASSD =
A + |B|

where A denotes the boundary surface of the reference stan-
dard and B denotes the computed surface; a and b are mesh
points on the reference surface and the computed surface

|A| and |B| are the number of points on A and B respectively.
The lower the ASSD is, the better volume overlap the two
segmentations have.

Statistical significance of the observed differences was
determined using a 2-tailed paired #-test for which a P value
of 0.05 was considered significant.

3. RESULTS

Table II shows the mean values and standard deviations for
the three performance metrics (Score, DSC and ASSD) for the
evaluated methods on the test scans (22 cases). In addition to
the cosegmentation results, we include three reference methods
(Song et al.', Ju et al.?*, and Zhong et al.”®) using either CT
or PET. Compared to the three reference methods, the pro-
posed DFCN-CoSeg approach (with the best Scores of
0.865 £ 0.034 on CT and 0.853 £ 0.063 on PET) achieves
significantly better results using either the DSCs or ASSDs as
metrics. This demonstrates that the trained deep learning net-
work can learn to be more descriptive and better discriminate
between features than the traditional manual methods. When
incorporating dual image modality information (PET-CT) into
the segmentation process, segmentation accuracy using either
deep learning based or other graph-cut based methods can
consistently improve the results of both CT and PET scans than
a single modality is able to achieve alone. This suggests that
the dual image modality information (PET-CT) facilitates
simultaneous cosegmentation. Considering the different loss
functions for the deep learning based methods (3D-UNets or
DFCN-CoSeg), the models trained with dice coefficient loss
performed better than those using cross-entropy based models.
For example, the deep learning based 3D-UNet method with
the dice coefficient loss, achieved much higher DSCs on both

respectively. d(a, b) Represents the distance between a and b.

CT and PET (0.811 £ 0.151 over 0.638 £ 0.165,

and

TasLE II. Statistics of the compared methods on the test set (22 cases) based on the contours generated by Simultaneous Truth and Performance Level Estimation
Algorithm (STAPLE). Average values and their standard deviations were reported.

Score DSC ASSD

Methods Modalities Single Dual Single Dual Single Dual
Song et al. CT 0.712 + 0.140 0.734 £ 0.089 0.597 + 0.257 0.638 + 0.165 2.574 £ 2.447 1.938 + 1.132

PET 0.735 £ 0.084 0.740 = 0.074 0.629 £ 0.158 0.643 £+ 0.141 2.901 + 2.607 2.656 £ 2.131
Juet al. CT 0.778 + 0.082 0.765 £ 0.098 0.765 + 0.093 0.759 £ 0.100 1.484 £ 0.745 1.650 £ 0.823

PET 0.817 £ 0.064 0.820 £ 0.061 0.776 + 0.106 0.782 £ 0.099 1.526 + 1.068 1.473 £ 0.970
Zhong et al. CT 0.798 + 0.058 0.809 £ 0.058 0.766 + 0.095 0.783 £ 0.095 1.186 + 0.828 1.080 + 0.714

PET 0.774 + 0.065 0.816 £+ 0.054 0.711 £ 0.123 0.778 £ 0.086 2.102 £ 2.002 1.502 + 1.083
3D-UNet (CELoss) CT 0.812 + 0.115 — 0.780 £ 0.185 — 1.667 £+ 1.863 —

PET 0.846 £+ 0.084 — 0.811 £ 0.133 — 1.127 £ 0.718 —
DFCN-CoSeg (CELoss) CT — 0.850 £ 0.061 — 0.836 + 0.095 — 0.895 + 0.661

PET — 0.848 + 0.064 — 0.823 + 0.086 — 1.066 + 0.660
3D-UNet (DICELoss) CT 0.839 + 0.085 — 0.811 £ 0.151 — 1.291 + 1.313 —

PET 0.832 £+ 0.075 — 0.794 £ 0.111 — 1.229 + 0.587 —
DFCN-CoSeg (DICELoss) CT — 0.865 £+ 0.034 — 0.861 + 0.037 — 0.806 + 0.605

PET — 0.853 + 0.063 — 0.828 + 0.087 — 1.079 + 0.761

The bold values indicates the best results achieved among all the methods compared using the dual PET-CT images.

Medical Physics, 46 (2), February 2019
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0.794 £+ 0.111 over 0.643 £ 0.141, respectively), compared to
either method used by Song et al.'’, Ju et al.*®, or Zhong
et al.”® The first MICCAI challenge for PET tumor segmenta-
tion (Hatt et al.'’) reported 0.642 to 0.810 DSC values from 15
different segmentation methods (see Table I, Hatt et al.lo).
The DSC values of the DFCN-CoSeg approach with results of
over 80% are comparable to and even competitive with the
results of the MICCALI challenge. The DFCN-CoSeg method
achieved the best overall Score on both CT and PET
(0.865 4+ 0.034 and 0.853 4+ 0.063, respectively) and
revealed much smaller standard deviations than any other of
the compared methods. Although the average Scores, DSCs or
ASSDs from the DFCN-CoSeg are higher than those obtained
when using the single-modality 3D-UNets, the statistical com-
parison did not show a significant improvement on either CT
or PET. However, the DFCN-CoSeg standard deviation is
much smaller than those from the single-modality 3D-UNets
(0.037 over 0.151 on CT, 0.087 over 0.111 on PET). This sug-
gests that while the 3D-UNets can effectively learn to
discriminate features to recognize tumor voxels, the simple
multimodality feature fusion can only provide limited
improvement given the high segmentation accuracy on the
PET image. We surmise that although the features learned by
the network from PET images are able to localize the overall
tumor position, they may not provide more useful information
on the true tumor boundary. This provides an advantage over
the previous single modality graph-cut based semiautomatic
methods that promise to diminish physician work load and
consequently facilitate the widespread use of PET-CT images.

Figure 4 illustrates the segmentation results of the com-
pared methods on four PET-CT scan pairs. The proposed
DFCN-CoSeg method can obtain more consistent results
against the STAPLE-generated ground truth. The example
results demonstrate that the proposed DFCN-CoSeg method
is able to locate tumor boundaries on PET images more accu-
rately than the other compared methods.

The intermodality consistency between the STAPLE based
ground truth on each image modality and the manual con-
tours of three physicians were tested and summarized in
Table III. The DCS value of all manual contours on CT
images over their ground truth of STAPLE was 0.867, while
that on PET images was 0.875. No significant interimage
modality variations were found between the STAPLE ground
truth and all corresponding manual contours (P = 0.423). In
Table III, the three physicians are denoted as P1, P2, and P3.
Their respective manual contours on CT (PET) are denoted
as P1_CT, P2_CT, and P3_CT (P1_PET, P2_PET, and
P3_PET). The STAPLE_CT (STAPLE_PET) is obtained
from the STAPLE algorithm with P1_CT (P1_PET), P2_CT
(P2_PET) and P3_CT (P3_PET) as inputs.

4. DISCUSSION
4.A. Performance

Accurate tumor delineation in image-guided radiotherapy, is
critically important yet efforts to automate the process for
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radiotherapy treatment planning or delivery remain elusive.'” In
this work, our DFCN-CoSeg approach for PET-CT offers
improved automation, requires no direct interaction and enables
efficient computer-aided segmentation which may facilitate
eventual clinical use. Our framework takes advantage of the
assumption that the combination of information derived from
dual image modality (PET-CT) would vastly improve the capa-
bility of an automated, learning-based segmentation approach.
Our goal is to automate the manual delineation done by radia-
tion oncologists to define tumor by contouring PET-CT images
so that the radiation oncologists can review and modify the
automated tumor efficiently. Owing to the successful adoption
of deep fully convolutional neural network architecture, the
automated feature extraction is conducted on both dual-modal-
ity PET-CT images and able to discriminate between tumors or
nontumors. The proposed DFCN-CoSeg was evaluated on 60
NSCLC cases and the promising experimental results have
demonstrated the efficiency over previous graph-based PET-CT
cosegmentation methods.

Feature fusion between medical images acquired using
distinct modalities is a challenging problem due to the inter-
image variability inherent in each type. These include: differ-
ent noise, various image resolutions, different contrast, or
misregistration of the images to mention a few.*>*® Tradi-
tional methods include morphology-based fusion,*’” wavelet-
based fusion,”® component analysis based fusion,* and
hybrid fusion.’® Different feature fusion approaches using
deep neural networks are discussed:

1. The first and most basic method is to combine the input
images/features and process them jointly in a single
UNET. This describes most methods in the literature
for handling multi-image modality datasets such as the
fusion of multiparametric brain MR images of T1- and
T2- weighted MRI for brain tumor segmentation.>**’

2. The second approach is to conduct feature fusion on
images of different resolutions®* through two steps of
extracting different sizes of input patches in the input
images and giving them as inputs of different networks
to obtain the different feature levels to conduct the fea-
ture fusion.

3. The last method is to conduct feature fusion based on
deep convolutional and recurrent neural networks
(RNN), where the RNNs are responsible for exploiting
the intraslice and interslice contexts respectively.”’

The novelty of our approach lies in the investigation of the
encoder-decoder based 3D-UNet for the cosegmentation in
dual-modality PET-CT images. Our contribution is to con-
sider the difference between each segmentation on either the
PET or the CT image and to design a coupled feature fusion
network based on the 3D-UNet architecture. This allows us to
simultaneously produce high quality, voxel-wise segmenta-
tion for tumors in PET-CT images and specifically to coseg-
ment tumors in PET-CT images. A novel DFCN network was
proposed where two coupled 3D-UNets with an
encoder-decoder architecture were integrated. One 3D-UNet
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Song’s v.s. 3D-Unet Song’s v.s. 3D-Unet Song’s v.s. Song’s v.s.
using CT only using PET only DFCN-CoSeg on CT DFCN-CoSeg on PET

using PET-CT using PET-CT

o

(h)

(n) ()

FiG. 4. Segmentation results of compared methods on four positron emission tomography-computed tomography scan pairs. Red: ground truth generated by

Simultaneous Truth and Performance Level Estimation Algorithm, Blue: Song et al’s.”? method, Green: the 3D-UNet method (first two columns), Green:

Proposed deep learning, fully convolutional networks-CoSeg method (last two columns). [Color figure can be viewed at wileyonlinelibrary.com]

is used to perform the PET image tumor segmentation and Figure 5 shows the DSC training curves on single-modal-
the other to perform the CT image segmentation. The two ity 3D-UNets trained on either CT- or PET- only data, and
UNets communicate with each other to allow the comple- the training curves of DFCN-CoSeg on both PET and CT.
mentary features from both modalities to “flow” between the From the learning behaviors in those figures we can observe
two 3D-UNet networks to produce consistent tumor contours. that the training set accuracy is much higher than that on the
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validation set on the single-modality 3D-UNet, for either CT
or PET. The curves show a relatively large fluctuation com-
pared to those from DFCN-CoSeg.

This may be due to the lack of complementary information
from the other modality and the large variation in the tumor

TasLe III. Dice similarity coefficients (DSC) values of each physician
expert.

Dice similarity coefficients (DSC)

STAPLE_CT
P1_CT P2_CT P3_CT
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volume sizes. By contrast, the learning curves are much
smoother than that of the single-modality 3D-UNet for the
dual-modality DFCN-CoSeg network. This indicates that the
complementary information exchanged between CT and PET
images can help learn to better discriminate features, which
in turn helps locate the local optimum for network training.
Second, considering the loss functions, the DICELoss has
achieved smoother learning curves compared to the CELoss,
which indicates that the dice loss function is more robust on
data variability in the training set compared to the simple
cross-entropy loss. Third, as shown in these figures, we can
see the mean DSCs on the training set are consistently
increasing and become steady after about 15 epochs, while
the mean DSCs on the validation set did not increase. We
determined the best models for these networks based on their
respective mean DSCs on the validation set, then evaluated

(b) 3D-UNet(PET)
learning curves
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FiG. 5. Mean dice similarity coefficient (DSC)s on training and validation sets during the network training with CELoss (a,b,c) and DICELoss (d,e,f). 3D-UNet
computed tomography (CT)/positron emission tomography (PET) means 3D-UNet trained on CT or PET only data. Deep learning fully convolutional networks
(DFCN)-CoSeg means the feature fusion DFCN-CoSeg network architecture for PET-CT cosegmentation. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 46 (2), February 2019


www.wileyonlinelibrary.com

628 Zhong et al.: Simultaneous cosegmentation of tumors in PET-CT using DFCN 628

them on the 22 cases that did not participate in the real net-
work training.

4.B. Data augmentation improves general
performance

In this subsection we study if data augmentation can
improve general performance in PET-CT segmentation. We
again ran the same experiments described above, but without
the data augmentation on the training set, that is, the training
set only includes the original 38 cases. All models were trained
in the same way as described above. Table IV shows the seg-
mentation performances based on Score, DSC and ASSD on
our test set (22 cases) for these models trained either with or
without data augmentation. Figure 6 illustrates the accuracy
curves trained without data augmentation. As we can see in
the table and figures, those network models trained with data
augmentation can achieve significantly better performance
than those without data augmentation. Compared to Fig. 5,
the learning curves in Fig. 6 also get steady more quickly
(about 10 000 steps), which indicates that these models were
quickly fitted on the training set without data augmentation.

4.C. Testing on whole-body PET-CT images

The inputs for the proposed DFCN-CoSeg network are
two fixed-size bounding boxes (i.e., cropped from the origi-
nal whole-body PET/CT images respectively). In our experi-
ments we first crop the bounding boxes containing lesions
according to the ground truth segmentation as the input of
the networks. However, it is very important in clinical prac-
tice to directly segment the whole-body PET-CT scans simul-
taneously. To this end, we conducted additional experiments
to test the segmentation performance of the proposed method
on resampled whole-body PET-CT scans (i.e., with voxel
spacing of 1 x 1 x 1 mm). Specifically, we first resampled
the whole-body PET/CT scans to isotropic voxel spacing
(I x 1 x 1 mm), then based on the sliding window tech-
nique, cropped the paired PET/CT sub-volume, gave them as
inputs of the 3D-UNets or DFCN-CoSeg, and generated the
final results on whole-body predictions.

Table IV shows the statistics of the segmentation results
on the respective whole-body PET/CT images of the test set.
As shown in this table, for most cases, the SEs and PPVs of
the proposed DFCN-CoSeg are overall higher than those of
the 3D-UNets. The high sensitivities indicate the proposed
DFCN-CoSeg can correctly detect and segment the tumors in
the whole-body images. However, in some cases (e.g., A-
[A002114), the specificities of the proposed DFCN-CoSeg
are lower than 50%.

The main reason for the relatively poor results for the
tumor segmentation is that it is located in the boundary
between two adjacent sliding windows. The tumor region
located in the boundary presented relatively poor predictive
results when compared to the tumor located in the center
region. From the viewpoint of fully convolutional networks,
as our DFCN-CoSeg models were trained based on tumor-
centralized PET/CT bounding boxes, they may be biased in
the centralized inputs.

The automatic object localization techniques could help
improve this. It is worth noting that much research has been
devoted to automatically obtaining these bounding boxes
with a high degree of confidence that they will contain
lesions within them (e.g., lung nodule object detection’?),
and results from these modules can be used as the inputs for
the proposed DFCN-CoSeg method. It is also worth observ-
ing that recent advances in computer vision have demon-
strated the efficiency of simultaneously conducting object
detection and segmentation in a single deep network frame-
work (e.g., Mask-RCNN).>

4.D. Limitations

Although the proposed DFCN-CoSeg method has
achieved some improvement over the traditional graph-based
method, the absolute assessment based on DSCs is still about
82% on PET and 86% on CT. There is still much improve-
ment needed in terms of performance, robustness, and stabil-
ity. For the single-modality 3D-UNets, we observed that the
DSCs on two test datasets were below 70%. It seems the
tumor patterns in the two datasets were not adequately

TasLE IV. Statistics of the compared methods on the test set (22 cases) based on the contours generated by Simultaneous Truth and Performance Level Estima-
tion Algorithm. Those networks trained with data augmentation can achieve significantly better performance than those without data augmentation.

With data-augmentation

Without data-augmentation

Methods Modalities Score DSC ASSD Score DSC ASSD
3D-UNet (CELoss) CT 0.812 £ 0.115 0.780 + 0.185 1.667 + 1.863 0.752 + 0.157 0.719 £ 0.207 3.154 + 4.336
PET 0.846 + 0.084 0.811 + 0.133 1.127 £ 0.718 0.819 + 0.078 0.779 £ 0.127 2.491 + 2.809
DFCN-CoSeg (CELoss) CT 0.850 £ 0.061 0.836 £+ 0.095 0.895 + 0.661 0.818 + 0.084 0.806 + 0.108 1.226 + 0.987
PET 0.848 £ 0.064 0.823 £ 0.086 1.066 + 0.660 0.793 £ 0.101 0.771 £ 0.116 1.993 + 2.346
3D-UNet (DICELoss) CT 0.839 + 0.085 0.811 + 0.151 1.291 + 1.313 0.759 + 0.156 0.728 + 0.204 3.431 + 5.176
PET 0.832 £ 0.075 0.794 £+ 0.111 1.229 + 0.587 0.832 £ 0.076 0.808 £ 0.105 1.308 + 0.750
DFCN-CoSeg (DICELoss) CT 0.865 £ 0.034 0.861 + 0.037 0.806 + 0.605 0.811 + 0.098 0.785 £ 0.152 2.632 + 4.657
PET 0.853 £ 0.063 0.828 + 0.087 1.079 + 0.761 0.803 £ 0.087 0.778 £ 0.107 1.856 + 1.976
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TaBLE V. Statistics of SEs, PPVs on the whole-body PET/CT images of the test set. The “Voxels” means the number of tumor voxels in the resampled data with

volume spacing of 1 x 1 x 1 mm.

3D-Unets(CT)

3D-Unets(PET) DFCN-CoSeg(CT) DFCN-CoSeg(PET)

Name Voxels-ct Voxels-pt SE PPV SE PPV SE PPV SE PPV
A-TA002126 3430 6496 0.903 0.105 0.645 0.093 0.871 0.171 0.590 0.135
A-IA002122 16806 31164 0.678 0.402 0.964 0.278 0.864 0.421 0.903 0.407
A-IA0002096 12424 22990 0.502 0.143 0.166 0.430 0.655 0.748 0.074 1.000
A-IA002119-M 10522 7888 0.854 0.168 0.567 0.485 0.861 0.821 0.721 0.758
A-TIA0002111 2034 2476 0.755 0.015 0.999 0.141 0.873 0.249 0.924 0.323
A-IA0002114 37628 23224 0.044 0.026 0.745 0.020 0.370 0.062 0.440 0.027
A-IA0002097 2786 7036 0.293 0.025 0.891 0.114 0.857 0.087 0.867 0.260
A-IA000991-M 3116 12318 0.587 0.090 0.821 0.035 0.934 0.014 0.930 0.042
A-IA0001254 65604 104091 0.365 0.023 0.599 0.610 0.564 0.540 0.558 0.793
A-IA002135-M 4494 5240 0.852 0.081 0.927 0.090 0.900 0.089 0.961 0.140
A-TA002133 6910 9458 0.837 0.071 0.739 0.480 0.916 0.516 0.558 0.671
A-TIA0002094 1026 2040 0.175 0.006 0.647 0.032 0.666 0.030 0.578 0.025
A-IA002130 5018 6156 0.886 0.254 0.633 0.946 0.938 0.817 0.927 0.852
A-IA002134 21210 41666 0.425 0.083 0.870 0.208 0.869 0.234 0.896 0.257
A-IA002131 11156 6510 0.767 0.258 0.012 0.000 0.768 0.029 0.736 0.010
A-IA0002108 7832 2258 0.797 0.111 0.752 0.024 0.789 0.427 0.882 0.070
A-TA001491 2068 1206 0.517 0.016 0.912 0.021 0.613 0.046 0.949 0.034
A-IA0001345 39432 44552 0.844 0.590 0.949 0.787 0.869 0.839 0.885 0.883
A-IA0002109 2908 6730 0.863 0.055 0.995 0.037 0.879 0.024 0.989 0.044
A-IA0002117 12292 17586 0.699 0.108 0.787 0.671 0.870 0.906 0.838 0.983
Mean 0.632 0.132 0.731 0.275 0.796 0.354 0.760 0.386

represented in the training set. We thus plan to enlarge the
training set in the future.

In terms of the network architecture design, our DFCN-
CoSeg network was inspired by the encoder-decoder based
3D fully convolutional networks (3D-FCN)***’and the 3D-
UNets.’**** As a natural extension of the well-known 2D
FCN proposed by Long et al.*!, 3D-FCNs have been success-
fully applied to semantic segmentation tasks in medical imag-
ing, such as liver segmentation,*” brain tumor segmentation,”*
and pancreas segmentation.”* As demonstrated in these studies,
the skip connections designed in 3D-FCNs or 3D-UNets were
very important to help recover the full spatial resolution at the
network outputs, which is suitable for voxel-wise segmentation
tasks. Various typical extensions include the extended U-Net
based on the DenseNet,” or the short skip connection.”® In this
work, we utilized a coupled skip connection between the two
3D-UNets for CT or PET, taking advantage of both modalities
to produce two separate segmentations. Although our proposed
method achieved good results, designing a more efficient fea-
ture fusion architecture would be very beneficial.

The proposed DFCN-CoSeg method utilizes a pixel-wise
cross-entropy loss or dice coefficient loss in the last layer of
its network, which is insufficient to learn both local and glo-
bal contextual relations between pixels. Although the use of
UNet architecture may alleviate this problem, enabling it to
implicitly learn some local dependencies between pixels; it is
still limited by their pixel-wise loss function. This is because
it lacks the ability to enforce the learning of multi-scale
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spatial constraints directly in the end-to-end training process.
We propose the future integration of Conditional Random
Fields (CRFs) into our DFCN-CoSeg framework with an
end-to-end training process to enforce the pixel-wise labeling
consistency to improve the segmentation accuracy.

AAPM Task Group 211° recommends the use of different
types of ground truth datasets including phantom and clinical
contouring. The proposed DFCN-CoSeg method has been
thoughtfully validated on clinical contouring. It is natural to
also validate our method on simulated PET-CT images and
those obtained from phantoms. However, the performance of
a model with supervised learning frequently deteriorates on
data from a new deployment domain, which is known as a
domain shift problem.”” The domain shift from simulated
images to real data can be particularly challenging.”®”° Our
DFCN-CoSeg model, as a supervised learning method
trained on physician’s manual contours, may not well work
on the simulated and phantom data.

In this study, all PET and CT datasets were obtained from a
single PET-CT scanner (Siemens Medical Solutions, Inc.). Dif-
ferent PET-CT scanners have unique acquisition and recon-
struction properties, for PET datasets especially: spatial
reconstruction, noise properties, and voxel size. The sensitivity
study of the proposed DFCN-CoSeg method for each specific
PET-CT scanner needs to be investigated. In fact, this is another
domain shift problem in transfer learning, which has been
widely recognized in machine learning or computer vision. Pre-
trained convolutional neural networks have been designed and
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FiG. 6. Mean dice similarity coefficients (DSC)s on training and validation sets during the network training with CELoss(a,b,c) and DICELoss(d,e,f). These
networks were trained with only the original 38 cases as the training set, i.e., without data augmentation. [Color figure can be viewed at wileyonlinelibrary.com]

trained on the ImageNet dataset such as AlexNet,”" Google
InceptionNet,”" and ResNet-50.°% These pretrained models or
weights have been widely adopted and transferred into other
tasks such as RGBD segmentation® or remote sensing image
analysis®* to initialize the target networks.

4.E. Impact

For one unique tumor, one segmentation represents patho-
logically and morphologically true tumor boundaries. How-
ever, the tumor boundaries are defined according to whether
they are macroscopically or microscopically identified. If two
image modalities are the same type of morphological or
anatomical image such as CT and MRI, then the macroscopic
tumor boundaries can be similar depending on tumor sites. For
instance, lung cancer tumor boundaries that presented consid-
erable image intensity changes on both MRI and CT are simi-
lar due to the significant electron density difference between
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the tumor and the adjacent lung tissue. The segmentations
based upon their image intensities are similar even though the
physics underlying the image generation for these images is
different. In the case of cervical cancer, CT and MRI tumor
boundaries vary considerably due to the poor soft-tissue con-
trast on CT. MRI is critical for tumors requiring high soft-tis-
sue contrast such as gynecologic cancer, breast cancer, or
prostate cancer. Even though each tumor is unique its bound-
ary identification is different due to the physics underlying the
generation of each medical image. This is especially true
between molecular images such as PET or functional MRI
(e.g., DCE (dynamic contrast enhanced) or DWI (diffusion
weighted image) MRI) and anatomical images such as CT.
PET images visualize the uptake region of radiotracer such as
F18-FDG (Fludeoxyglucose) as a marker for the tissue uptake
of glucose, indicating a close correlation with tumor metabo-
lism.®® The high glucose uptake in tumor cells is used as a sur-
rogate to identify an active tumor region using PET images,
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thus the highly active regions identified by F18-FDG PET
images do not necessarily represent every single tumor cell or
anatomically defined tumor. When tumor cells are not active
or highly hypoxic, they are not included in the F18-FDG PET
positive regions. In addition, when other radiotracers for PET
images such as F18-FMISO (fluoromisonidazole) or F18-FLT
are used, then specific subtumor regions are identified based
on molecularly defined criteria. F18-FMISO PET images pre-
sent hypoxic tumor regions®® while FI8-FLT PET images effi-
ciently identify proliferating tumor regions.”” In general, the
identified tumor regions using molecular imaging are consid-
erably different from anatomical CT imaging which identifies
high electron density regions.

Besides the fundamental technical differences required to
generate functional or anatomical images, PET images take a
longer time (typically 1020 min for acquisition vs less than
2 min in CT acquisition) to acquire. For a tumor site affected
by respiratory motion like lung cancer, the acquisition time
will include the full range of motion for PET images, while
the tumor region in a CT scan (often fully acquired in a breath
hold) is less affected by breathing motion. As a result, the
tumor boundary varies between PET and CT images. In addi-
tion, PET images have a relatively poor spatial resolution
(~3-5 mm), while the spatial resolution of CT images can
be submillimeter (e.g., 0.6 mm). These inherent imaging fea-
tures all cause challenges in identifying tumor boundaries
between PET and CT images.

Simultaneously segmenting tumors from both PET and
CT while admitting the difference of the boundaries defined
in the imaging modalities is a more reasonable method than
those previously applied to fused PET-CT images, where
identical tumor boundaries were assumed.

Advances in radiomics and machine learning in PET-CT
images involve the accurate, robust, and reproducible seg-
mentation of the tumor volume in each imaging modality to
extract numerous unique features from each imaging modal-
ity. These radiomics features include 3D shape descriptors,
intensity- and histogram-based metrics and 2nd or higher
order textural features (Hatt et al.'’). By obtaining different
radiomics features from each imaging modality, including
different segmentations from each image modality, we expect
that the use of radiomics and CNN would improve the effi-
ciency of diagnosis, prognosis determination and clinical
decision-making critical for therapeutic interventions such as
surgery, chemotherapy, or radiotherapy.

In our study, we presented two PET-CT cosegmentation
approaches; Segmentation of PET images while interacting
with CT images and vice versa. Two different cosegmenta-
tions could be variously adapted in current clinical applica-
tions. The PET-based cosegmentations can be further
investigated to improve current PET-based prognostic assay
studies in nuclear medicine in which the metrics of PET
images, such as standardized uptake value (SUV) and meta-
bolic tumor volume (MTV) have been extensively studied.®®
In addition, the CT-based cosegmentation potentially
improves contouring accuracies and robustness for radiation
therapy, especially for determining high dose regions used in
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approaches such as SBRT in which the target (tumor) con-
touring accuracy is critical. To our knowledge, the proposed
DFCN-CoSeg network is the first CNN-based, simultaneous
segmentation approach for both PET and CT.

Our proposed deep learning DFCN-CoSeg cosegmenta-
tion framework can be successfully applied to the simultane-
ous cosegmentation of GTVs in the PET-CT image dataset.
The cosegmented GTV is expected to improve the efficacy of
radiotherapy. The proposed DFCN-CoSeg approach will not
fully replace input and review by physicians. However, we
expect this supplementary segmentation tool would act as an
aid and would improve the robustness and consistency of
contouring. Beichel at al.*” compared a semiautomated seg-
mentation vs experts contouring method, and presented the
intra- and interoperator standard deviations that were signifi-
cantly lower for the semi-automated segmentation. Also, con-
touring capability is expected to improve the efficiency of
molecular image guided radiotherapy when used in concert
with a PET-CT Linac system70 in which fast, accurate con-
touring is critical for adaptive replanning on each fraction.
The developed deep fully convolutional network based seg-
mentation can also be applied to current kV-cone-beam, CT
based, adaptive replanning approaches. The improved accu-
racy of using deep learning based cosegmentation is expected
to improve its prognostic power for the therapy selection for
lung cancer patients and improve clinical outcomes. In addi-
tion, the current state-of-the-art in tumor diagnosis and char-
acterization does not perform 3D contouring due to its
extended acquisition time but instead performs three, 1D
tumor measurements (length, width, and height) from which
tumor size and stage is determined. Before and after
chemotherapy, 3D contouring (segmentation) is not clinically
performed for response assessment. No contouring is per-
formed following radiation therapy in order to assess
response to therapy. DFCN-CoSeg could provide a metric
following treatment if correctly applied. The prognostic
power, of DFCN-CoSeg applied to GTV is being studied and
its results will be assessed. Given that integrated PET-CT
scanners are widely available, the developed deep learning
based cosegmentation technique in this work is readily avail-
able as a tool to be utilized in nonsmall cell lung carcinoma
clinical trials. In addition, the proposed computer-aided, auto-
mated tumor volume identification method using deep learn-
ing is expected to advance the accuracy of target delineation
for radiation therapy planning. This will be especially impor-
tant for SBRT in which high-precision tumor identification is
crucial in the process of defining the spatial extent of the ther-
apeutic radiation dose distribution. It is expected that the
improved accuracy and robustness of using deep learning
based cosegmentation on both PET and CT images would
improve outcomes and reduce the toxicity of radiation ther-
apy for nonsmall cell lung cancer.

5. CONCLUSIONS

In this work, we investigated the deep 3D fully convolu-
tional neural networks for tumor cosegmentation on dual-
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modality PET-CT images. Experimental results demonstrated
the effectiveness of our proposed method and improved accu-
racy compared to several common existing methods. Our
method would benefit clinics as it does not require unique
knowledge to implement effectively. Our dual 3D UNet
cosegmentation framework could be further applied to other
multi-modality data, for example, PET/MR. Validation of the
PET/CT segmentation on other datasets including multi-insti-
tutional trials and more different neural network architectures
will also be investigated in the future.
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