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Abstract

Noninvasive EEG (electroencephalography) based auditory attention detection could be useful for 

improved hearing aids in the future. This work is a novel attempt to investigate the feasibility of 

online modulation of sound sources by probabilistic detection of auditory attention, using a 

noninvasive EEG-based brain computer interface. Proposed online system modulates the 

upcoming sound sources through gain adaptation which employs probabilistic decisions (soft 

decisions) from a classifier trained on offline calibration data. In this work, calibration EEG data 

were collected in sessions where the participants listened to two sound sources (one attended and 

one unattended). Cross-correlation coefficients between the EEG measurements and the attended 

and unattended sound source envelope (estimates) are used to show differences in sharpness and 

delays of neural responses for attended versus unattended sound source. Salient features to 

distinguish attended sources from the unattended ones in the correlation patterns have been 

identified, and later they have been used to train an auditory attention classifier. Using this 

classifier, we have shown high offline detection performance with single channel EEG 

measurements compared to the existing approaches in the literature which employ large number of 

channels. In addition, using the classifier trained offline in the calibration session, we have shown 

the performance of the online sound source modulation system. We observe that online sound 

source modulation system is able to keep the level of attended sound source higher than the 

unattended source.
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1. Introduction

Approximately 35 million Americans (11.3% of the population) suffer from hearing loss; 

this number is increasing and is projected to reach 40 million by 2025 [1]. Within this 

population only 30% prefer using current generations of hearing aids that are available on 

the market. One of the most common complaints associated with hearing-aid use is 
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understating speech in the presence of noise and interferences. Effects of interfering sounds 

and masking on speech intelligibility and audibility has been widely studied [2], [3]. 

Specifically, it has been shown [3] that increase in SNR needed for the same level of speech 

understanding given a background noise for people with hearing loss can be as high as 30 

dB more compared to people with normal hearing. Therefore, amplifying the target signal 

versus unwanted noises and interferences to facilitate hearing and increase speech 

intelligibility and listening comfort is one of the basic concepts exploited by hearing aids 

[3]. Identifying the signal versus noise is a main step required for the design of a hearing aid. 

It can be a di cult task in complicated auditory scenes like a cocktail party scenario, signal 

and interferences have acoustic features of speech and can instantly switch their roles based 

on the attention of the listener and can not be detected based on the predefined assumptions 

on signal and noise features. Our brain distinguishes the sources based on their spectral 

profile, harmonicity, spectral or spatial separation, temporal onsets and offsets, temporal 

modulation, and temporal separation[4],[5] and focus on one sound to analyse the auditory 

scene [6] in the so called cocktail party effect [7]. Existence of each cue can reduce 

informational and energetic masking of competing sources and help focusing our attention 

on the target source.

Brain/Body Computer Interface (BBCI) systems can be used to augment the current 

generations of hearing aids by discriminating among attended and unattended sound sources. 

They can be incorporated to provide external evidence based on top-down selective attention 

of listeners [8]. Attempts have been made to incorporate bottom-up attention evidences in 

the design of the hearing aids. Direction based hearing aids that detect attention direction 

from eye gaze and amplify sounds coming from that direction can be an example of bottom-

up attention evidence incorporation [9]. Moreover, there are attempts to use 

electroencephalography (EEG)-based brain computer interfaces (BCIs) for the identification 

of attended sound sources. EEG has been extensively used in BCI designs due to its high 

temporal resolution, non-invasiveness, and portability. These characteristics, in addition to 

EEG devices being inexpensive and accessible, make EEG a practical choice for the design 

of a BCI that can be integrated into hearing aids to identify auditory attention. A crucial step 

in such an integration is to build an EEG-based BCI that employs auditory attention.

EEG-based BCIs that rely on external auditory stimulation have recently attracted attention 

from the research community. For example, auditory-evoked P300 BCI spelling system for 

locked-in patients is widely studied [10], [11], [12], [13], [14], [15]. It was shown that 

fundamental frequency, amplitude, pitch and direction of audio stimuli are distinctive 

features that can be processed and distinguished by the brain. Also, more recent studies 

using EEG measurements have shown that there is a cortical entrainment to the temporal 

envelope of the attended speech [16], [17], [18]. A study on the quality of cortical 

entrainment to auditory stimulus envelope by top-down cognitive attention has shown 

enhancement of obligatory auditory processing activity in top-down attention responses 

when competing auditory stimuli differ in space direction [19] and frequency [20].

Recently, EEG-based BCI has also been used in cocktail party problems for the 

classification of attended versus unattended sound sources [21], [22], [23]. In the 

identification of an attended sound source in a cocktail party problem, stimulus 
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reconstruction to estimate the envelope of the input speech stream from high density EEG 

measurements is the state-of-the-art practice [24], [21]. In the aforementioned model, 

envelope of the attended stimulus is reconstructed using spatio-temporal linear decoder 

applied on neural recordings. In one study that considered the identification of the attended 

sound source in a dichotic (different sounds playing in each ear) two speaker scenario, 60 

seconds of high density EEG data recorded through 128 electrodes were used in the stimulus 

reconstruction. Two decoders using the attended and unattended speech were trained and it 

was shown that estimated sound source using the attended decoder has higher correlation 

with the attended speech compared to the estimated stimuli using unattended decoder with 

unattended speech [21]. Another study extended the approach in [21] to use almost one 

fourth of the high-density 96 channel EEG data in the identification of attended speaker in a 

scenario in which the speakers are simultaneously generating speech from different binaural 

directions [22]. Using 60 seconds of EEG data, they were able to replicate previous work 

[21] and show its robustness in a more natural sound presentation paradigm [22]. In a related 

study, authors have compared three types of features extracted from speech signal and EEG 

measurements to learn a linear classifier for the identification of the attended speaker using 

20 seconds of data from high density 128 channels EEG recordings [23]. Moreover, a proof 

of concept hearing aid system that uses EEG assistance (with 60 seconds of EEG data) to 

decide on attended sound source by the hearing aid user was first demonstrated in [25]. In 

our previous related work, we have investigated the role of frequency and spatial features of 

audio stimuli signal in EEG activities in an auditory BCI system with the purpose of 

detecting the attended auditory source in a cocktail party setting. We reported high 

performance single channel classification of attended sound versus unattended one based on 

their frequency and direction using 60 seconds of EEG and stimuli data [26]. Even though 

these results are still far from satisfying the requirements for the EEG-based attention 

detector which can be incorporated in an online setting for a hearing aid application, they are 

motivating for further investigation in this area.

This paper presents two contributions to the literature on EEG-based auditory attention 

estimation:

• First, we show successful identification of attended speaker source in a diotic 

(both sounds playing in both ears) two speaker scenario using 20 seconds of 

EEG data recorded from 16 channels. The presented classifier outperforms EEG-

based auditory attention detectors previously presented in the literature in terms 

of accuracy, with smaller number of EEG channels (sparse 16 versus dense 96 or 

more), and using time-series of shorter durations (around 20 seconds versus 

typically 60 seconds). In fact, using 20 seconds of EEG data from only one of the 

16 EEG channels, we demonstrate high classification performance for the 

auditory attention detection.

• Second, we introduce the first online system that gives feedback on attention of 

the user in the form of attended to unattended source energy ratio amplification. 

The level of amplification of attended versus suppression of unattended source is 

assigned based on a probabilistic model defined over the classifier trained on the 

offline data including temporal dependency of the user’s attention. The goal of 
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the online system is using the probabilistic information of the user’s attention to 

enhance the concentration of the user on the target source in multi-speaker 

scenarios. The introduced framework for online system is a proof of concept for 

design perspective of an EEG-augmented hearing aid system. Finally, we show 

the introduced online system in average is able to keep the level of attended 

source higher despite statistical changes happening in online data compared to 

the offline data used for training the classifier.

2. System Overview

The diagram represented in Figure 1 summarizes the steps of the proposed BCI system. The 

proposed system gets the mixture of sounds from the environment as the input and modifies 

the gain of each specific sound. The output of this system is the input to the ear channel.

The decision on gain modification of each sound is made by the BCI module which consists 

of three submodules of gain controller, auditory attention inference system and hearing aid 

DSP system. Hearing aid DSP system estimates independent sound sources from the mixture 

of sounds in the environment and outputs the information to the gain controller and attention 

inference module. In this work, we assume that we have the estimated sources which are the 

outputs of the DSP system based on blind source separation.

Auditory attention inference system estimates the probability of attention on each specific 

sound source using EEG measurements and estimated sound sources. Gain controller system 

takes the estimated probabilities from the attention inference system to modify gains of each 

specific sound. The details of the attention inference system and gain adjustments are 

provided in the following sections.

2.1. Online Gain Controller System

Lets assume that Sn = (s1,n, …, si,n, …, sM,n) is a matrix containing original sources that 

each si,n is a column vector for ith sound channel for nth round of sending feedback. 

Sn = s1, n, …, s i, n, …, s M, n , would be the estimated source matrix after blind source 

separation, which we assume exists and its design is out of the scope of this paper. wn = 

(w1,n, …, wi,n, …, wM,n)⊤ is the vector of weights with wi,n being a scalar showing the gain 

of ith estimated sound source; and en is the EEG evidence vector for nth round. An = i, 
indicates the attention of subject is on the ith sound source. Subject will start listening to all 

sounds with equal energy and then based on brain interface decisions for subject attention on 

each sound source, speech enhancement or automatic gain controller (AGC) module will 

assign appropriate weights to each sound source for n + 1th round of sending feedback 

according to the following equation:

wn+1 = f p An εn Sn, en , wn−j   j = 1, 2, . . (1)

Equation 1 states that the weights for the upcoming sound sources (n + 1th round) will be 

decided based on probability of attention given current EEG evidence (nth round) and 
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previous weights that were used at the n − 1th round. The selection of optimal gain control 

policies (choosing the form of f) that considers other factors such as sound quality due to 

amplitude modulation, response time to changes versus robustness to outlier incidents 

influencing brain interface decisions, is anticipated to be a significant and important research 

area in itself, and we will explore alternative designs in future work.

2.2. Auditory Attention Inference System

This module calculates probability of attention given EEG evidence. It takes raw EEG 

measurements, (estimated) sound sources and weights to extract EEG features (evidence), as 

explained in Section 4. Then, using Bayes rule, the posterior probability distribution of 

attention over sources is expressed as the product of EEG evidence likelihood times the prior 

probability distribution over sources,

P An = i εn ∝ P εn An = i P An = i . (2)

In our experiments, we start with a uniform prior over sources and then prior information 

will be updated based on the observed EEG evidence as explained in 5.2 as well.

3. Data Collection and Preprocessing

3.1. EEG Neurophysiological Data

Ten volunteers (5 male, 5 female), between the ages of 25 to 30 years, with no known 

history of hearing impairment or neurological problems participated in this study, which 

followed an IRB-approved protocol. EEG signals were recorded using a g.USBamp 

biosignal amplifier using active g.Buttery electrodes with cap application from g.Tec (Graz, 

Austria) at 256 Hz. Sixteen EEG channels (P1, PZ, P2, CPZ, CZ, C3, C4, T7, T8, FC3, FC4, 

F3, F4 and FZ according to International 10/20 System) were selected to capture auditory 

related brain activities over the scalp. Signals were filtered by built-in analog bandpass ([0.5, 

60] Hz) and notch (60Hz) filters.

3.2. Experimental Design

Each participant completed one calibration and one online session of experiments. Both 

sessions included diotic (both sounds playing on both ears simultaneously) auditory 

stimulation while the EEG was recorded from the participants. Participants passively 

listened to the auditory stimuli through earphones.

Calibration Session—Total calibration session time was about 30 minutes. More 

specifically, a calibration session consisted of 60 trials of 20 seconds of diotic auditory 

stimuli with 4 seconds breaks between each trial. The diotic auditory stimuli are generated 

by one male and one female speaker. These speakers narrated a story (different story for 

different speakers chosen from audio books of literary novels) for 20 minutes. We consider 

every 20 seconds of this 20-minute-long diotic narration as a trial. During the calibration 

session, participants were asked to passively listen to 20-minute-long narration, and they 

were instructed to switch their attention from one speaker to another during different trials. 
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The instructions to switch attention from trial to trial are provided to the user on a computer 

screen using “f” and “m” symbols for female and male speakers, respectively.

Online Session—The online session is summarized in Figure 2. In the online session, 

similar to the calibration session one male and one female speaker narrated stories (different 

story for different speakers) for 20 minutes. The same speakers from the calibration session 

narrated the stories for the online session, but the stories used in the online session were 

different than the calibration session. We consider the 20-minute-long narration as 10 two-

minute long sequences, each sequence containing 6 twenty-second trials. Before each 

sequence, participants were asked to attend to one of the speakers through instructions 

displayed on the computer screen. In each sequence, while the participants were listening to 

the narrated stories, weights that control the energy of each sound source were updated 6 

times after every trial. The equal weight case is defined such that amplitude of each sound 

source was scaled to yield equal energy and each sequence started with an equal weight trial. 

There is a 0.5 second pause between 20-second-long trials within each sequence and the 

weights are updated within this 0.5 second period based on the attention evidence obtained 

from the EEG recorded from the participants and through the usage of automatic gain 

controller. Since, the participants were instructed to keep their attention on one of the 

speakers during each sequence, and during each sequence the weights are adjusted 

automatically in an online fashion to emphasize the attended sound source, we call this an 

online session. Silent portions of the story narration longer than 0.2 seconds were truncated 

to be 0.2 seconds, in order to reduce distraction of participants.

3.3. Data Pre-processing

EEG brain activity measurements were digitally filtered by a linear-phase bandpass filter 

([1:5, 42]Hz). For each trial, tx sec of EEG signal time-locked to the onset of each stimulus 

was extracted resulting in N samples. The acoustic envelope of speech stimulus signals were 

calculated using the Hilbert transform and filtered by a low pass filter (with 20Hz cut-off 

frequency). Then, tx seconds of acoustic envelope signals following every stimulus and time 

locked to the stimulus onset were extracted. Optimizing tx to get good performance with 

minimum time window is an important factor in the design of online auditory BCI systems. 

In this paper, we selected tx = 20, based on the results of our previous work which are 

reported in [26]. The data length was selected based on the analysis we performed over the 

calibration data such that the length is chosen to optimize area under the receiver operating 

characteristics curve (AUC) of the intent inference engine with a constraint on the upper 

bound of the data length. More specifically, we analyzed the AUC as a function of the data 

length, and we chose the data length value when the changes in the AUC as the data length 

increased became more incremental for most of the participants.

4. Methods

4.1. Feature Extraction

Top down attention to an external sound source differentially modulates the neural activity to 

track the envelope of that sound source at different time lags [16], [17], [18]. Therefore, as 

discriminative features, we calculate the cross correlation (CC) between the extracted EEG 
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measurements and target and distractor acoustic envelopes at different time lags. τn = [τ1, 

⋯, τl, ⋯, τL]⊤ is the vector of discreet time lag delays in sample between EEG and acoustic 

envelop of played sounds. In our analysis, we consider τ ∈ [t1, t2] × fs, with t1 and t2 as 

sampling times chosen as described below. For each channel, we calculate cross correlations 

between EEG and the male and female speakers’ acoustic envelopes for the time lag sample 

values defined in τ. Assuming that τ is a L × 1 vector, we concatenate the cross correlation 

values from male and female speakers into a single vector and hence each feature vector is 

2L × 1 dimensional. As described in Section 3.3, N is number of EEG data and sound source 

samples used for CC calculation. We have examined the effect of reducing N on 

classification results in section 5.1.2.

Therefore, considering the defined notations, we calculate the correlation coefficient 

between EEG and sound sources at different time lag samples τl, denoted by ρ
ech, s i τl :

ρ
ech, s i τl =

r
ech, s i τl

σ
ech, σ

s i
. (3)

In (3), ech is EEG data recorded from channel ch, s i is the envelope of ith estimated sound 

channel, τl is a time lag sample, and r
ech, s i τl = E en + τl: N

ch , sn: N − τl
i  is the sample average 

between ech and s i. Therefore, ρ
ech , s i τl  is a scalar representing the correlation coefficient 

between EEG in channel ch and ith sound channel at time lag sample τl. So, 

ρ
ech, si = ρ

ech, s i τ1 , ρ
ech, s i τ2 , …, ρ

ech, s i τL  is 1 × L dimensional vector for L lags in τ 

range for channel ch and ith sound channel. Feature vector will be formed by concatenation 

of correlation vectors for all s i,s. In our experiments which we have two sound sources this 

feature vector is specifically defined as xch = ρ
ech, s1, ρ

ech, s2
⊤

. xch is 2L × 1 vector for each 

channel and x = (x1, …, xch, …, x16)⊤ is a 2L × 16 dimensional matrix which contains 

features for each trial.

4.2. Classification and Dimension Reduction

As explained in Section 3, the participants were asked to direct their auditory attention to a 

target speaker during data collection. The other speaker is the distractor. The labeled data 

collected in this manner is used in the analysis of discrimination between two speakers in a 

binary auditory attention classification problem. As explained in Section 4.1, for each trial 

we have x as the collection of 2L × 1 dimensional cross-correlation features for each 

channel. For analysis of data using all channels, we apply PCA first for dimensionality 

reduction to remove zero variance directions. Afterwards, feature vectors for each channel 

will be concatenated to form a single aggregated feature vector for further analysis. Then, 

we use Regularized Discriminant Analysis (RDA) [27] as the classifier in our analysis. RDA 

is a modification of Quadratic Discriminant Analysis (QDA). QDA assumes that data is 
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generated by two Gaussian distributions with unknown mean and covariances and requires 

the estimation of these means and covariances of the target and nontarget classes before the 

calculation of the likelihood ratio. However, since, L, the length of τ, as defined in Section 

4.1, is usually large resulting in feature vectors with large dimensions even after the 

application of PCA, and the calibration sessions are short, the covariance estimates are rank 

deficient.

RDA eliminates the singularity of covariance matrices by introducing shrinkage and 

regularization steps. Assume each xi ∈ ℝp is a p×1-dimensional feature vector for each trial 

and yi is its binary label showing if the feature belongs to speaker 1 or 2, that is yi ∈ {1, 2}. 

Then the maximum likelihood estimates of the class conditional mean and the covariance 

matrices are computed as follows:

μk = 1
Nk

∑
i = 1

N
xiδ yi, k ,

Σk = 1
NK

∑
i = 1

N
xi − μk xi − μk

Tδ yi, k .

(4)

where δ(·,·) is the Kronecker-δ function, k represent a possible class label (here k ∈ {1, 2}, 

and Nk is the number of realizations in class k. Accordingly, the shrinkage and 

regularization of RDA is applied respectively as follows:

Σk λ =
(1 − λ)NkΣk + (λ)∑k = 0

1 NkΣk

(1 − λ)Nk + (λ)∑k = 0
1 Nk

,

Σk(λ,γ) = (1 − γ)Σk(λ) + (γ) 1
ptr Σk(λ) Ip .

(5)

Here, λ, γ ∈ [0, 1] are the shrinkage and regularization parameters, tr[·] is the trace operator 

and Ip is an identity matrix of size p × p. In our system we optimize the values of λ and γ to 

obtain the maximum area under the receiver operating characteristics (ROC) curve (AUC) in 

a 5-fold cross validation framework. Finally, the RDA score for a trial with the EEG 

evidence vector xi, which is defined as:

sRDA xi = log
f 𝒩 xi; μ2, Σ2(λ, γ)
f 𝒩 xi; μ1, Σ1(λ, γ)

, (6)

where f 𝒩(x; μ, Σ) is the Gaussian probability density function with mean μ and covariance 

Σ. Here s values are used to plot the ROC curves and to compute the AUC values. RDA can 

be considered as a nonlinear projection which maps EEG evidence to one dimensional score 

ε = sRDA(x).
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Finally, the conditional probability density function of ε given the class label, i.e. p(ε = ϵ|A 
= i) needs to be estimated. We use kernel density estimation on the training data using a 

Gaussian kernel as

p(ε = ϵ A = i) = 1
Ni

∑
A(v) = i

Khi
(ϵ − ϵ(v)), (7)

where ϵ(v) is the discriminant score corresponding to a sample v in the training data, that is 

to be calculated during cross validation, and Khk
.  is the kernel function with bandwidth hk. 

For a Gaussian kernel, the bandwidth hk is estimated using Silverman’s rule of thumb 

hk = 4σ5
3n

1/5
≅ 1.06σn−1/5  for each class k [28]. This assumes the underlying density has 

the same average curvature as its variance-matching normal distribution [29].

5. Analysis and Results

As illustrated in our previous work, [26], features formed using the CC coefficient series 

ρ
ech, s1, ρ

ech, s2 as calculated in (3) show distinct patterns for attended vs unattended sound 

sources and these patterns are observed to be consistent across participants. For diotic 

presentation, the highest distinguishable absolute correlation between the sound sources and 

EEG is identified in the range of [0,400] ms. We accordingly extract features within this 

range of correlation delay, τ. In this range, we observe a negative correlation for both target 

and distractor speakers followed by an early positive correlation for the target stimulus and 

delayed and suppressed version of that positive correlation for the distractor stimulus. These 

results are quantitatively summarized in Table 1, more specifically this table reports the 

average temporal latency and the magnitude of the peak in cross correlation responses across 

all participants. Statistical significance of the difference between peak temporal latency of 

target and distractor has been tested using Mann-Whitney U-test (p = .00012).

In the rest of the analysis, we consider the correlation delay τ to be in the range of [0,400]ms 

to form the feature vectors.

5.1. Offline Data Analysis

5.1.1. Single channel classification analysis—Using the selected window of 

[0,400] ms as the most informative window for classification of target versus distractor 

responses, we first form the vector xch as shown in 4.1, we then use these features for each 

EEG channel independently to localize the selective attention responses using the 

classification scheme described in Section 4.2. As the results of our previous work suggested 

[26], we relocated electrodes to be more centered around the frontal cortex, see Section 3.1. 

Figure 3 shows the topographical map of classification performance in terms of area under 

the receiver operating characteristics curve (AUC) over the scalp, for all participants. 

Moreover, for each participant best channel AUC values are reported in Table 2. Figure 3 

and Table 2 show that the classification accuracy varies across participants, but for each 
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participant channels located in central and frontal cortices have higher classification 

accuracy.

5.1.2. Classification performance versus trial length analysis—In this section 

we analyze the effect of trial length on classification performance. Specifically, using the 

calibration data, we consider different lengths (from 2 seconds to 20 seconds) of EEG and 

estimated sound sources to calculate the cross correlations and extract features accordingly 

to train our classifier to distinguish the attended sound source from the unattended one. 

Figure 4 shows the classification performance using all 16 channels. In this figure, different 

colors represent the performances of different participants. The blue curve is the average of 

performance over all 10 participants using different data lengths for classification. Dark and 

light shaded areas around the average line shows the 50 and 95 percent confidence interval 

calculated according to the bootstrap method, respectively. Figure 4(a) shows AUC 

performance while Figure 4(b) shows probability of correct decision (i.e., accuracy). 

Moreover, Figure 4(b) also compares our results with a related previous work that is 

presented in [23]. The performance reported for 128 channels in that previous work is 

illustrated as a green line in this figure. In this figure, we observe that using much smaller 

number of channels, our method outperforms the previous approach.

5.2. Online Controller Performance

Recall that as explained in Section 3.2, the online experiment includes listening to 10 two-

minute sequences. During each sequence the participants were requested to focus their 

auditory attention to one of the speakers. Each sequence contains multiple trials and within 

each sequence we perform adaptive sound source weight estimation and update after every 

trial (20 seconds). More specifically, we calculate the EEG evidence as explained in Section 

4.1. Using conditional probability density functions as described in section 4.2, we obtain 

the posterior estimate of the probability for each class being the intended source, which is 

proportional to class conditional likelihoods times prior knowledge on probability of 

attention. Then source weights for each source are adjusted as being proportional to the 

posterior probability of that class given EEG evidence.

wk, n + 1
(i) = p Ak = i εk, n, …, εk, 1 (8)

=
p Ak = i εk, n p Ak = i εk, n − 1, …, εk, 1

∑ j = 1
2 p Ak = j εk, n p Ak = j εk, n − 1, …, εk, 1

, i = 1, 2 (9)

=
p Ak = i εk, n ⋅ wk, n

(i)

∑ j = 1
2 p Ak = j εk, n ⋅ wk, n

( j) , i = 1, 2. (10)
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In the equation above, k is the sequence index and n is the trial index. Each sequence 

contains 6 trials and during each sequence we assume that the user is focusing on the same 

sounds source. This equation assumes that the attention remains on the same source during 

the updates in each sequence. Also in this weight update equation above we initialize p(Ak = 

i|εk,0) = 0.5. We trained the system using a calibration session and tested the learned model 

in an online session. Users attempted to amplify the designated target speech with their 

auditory attention using this brain interface in 10, two-minute-long trials. Figure 5 shows the 

average of decided weights (at every 20 seconds over 5 trials) for attended and unattended 

speech sources over the course of two minutes, for male and female narrators. Figure 5 (a) is 

showing the average of the estimated probabilities for each class at the end of each trial 

using its preceding 20 seconds of data, as stated in equation 8. Figure 5 (b) shows the 

average of employed weights instead of normalized probabilities. The difference between 

Figures 5 (a) and (b) is due to the limits imposed on weights ([0.25 to 0.75] which are shown 

with green constants). These limitations were imposed to ensure the audibility of both 

sources, to enable mistake correction in the event of algorithm/human errors, and to allow 

shifting attention if desired. Figure 6 illustrates two example sequences: one for a normal 

case in which there is no algorithm/human error (second row of the figure), and the first row 

of the figure demonstrates a case in which a participant is able to recover from a potential 

error in detecting the attended sound source. In this second case, the weight of the attended 

sound source was lower than the unattended one; however, since the system imposes a lower 

bound on the weights, the participant was able to recover and the weight of the attended 

sound source increased accordingly before the sequence ended.

5.3. Online Vs Offline data analysis

Since changes in energy and amplitude of competing sound sources will potentially change 

the statistics of the EEG measurements, analyzing how robust feature vectors are to these 

changes can help us understand the impacts of the weights of the sound sources on the 

attention and EEG models. Table 3 shows the generalization of the classifier trained on the 

calibration data and tested on the data collected during the online sessions when the EEG 

from all the channels were used. Specifically, the first and the second rows of the table 

present the AUC results when 5-fold cross validation is performed on the calibration and 

online session data, respectively. The results in the third row are obtained when the classifier 

is trained using the calibration data and tested on the online data. Therefore, the third row 

demonstrates the generalization of the trained auditory attention classifier from the 

calibration session to the online testing. Note here that the third row demonstrates the 

performance of the auditory attention classifier when it was used in online session where the 

sound source weights were adaptively updated. From this table, we observe that there is a 

decrease in the performance when the classifier is used in the online session compared to the 

calibration session. Even though the classification accuracy is acceptable when the classifier 

trained on the calibration data and tested on the online data as illustrated in row 3 of the 

table, a calibration session with varying weights on the sounds sources could potentially 

improve the classification accuracy further. This will be the focus of our future work.
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6. Conclusion, Limitations and future work

This work is a novel attempt to investigate the feasibility of online classification of auditory 

attention using a non-invasive EEG-based brain interface. In a multi-speaker scenario, the 

brain interface presented in this manuscript utilizes an automatic gain control to adjust the 

amplitudes of attended and unattended sound sources with the goal of increasing signal-

noise-ratio and improving listening and hearing comfort. Through an experimental study, we 

showed that the designed BCI together with the automatic gain control has the potential to 

improve the information rate by reducing the trial lengths and increasing the classification 

accuracies for shorter trial lengths compared to the performance results reported in the 

existing related works. Even though promising results were obtained with this proof of 

concept study, there are many opportunities to improve the performance of the system. For 

example, various different techniques could be investigated to optimize the automatic gain 

control scheme or the classification method with the purpose of enabling fast and accurate 

decision making in an online setting. This improvement is essential for the presented BCI to 

be a practical reality and potentially be a part of the future generations of hearing aids.
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Figure 1: 
EEG-augmented BCI sytem overview.
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Figure 2: 
Online session experimental paradigm visualization. Two sounds are diotically playing in 

both ears. participants attend to the instructed sound source in each sequence. Each sequence 

starts with an equal weight trial and in its following trials weights get updated using 

attention inference and AGC modules.
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Figure 3: 
Topographic map of classification performance over the scalp for classifying attended versus 

unattended speakers for all participants.
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Figure 4: 
Performance versus trial length curves considering (a) AUC and (b) Accuracy as 

performance metrics. Different colored dots are used to represent the performance of 

different participants. The blue curve is the average of performance values over all 10 

participants. The green line presents the performance results of a previous approach.
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Figure 5: 
Weight change in each trial at every 20 second which is averaged over trials and participants 

for female and male target separately.
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Figure 6: 
Two examples for a normal versus mistake recovery case. First row is showing an example 

of mistake recovery by participant. Second row in an example of a normal sequence

Haghighi et al. Page 19

Biomed Signal Process Control. Author manuscript; available in PMC 2019 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Haghighi et al. Page 20

Table 1:

Average of time latency and magnitude of peak in cross correlation responses across all participants.

Correlation Features Positive Peak Magnitude Ratio Time Lag of Peak (ms)

Stimulus Target / Distractor Target Distractor

Average for all Participants (mean ± sd) 2.08 ± 1.1 159.34 ± 11 225.78 ± 42.9
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Table 2:

Channel with maximum performance and its corresponding AUC performance.

Participant 1 2 3 4 5 6 7 8 9 10

Best AUC 0.92 0.92 1 0.84 0.83 0.92 0.80 0.91 0.96 0.89

Best channel Fz C3 C4 Fc3 F4 T7 C3 C4 CPz C3
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Table 3:

AUCs for offline and online data independently and applying the learned model from offline data on online 

data.

AUC╲ Participant 1 2 3 4 5 6 7 8 9 10

Calibration Data (offline) 0.91 0.89 1 0.81 0.88 0.82 0.77 0.89 0.94 0.83

Online Session Data 0.83 0.74 0.98 0.63 0.82 0.8 0.74 0.92 0.83 0.69

Calibration Model on Online Data 0.86 0.77 0.95 0.73 0.77 0.83 0.8 0.82 0.86 0.70
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