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Abstract

This article examines the evidence contained in t statistics that are marginally significant in 5% 

tests. The bases for evaluating evidence are likelihood ratios and integrated likelihood ratios, 

computed under a variety of assumptions regarding the alternative hypotheses in null hypothesis 

significance tests. Likelihood ratios and integrated likelihood ratios provide a useful measure of 

the evidence in favor of competing hypotheses because they can be interpreted as representing the 

ratio of the probabilities that each hypothesis assigns to observed data. When they are either very 

large or very small, they suggest that one hypothesis is much better than the other in predicting 

observed data. If they are close to 1.0, then both hypotheses provide approximately equally valid 

explanations for observed data. I find that p-values that are close to 0.05 (i.e., that are “marginally 

significant”) correspond to integrated likelihood ratios that are bounded by approximately 7 in 

two-sided tests, and by approximately 4 in one-sided tests.

The modest magnitude of integrated likelihood ratios corresponding to p-values close to 0.05 

clearly suggests that higher standards of evidence are needed to support claims of novel 

discoveries and new effects.

1 Introduction

In a pair of recent articles (Johnson 2013; Benjamin et al. 2017), my co-authors and I 

recommended that the threshold for declaring “statistical significance” be changed from 0.05 

to 0.005. Criticisms of this proposal have focused on comparisons of type 1 and type 2 

errors, false negative and false positive rates, and other more sophisticated decision-theoretic 

based quantities. There is also a persistent misunderstanding regarding the amount of 

statistical evidence contained in p-values, and many scientists are unwilling to adjust their 

interpretation of p-values based on more direct measures of evidence. For example, Lakens 

et al. 2018 state, “given that the marginal likelihood is sensitive to different choices for the 

models compared, redefining alpha levels as a function of the Bayes factor is undesirable.” 

Indeed, many non-statisticians mistakenly interpret p-values as the probability that a null 

hypothesis is true, and many more are not aware of the relatively arbitrary manner in which 

the value of 0.05 was chosen to define statistical significance.

In this article I examine the fundamental question, How much evidence is contained in a t 
statistic when the p-value is close to 0.05? Ideally, this question would be answered by 

providing a formula to compute the probability that a null hypothesis is true based on the p-

value. That probability is the quantity that scientists are most interested in knowing. 
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Unfortunately, there is no unique mapping from p-values to the probability that a null 

hypothesis is true, and so this article instead focuses on providing upper bounds on 

likelihood ratios and integrated likelihood ratios when a p-value of 0.05 is observed. Loosely 

speaking, a likelihood ratio (LR) represents the ratio of the probability assigned to data 

under an alternative hypothesis to the probability assigned to data under the null hypothesis. 

In Bayesian analyses, the LR is directly related to the probability that each hypothesis is 

true. When the LR is large, the alternative hypothesis provides a better explanation for 

observed data than the null hypothesis does; when the LR is small, the null provides a better 

explanation. When the LR is close to 1.0, both hypotheses provide approximately equally 

valid explanations for observed data. Alternative hypotheses refer to the presence of an 

effect; the null hypothesis corresponds to no effect. Likelihood ratios can only be computed 

when all model parameters are completely specified under both hypotheses.

When LR’s cannot be computed, integrated likelihood ratios (ILR’s) can be computed 

instead. Like LR’s, ILR’s reflect the relative probability assigned to the data by alternative 

and null hypotheses and thus provide a direct measure of evidence regarding the relative 

validity of two competing hypotheses. The term integrated likelihood ratio (ILR) is used to 

describe the ratio of marginal densities obtained by integrating out nuisance parameters that 

define one or both hypotheses. Integrated likelihoods are one of the two main approaches to 

handling nuisance parameters, the other being maximization (e.g., profile likelihoods). 

Integrated likelihoods are used in both frequentist and Bayesian settings, and often have 

desirable properties not possessed by maximization methods (Kalbfleisch and Sprott 1970; 

Berger et al. 1999). In Bayesian settings ILRs are called Bayes factors, but due to the data-

dependent nature of the alternative hypotheses considered here, resulting ILRs are not 

consistent with standard Bayesian practice and so the term Bayes factor has been avoided.

Most of the alternative hypotheses examined in this article have been chosen to bias LR’s 

and ILR’s in their favor. Similar to earlier analyses in, for example Edwards et al. (1963), the 

alternative hypotheses have been chosen to make a p-value of 0.05 look as “significant” as 

possible. For p-values close to 0.05, I find that LR’s and ILR’s for two-sided tests are less 

than 7, and LR’s and ILR’s for one-sided tests are less than 4. When ILR’s are calculated as 

part of a Bayesian analysis, many statisticians feel that values greater than 10 or 20 are 

required to provide strong evidence in favor of one hypothesis over another (Jeffreys 1961; 

Kass and Raftery 1995).

2 One-sided tests

To begin, consider one-sided tests of a normal mean. Let X1,…, Xn denote independent 

random variables with N (μ, σ2) distributions. For simplicity, suppose that the null and 

alternative hypotheses are specified as follows:

H0: μ = 0, H1: μ ∼ N a, gσ2 . (1)
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A normal distribution centered on a with variance g times the observational variance is used 

to represent the alternative hypothesis. When g = 0, the alternative hypothesis becomes a 

simple hypothesis, i.e., a point mass prior centered on a.1

The ILR’s considered here for composite hypotheses (i.e., g > 0) are computed under the 

assumption that the marginal distribution on the variance parameter σ2 is proportional to 

1/σ2. This assumption corresponds to an improper, non-informative prior on the variance 

parameter and is applied to both the null and alternative hypotheses. It also results in certain 

numerical (but not philosophical) equivalences between standard frequentist and Bayesian 

analyses. For example, if a non-informative prior density is also imposed on μ, the Bayesian 

posterior density for μ is a standard t density. Further discussion of noninformative and 

improper priors on variance parameters can be found in, for example, Berger and Bernardo 

(1992).

With these assumptions, the marginal density of the data X = {X1,…, Xn} under the 

alternative hypothesis, obtained by integrating out μ and the nuisance parameter σ2, can be 

expressed as

m1 X = c ng + 1 −1/2

1 +
ta
2

ng + 1 n − 1

n/2 , (2)

where

s2 = 1
n − 1 i = 1

n
Xi − X 2, ta = X − a

s/ n
, (3)

and

c = π n − 1 s2 −n/2 Γ n
2 .

The value ta represents the standard t statistic for testing a hypothesis that μ = a, and s2 is the 

usual sample variance.

The marginal density of the data under the null hypothesis can be obtained by taking a = 0 

and g = 0 in (2), yielding

1A simple hypothesis is a hypothesis in which the value of the unknown parameter is completely specified. For composite hypotheses, 
the value of unknown parameters is only constrained to take values from a specified set, or to be drawn from a specified probability 
distribution.
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f X; a = g = 0 = c

1 +
t0
2

n − 1

n/2 . (4)

The marginal density of the data under the simple alternative hypothesis μ = a is similarly 

obtained by taking g = 0 in (2), yielding

f X; μ = a, g = 0 = c

1 +
ta
2

n − 1

n/2 . (5)

For composite alternative hypotheses, it follows that the ILR between the hypotheses 

specified in (1) can be expressed as

ILR =
m1 X

f X; a = g = 0 =
1 +

t0
2

n − 1

n/2

ng + 1 1 +
ta
2

ng + 1 n − 1

n/2 . (6)

For simple hypotheses, the ILR can be expressed as

ILR = f X; a, g = 0
f X; a = g = 0 =

1 +
t0
2

n − 1

n/2

1 +
ta
2

n − 1

n/2 . (7)

This equation was obtained by integrating out the variance parameter, σ2, and setting g = 0 

in (2). Alternatively, (7) can be obtained directly by considering the sampling distribution of 

the t statistic. Under the null hypothesis, t0 has a standard t density, while under the 

alternative hypothesis, ta has a standard t density. Thus, the ILR defined in (7) can also be 

regarded from the classical perspective as a simple LR.

2.1 Maximum integrated likelihood ratios

From (2), it follows that the maximum probability that can be assigned to the data under the 

alternative hypothesis is obtained by taking a = X and g = 0. For this choice of a and g, the 

alternative hypothesis becomes a point mass centered on the sample mean, i.e.,
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H1: μ = X . (8)

This assumption maximizes the marginal density of the data under the alternative 

hypothesis. For this choice of alternative, the ILR simplifies to

1 +
t0
2

n − 1

n/2

. (9)

This value represents the maximum value that can be achieved by the ILR for t statistics 

based on normally distributed data (see Edwards et al. (1963) for further discussion 

maximum likelihood ratios).

In actual scientific practice, sampling variation makes it unlikely that X would exactly equal 

the population mean μ. Nonetheless, Figure 1 depicts the maximum ILR obtained under the 

alternative hypothesis specified in (8) as a function of the degrees of freedom of the t 

statistic ν (= n − 1) when t0 yields a p-value of 0.05 (i.e., t0 = Τ0.05
v , where Τα

v  represents the 

(1 − α) quantile of a standard t distribution on ν degrees of freedom). Thus, Figure 1 

displays the maximum of the ratio between the marginal probabilities assigned to the data 

under any alternative hypothesis and the null hypothesis when t0 = Τ0.05
v .

From Figure 1, we see that the ILR is less than 5 whenever there are 8 or more degrees of 

freedom. That is, the data is at least 1/5 as likely under the null hypothesis as it is under any 

alternative hypothesis regarding the value of μ.

For 1 degree of freedom, the ILR can be as high as 40.9. With 1 degree of freedom (n = 2), 

this value is obtained when the t statistic nX /s  is 6.31 and the estimated standardized 

effect size, X /s, is 4.46. With 5 degrees of freedom, the maximum ILR of 5.95 is obtained 

when the estimated standardized effect size is 0.82, and for 12 degrees of freedom the 

maximum ILR of 4.60 is obtained for an estimated standardized effect size of 0.49.

In many studies in the social sciences, the magnitudes of standardized effect sizes (when 

present) are often smaller than 1.0. For instance, Cohen (1988) classified standardized effect 

sizes for differences in means as being “small” when near 0.2, “medium” when near 0.5, and 

“large” when close to 0.8. Sawilowsky (2009) extended these descriptors to “very large” 

(1.2) and “huge” (2.0) standardized effect sizes. Large effect sizes are often easy to detect, 

while very small effect sizes may not be of substantive importance. For this reason, 

hypothesis tests that attempt to detect small to medium effect sizes typically present the 

greatest challenge and are often of the most substantive interest. If we modify the alternative 

hypothesis in (8) to restrict μ to be less than 1/2 of an estimated standardized effect size, then 

a more realistic alternative hypothesis can be expressed as
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H1: μ = a = sgn X min X , s
2 and g = 0 . (10)

The black curve in Figure 2 depicts the ILR under this alternative hypothesis. It shows that 

the maximum constrained ILR occurs at 9 degrees of freedom and is 4.71. For estimated 

standardized effect sizes known to be less than 0.5 (or medium effect sizes in Cohen’s 

terminology), this figure thus shows that the maximum ILR between the t-statistic under the 

alternative and null hypotheses is less than 5 whenever p = 0.05.

2.2 Accounting for sampling variation

2.2.1 Classical approach—For small to medium estimated standardized effect sizes, 

the ILRs in the previous section assumed that the true population mean μ under the 

alternative hypothesis exactly equaled the observed sample mean X. Based on this 

assumption, the marginal density of the data under the alternative hypothesis was computed 

from (2) by taking X and g = 0. Of course, the probability that the sample mean X exactly 

equals the population mean μ is zero.

If, however, the true state of nature was known, then the “true” ILR would be obtained by 

specifying the alternative hypothesis to be this value. In other words, if the datagenerating 

value of μ was known, we would assume that a = μ and g = 0 in (1). Under this assumption, 

the ILR would be assigned the value

1 +
t0
2

v

n/2

1 +
tμ
2

v

n/2 . (11)

Unfortunately, the true value of μ is not known, so the quantity in the denominator cannot be 

computed.

Because we are conditioning on the event p = 0.05, we know that X = Τ0.05
v s/ n or 

equivalently that t0 = Τ0.05
v . Under this condition, the numerator in (11) is a fixed and known 

quantity. However if we ignore the conditioning on the value of X, then tμ, evaluated at the 

true but unknown value of μ, is known to have exactly a t distribution on ν degrees of 

freedom. This makes it possible to calculate the expected value of

1

1 +
tμ
2

v

n/2 . (12)
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Simple calculations show that this expectation can be expressed as

Eμ 1 +
tμ
2

v

−n/2

=
Γ n

2 Γ 2n − 1
2

Γ n − 1
2 Γ n

. (13)

Thus, even though we don’t know the true state of nature and the data-generating value of μ, 

we can compute the expectation of (12) under this value.

It follows that an approximation to the “average ILR” that would be obtained under the true 

but unknown μ can be expressed as

average ILR ≡
Γ n

2 Γ 2n − 1
2

Γ n − 1
2 Γ n

1 +
t0
2

v

n/2

. (14)

Of course, this expression does not equal the expected value of the ILR because the 

expectation in (13) ignored the condition that X = Τ0.05
v s/ n . Nonetheless, this expression 

provides an approximation to the average ILR that would be obtained for the “true” 

alternative hypothesis.

The red curve in Figure 2 depicts the average ILR for ν ∈ (5, 50) and t statistics that yield p 
= 0.05. For medium estimated effect sizes (corresponding to more than 5 degrees of 

freedom), the average ILR is less than 3 when p = 0.05. As before, ILRs greater than 3 can 

be obtained for ν < 5, but these ILRs correspond to comparatively large and easily 

detectable standardized effect sizes.

2.2.2 Bayesian approach—A Bayesian approach can also be taken toward evaluating 

the uncertainty regarding the true value of μ under the alternative hypothesis. For instance, 

the alternative hypothesis for μ might be assumed to be normally distributed around X with 

variance σ2/n (i.e., a = X and g = 1/n). If the variance was known a priori, this assumption 

would correspond to specifying the alternative hypothesis to be the posterior distribution on 

μ given the sample mean X. It leads to the ILRs displayed by the blue curve Figure 2. This 

curve produces ILRs that are very similar to the average ILRs obtained in the previous 

section. Of course, a genuine Bayesian analysis would not be premised on a prior centered 

on the sample mean, but the similarity between the average ILR and this pseudo-Bayes 

factor is revealing.

3 Two-sided tests

3.1 Bayesian approach

From a Bayesian perspective, the conduct of a two-sided test suggests that values of μ above 

and below the null value are possible, which in turn suggests that only alternative hypotheses 

that are symmetric around the null hypothesis should be considered (Berger and Sellke 
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1987; Sellke et al. 2001). Under this constraint, an alternative hypothesis of the following 

form approximately maximizes the ILR against the null hypothesis (Berger and Sellke 1987, 

p.116):

H1: μ =
X with probability 1

2

−X with probability 1
2

(15)

For this alternative hypothesis, the ILR can be expressed as

1 +
t0
2

v

n/2
1
2 + 1

2 1 +
4t0

2

v

−n/2

, (16)

where t0 now refers to Τ0.025
v .

A plot of this ILR against degrees of freedom ν appears as the green curve in Figure 3. This 

figure suggests that the maximum ILR for marginally significant t statistics under the 

constraint of a symmetric alternative hypothesis is less than 5 when there are 8 or more 

degrees of freedom (small to medium estimated effect sizes).

As in the case of one-sided tests, the alternative hypotheses used to define the ILRs in the 

Bayesian test can be revised to account for sampling variability in the value of X. One 

approach toward accounting for this variability is to assume a symmetric alternative in which 

1/2 mass is assigned to two normal densities centered on ± X and variance σ2/n. This 

assumption roughly corresponds to taking one-half of the posterior density centered on X
and re-centering it on −X. The integrated likelihood ratio that results from this alternative 

model is

1
2 2 1 +

t0
2

v

n/2

1 + 1 +
2t0

2

v

−n/2

. (17)

The blue curve in Figure 3 shows the ILR’s that result from this assumption on the prior 

distribution. The values in this curve approximately mimic the values of the blue curve in 

Figure 2, which were based on a similar Bayesian analysis of one-sided tests.

If the symmetry constraint on the alternative hypothesis is removed and the alternative 

hypothesis is instead defined by taking a = X and g = 1/n, then the ILR can be expressed as
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1
2 1 +

t0
2

v

n/2

. (18)

Values of the ILR under this assumption are represented by the purple curve in Figure 3 and 

are approximately twice the value of the blue curve.

3.2 Classical approach

Finally, let us examine ILRs for two-sided t-tests that are significant at the 5% level. The 

maximum bounds in this case are identical to the bounds that would be obtained in a one-

sided t-test that yielded p = 0.025, and are obtained by assuming that the alternative 

hypothesis specifies that a = X and g = 0 in (3). The sample mean is assumed to equal 

Τ0.025
v s/ n . The black curve in Figure 3 displays the resulting maximum ILR for 5 or more 

degrees of freedom, or small to medium estimated standardized effect sizes. Because a two-

sided test is performed even though the optimal alternative hypothesis is inherently “one-

sided,” the ILRs in this scenario are larger than they were in previous scenarios.

As for one-sided tests, the assumption that the true population mean exactly equals the 

sample mean is unrealistic. If we account for the sampling variation in the sample mean and 

instead use the expected value of the t density under the assumption that μ is known (as in 

(13)), then the average ILR can be approximated by the red curve in Figure 3. The values 

depicted in this curve are approximately twice the values of the blue curve, which were 

obtained by placing one-half mass each on a = ± X and g = 1/n, and are very close to the 

values in the purple curve obtained by taking a = X and g = 1/n. As noted previously, the 

factor of two in the former arises from the fact that the alternative split the Bayesian 

posterior distribution in two, re-centering one-half of the posterior distribution on −X in 

order to maintain a symmetric alternative.

The average ILRs in the case of two-sided tests are between 5 and 8 for small to medium 

estimated standardized effect sizes and p-values near 0.05.

4. Conclusions

Under a variety of assumptions regarding the values of non-zero effects, ILRs in favor of 

alternative hypotheses are less than 4 for one-sided t tests based on more than 5 degrees of 

freedom, and are less than 7 for two-sided tests t tests based on more than 7 degrees of 

freedom. For alternative hypotheses that are constrained to be symmetric around the null 

hypotheses, ILRs are less than about 5 or 6 for medium estimated standardized effect sizes, 

and less than about 3 or 4 for small estimated effect sizes in two-sided tests.

This range of ILR values is less conservative than the Bayesian analyses of p-values and 

Bayes factors presented in Sellke et al. (2001), which required alternative hypotheses to be 

symmetric—and in many cases unimodal—around the null value. That is, Sellke and co-

authors estimated ILRs that were even smaller than those exposed here.
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The difference in evidence reflected by one-sided and two-sided bounds on ILRs illustrate 

the importance of properly specifying alternative hypotheses. Indeed, it is quite possible that 

many journals and regulators implicitly impose significance thresholds of p < 0.025 by 

requiring that two-sided tests be conducted for alternative hypotheses that are inherently 

one-sided. Of course, this higher standard for declaring statistical significance is only 

effective when the sign of an effect is known a priori. It offers no additional protection 

against HARKing (hypothesizing after results are known; Kerr 1998) when the sign of an 

effect not specified before data are analyzed.

In my opinion, the best estimate of the evidence provided by t statistics is provided by the 

average ILR, which is obtained by replacing the marginal density of data under the 

alternative hypothesis by its (unconditional) expectation. The expectation of the marginal 

density of the t statistic under the alternative is free of additional assumptions and represents 

the exact expectation of a t density at the true value of the population mean μ. It is thus 

insensitive to prior model choices and other modeling assumptions.

For t statistics based on more than 6 degrees of freedom, the average ILR for two-sided tests 

is less than 6. For one-sided tests with p-values around 0.05, the average IRL is less than 

about 3. In other words, the data are, on average, only 3 or 6 times more likely under the 

“true” model than they are under the null hypothesis. Importantly, these values are 

independent of prior assumptions regarding the value of the population mean under the 

alternative hypothesis, and apply for all hypothesis tests based on t statistics. They clearly 

suggest that higher standards of evidence are needed to support claims of novel discoveries 

and new effects.
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Figure 1: 
Maximum integrated likelihood ratio for one-sided t-test yielding p = 0.05.
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Figure 2: 
ILRs for one-sided tests. The black curve represents the integrated likelihood ratio for one-

sided t-tests yielding p = 0.05 under the alternative hypothesis specified in (10). The red 

curve represents the “average” ILR for a one-sided t-test yielding p = 0.05. The red curve 

was obtained by replacing the marginal density of the t statistic under the alternative 

hypothesis by its expectation. The blue curve represents the ILR obtained under the 

alternative hypothesis corresponding to a = X and g = 1/n in (1)
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Figure 3: 
ILRs for two-sided tests. The black curve depicts the maximum ILR for a two-sided t-test 

yielding p = 0.05. The alternative hypothesis underlying this curve assumes that 

μ = Τ0.025
v s/ n, the value of the sample mean that produces a two-sided p-value of 0.05. The 

green curve represents the ILR for a two-sided t-test yielding p = 0.05 obtained by setting 

a = ± X, each with probability one-half, and g = 0. The blue curve was obtained similarly, 

except that g = 1/n to account for variation in the sample mean. The purple curve was 

obtained by taking a = X and g = 1/n in (1). The red curve represents the “average” ILR for 

two-sided t-tests yielding p = 0.05. The marginal likelihood for this curve was obtained by 

replacing the marginal density of the data under the alternative hypothesis with its expected 

value at the true value of μ.
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