Skip to main content
. 2019 Jan 4;46(2):619–633. doi: 10.1002/mp.13331

Table 4.

Statistics of the compared methods on the test set (22 cases) based on the contours generated by Simultaneous Truth and Performance Level Estimation Algorithm. Those networks trained with data augmentation can achieve significantly better performance than those without data augmentation

Methods Modalities With data‐augmentation Without data‐augmentation
Score DSC ASSD Score DSC ASSD
3D‐UNet (CELoss) CT 0.812 ± 0.115 0.780 ± 0.185 1.667 ± 1.863 0.752 ± 0.157 0.719 ± 0.207 3.154 ± 4.336
PET 0.846 ± 0.084 0.811 ± 0.133 1.127 ± 0.718 0.819 ± 0.078 0.779 ± 0.127 2.491 ± 2.809
DFCN‐CoSeg (CELoss) CT 0.850 ± 0.061 0.836 ± 0.095 0.895 ± 0.661 0.818 ± 0.084 0.806 ± 0.108 1.226 ± 0.987
PET 0.848 ± 0.064 0.823 ± 0.086 1.066 ± 0.660 0.793 ± 0.101 0.771 ± 0.116 1.993 ± 2.346
3D‐UNet (DICELoss) CT 0.839 ± 0.085 0.811 ± 0.151 1.291 ± 1.313 0.759 ± 0.156 0.728 ± 0.204 3.431 ± 5.176
PET 0.832 ± 0.075 0.794 ± 0.111 1.229 ± 0.587 0.832 ± 0.076 0.808 ± 0.105 1.308 ± 0.750
DFCN‐CoSeg (DICELoss) CT 0.865 ± 0.034 0.861 ± 0.037 0.806 ± 0.605 0.811 ± 0.098 0.785 ± 0.152 2.632 ± 4.657
PET 0.853 ± 0.063 0.828 ± 0.087 1.079 ± 0.761 0.803 ± 0.087 0.778 ± 0.107 1.856 ± 1.976