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INTRODUCTION

The medial temporal lobe (MTL) is a region canonically responsible for memory [116], but 

several pain neuroimaging studies have reported activation within this region. An intriguing 

intersection of pain and memory comes from the case of patient H.M. who had a high 

tolerance for heat pain, in addition to global amnesia, following bilateral MTL resection for 

epilepsy [51]. The MTL region consists of the hippocampus (HC) and subiculum, 

parahippocampal gyrus (PHG), entorhinal and perirhinal cortices, and amygdala [130]. 

Activation of various MTL regions is observed in response to nociceptive stimuli of various 

modalities [66,81,85,113,124,146], and in different tissue types—cutaneous, muscular and 

visceral [23,61,137]. In particular, several studies have associated MTL activation during 

experimental pain to emotionally-driven modulatory processes [11,114,119,121]. However, 

there is little specificity or congruence across studies regarding which MTL subregions are 

involved in pain, and no specific role has been ascribed to MTL regions in nociceptive 
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processing. Of importance, there has yet to be a formal investigation of the spatial 

consistency of MTL activations in healthy participants during experimental pain.

In addition to studies in healthy participants, extant evidence indicates aberrant MTL activity 

in various chronic pain conditions [56,104,108]. Recent evidence in patients with back pain 

suggests that the transition from subacute to chronic pain may be mediated by MTL 

structures [134]. Specifically, reduced MTL resting state functional connectivity (rsFC) to 

other cortical regions [107] and smaller MTL volume [135] predict this transition. However, 

as with experimental pain, it is not clear which regions within the MTL are implicated in 

chronic pain and what their role may be.

The overall aim of this study was to determine regions of the MTL consistently involved in 

nociceptive processing and pain modulation in health and disease. First, we sought to 

determine which regions of the MTL show consistent spatial activation in response to (1) 

experimental pain in healthy participants compared to baseline control conditions, and (2) 

chronic pain patients compared to healthy participants. To that end, we performed two 

coordinate-based meta-analyses of functional MRI (fMRI) studies of pain that indicated 

MTL engagement. We expected our first meta-analysis to show consistent MTL activation in 

the HC and PHG across studies reporting MTL activity. We expected our second meta-

analysis to show consistent MTL activation in the HC across chronic pain neuroimaging 

studies. These analyses are the first formalized investigation of MTL functioning in 

nociceptive processing.

To generate hypotheses about the mechanistic role of the HC in nociceptive processing from 

existing data, it is important to explore its network interactions. Thus, we aimed to 

determine the connectivity of those regions elucidated by our meta-analyses using data from 

four distinct cohorts of chronic low back pain patients (CBP). Given previous observations 

of abnormal MTL engagement in CBP, we predicted that CBP would show abnormal rsFC 

to regions involved in processing the affective dimension of pain, i.e., the anterior insula, 

midcingulate cortex, amygdala and medial prefrontal cortex [25,31,33,111,134].

METHODS

Our ALE meta-analysis followed the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) 2015 guidelines and checklist [103].

Article selection criteria

Our article selection followed the PRISMA flow diagrams [102] as shown in Fig.1. Studies 

were excluded based on any of the following nine criteria: (1) animal studies; (2) did not use 

standardized stereotactic (Montreal Neurological Institute (MNI) or Talairach) brain 

coordinates; (3) case reports; (4) diagnostic or surgical MRI; (5) structural imaging; (6) 

studies of acute medical pain conditions; (7) functional magnetic resonance imaging (fMRI) 

studies without a baseline control (for experimental pain studies) or control group (for 

chronic pain studies); (8) studies not written in the English language; and (9) studies that are 

not peer-reviewed. As such, we selected human neuroimaging studies with whole-brain and 

region-of-interest analyses, reporting stereotactic brain coordinates. Three investigators (LA, 
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MG, MM) independently performed the database searches and followed PRISMA guidelines 

by screening and determining study eligibility. In addition, quality assessment for each 

article selected was conducted by using a modified version of Downs and Black’s quality 

assessment score [18,32]. We accounted for statistical significance of the results by 

qualitatively assigning a maximum score of 2 for articles, which applied multiple 

comparison corrections to analyses (the Quality Assessment Scoresheet is available in 

Supplementary).

Database searches

Traditional databases—We conducted a systematic search through the Pubmed, Web of 

Science, Embase and Medline databases on November 9, 2017. A keyword search of the 

following terms was conducted on all databases (medial temporal lobe OR hippocamp* OR 
parahippocamp*) AND pain AND ((FMRI OR functional magnetic resonance imaging OR 
functional MRI) OR (BOLD OR blood oxygen level dependent) OR (PET OR positron 
emission tomography) OR (ASL OR arterial spin labelling)).

Neurosynth—We also performed a search of the Neurosynth database (http://

www.neurosynth.org) [144] on November 9, 2017 as this provides the ability to cross-search 

keywords (‘pain’, ‘painful’ and ‘chronic pain’) with brain coordinates. This increased the 

sensitivity of the meta-analysis as Neurosynth extracts coordinates from the tables in a 

catalogued study; therefore, even if the HC was not highlighted as a finding in the title, 

abstract or keywords of a study, we would still be able to identify the study. The MNI 

coordinates used for the HC search were derived from our previous study of hippocampal 

parcellation [3], as follows: the right anterior HC (antHC) is (24, 13, −21); the left antHC is 

(−22, −12, −20); the right posterior HC is (29, −26, −9); and left posterior HC is (−27, 25, 

−12). We used a liberal search sphere (radius= 15 mm) to maximize the number of studies 

identified, and to include adjacent structures, such as the PHG and amygdala (see 

Supplementary Fig.1). The same article selection criteria set out for the traditional databases 

were applied, with the added constraint that the HC was listed as a significant finding in at 

least one contrast.

Coordinate-based meta-analysis

We performed a coordinate-based meta-analysis using the activation likelihood estimation 

(ALE) algorithm to identify consistent regions of brain activity within the MTL in healthy 

participants and chronic pain patients. Brain coordinates (foci) were computed using 

GingerALE (v3.0) to generate probabilistic maps of activation [73] (http://brainmap.org/ale).

ALE mask—We restricted the permutation space for the null-distribution of our ALE meta-

analysis to the MTL region. To do so, we constructed an MTL mask on the standard 

MNI152 brain in FSLeyes v.0.22.6. The mask comprised of regions selected from the Jülich 

Histological Atlas, including the centromedial, laterobasal and superficial amygdalae, 

hippocampus cornu ammonis, entorhinal cortex, dentate gyrus, hippocampal-amygdaloid 

transition and subiculum. The final MTL mask includes the amygdala, hippocampus and 

parahippocampal gyrus (see Supplementary Fig.2).
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Data organization—We conducted four separate meta-analyses as part of two 

investigations: (1) experimental pain in healthy participants and (2) chronic pain versus 

healthy participants. First, foci were manually extracted from selected articles, and 

subsequently categorized into four separate datasheets according to the following contrasts: 

1) Greater MTL activation in healthy participants during experimental pain than in control 

conditions, such as warm, innocuous touch or baseline conditions (experimental pain > 
control conditions); 2) Greater MTL activation during control conditions than painful 

conditions in healthy participants (experimental pain < control conditions); 3) Greater MTL 

activation in chronic pain patients than in healthy participants (chronic pain patients > 
healthy participants); and 4) Greater MTL activation in healthy participants than in chronic 

pain patients (chronic pain patients < healthy participants). Foci derived from significant and 

non-significant statistical thresholds of contrasts reporting MTL activity, were extracted 

from all studies. Three investigators (LA, MM, MG) verified manual extraction of the foci, 

before running each meta-analysis.

ALE Meta-Analysis—In preparation for the ALE meta-analysis, all foci were 

standardized into MNI space. Foci reported using Talairach coordinates were converted with 

“Talairach to MNI (FSL)” [17]. For each set of foci per experiment, the number of 

participants were added for weighting purposes. Once finalized, each datasheet was entered 

and computed separately into the software using a single dataset analysis [37,38]. We used 

the Turkeltaub algorithm to estimate the probability of activation at each voxel in the brain 

by reducing both within-experiment (inter-participants) and within-group (inter-laboratory) 

variables [133]. The algorithm attributes an ALE score, a voxel-based value for each focus, 

to create a Modeled Activation (MA) map [38], calculated using the maximum value with 

the “random effects” selection [37]. Furthermore, each focus is blurred with a Gaussian 

distribution, weighted by sample size, to minimize spatial uncertainty [74]. Lastly, the 

cluster-level inference algorithm described by Eickhoff and colleagues [36] was used to 

compute the final thresholded ALE P value map with a permutation-based cluster correction 

p< 0.05 (cluster-forming height threshold of p< 0.005 with 1000 permutations), which uses a 

Monte-Carlo simulation approach. The resulting maps were visualized and labelled in MNI 

space using FSLeyes v.0.22.6. Slice images were visualized and labelled in MNI space using 

“ch2bet” on MRIcron v2016.

Functional connectivity

Given that we found consistent pain related activity in our meta-analyses in the right antHC 

region, and that rsFC of the antHC region has been previously shown to be a predictor for 

the transition from subacute to chronic back pain [107], we conducted a whole brain seed-to-

voxel rsFC study of the right antHC region, to investigate whether there were connectional 

differences between healthy participants and CBP. Furthermore, since we have shown that 

the right antHC region is activated in response to experimental pain in healthy participants 

and has abnormal activity in chronic pain, we sought to determine whether abnormal right 

antHC connectivity in CBP was related to pain characteristics, including pain duration and 

pain intensity.
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Participants—Four resting state fMRI datasets comprising a total of 156 participants 

(CBP (n=77) and age- matched healthy participants (n=79)) were included in the analysis. A 

summary of each dataset characteristics is provided in Table 1.

Dataset 1: The first dataset initially consisted of 68 participants, 34 CBP and 34 healthy 

participants from the study by Mansour and colleagues [88] and was obtained from the 

“cbp_resting” provided by the OpenPain Project (OPP) database (OPP; Principal 

investigator: A. Vania Apkarian; http://www.openpain.org). We consented to and followed 

OpenPain Data Use Agreement and procedures were approved by the University of 

Toronto’s Human Research Ethics Board prior to data analysis. As described in the original 

manuscript, all participants were provided with written consent and all experimental 

protocols were approved and conducted according to the Northwestern University’s 

Institutional Review Board committee. Patients’ clinical assessment included the Short-Form 

of the McGill Pain Questionnaire (SF-MPQ) [98], where the visual analog scale (VAS) (0= 

no pain, 10= worst pain imaginable) was used to evaluate pain intensity. Participants were 

given the questionnaire one hour before scanning.

Dataset 2: The second dataset initially consistent of 36 participants, 20 CBP and 16 healthy 

participants and was previously published in a study investigating rsFC in CBP and acquired 

from Stone, Seminowicz and colleagues [19]. The study was approved by McGill University 

Faculty of Medicine Institutional Review Board, the Montreal Neurological Institute (MNI) 

and Hospital Research Ethics Board, and the McGill University Health Centre Research 

Ethics Office. The participants gave written consent before starting the study. All 

participants completed the SF-MPQ for pain intensity prior to scanning, however VAS data 

were not available.

Dataset 3: The third dataset initially included a total of 63 participants from Osaka, Japan 

(24 CBP, 39 healthy participants). This dataset was obtained from 

“BrainNetworkChange_Mano” on OPP database. We consented to and followed OpenPain 

Data Use Agreement. The original study was approved by the Ethics Committee for Human 

and Animal Research of the National Institute of Information and Communications 

Technology, Japan (reference 20140611) [87]. All participants gave written consent before 

participating in the study. Pain intensity was measured on a VAS scale as part of the SF-

MPQ on the day of scanning.

Dataset 4: The fourth dataset initially included 34 participants, 17 CBP and 17 healthy 

participants from Cambridge, UK in “BrainNetworkChange_Mano” on OPP database. We 

consented to and followed OpenPain Data Use Agreement. The original study was approved 

by the East of England NRES Committee, Norfolk, UK (reference 13/EE/0098) [87]. All 

participants gave written consent before participating in the study. The VAS scale as part of 

the SF-MPQ was to determine pain intensity on scan day.

Resting state fMRI data acquisition parameters

Dataset 1: Functional T2*-weighting brain images were acquired using a 3T Siemens Trio 

whole-body scanner, with an 8-channel head coil, during rest, as follows: TR= 2.5s; TE= 30 
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ms; flip angle= 90°; in-plane matrix resolution= 64 × 64; number of slices= 40; slice 

thickness= 3mm; field of view= 256 × 256 mm; and number of volumes= 244, 300, or 305 

[88]. Additionally, for realignment purposes, T1-weighted brain images for each participant 

were acquired using the same scanner with the following parameters: isotropic resolution 

1mm; TR= 2.5s; TE= 3.36 ms; flip angle= 9°; in-plane matrix resolution= 256 × 256; 

number of slices= 160; and field of view= 256 × 256 mm [88].

Dataset 2: Scans were acquired using a 3T Siemens Tim Trio scanner with an 8-channel 

head coil. Participants were instructed to “relax, keep your eyes open, and don’t think about 

any one thing in particular” [19]. The functional T2*-weighted imaging scans where 

acquired using: echo planar imaging (EPI), TR= 2.26 s; TE= 30 ms; flip angle= 90°; in-

plane matrix= 64×64; number of slices= 38; slice thickness= 4 mm; field of view= 256 × 

256 mm; and number of volumes= 133 [19]. The anatomical T1 scans were acquired using 

the following parameters: isotropic resolution 1mm; TR= 2.3 s; TE= 2.98 ms; flip angle= 9°, 

in-plane matrix resolution= 256 × 256; number of slices= 176; and field of view= 256 × 256 

mm [19].

Dataset 3: The MRI scans were performed using a 3T Siemens MRI Scanner Tim Trio 

scanner with a 12-channel head coil at CiNet (Osaka, Japan). During resting state scanning, 

participants were given the following instructions: “please relax during the scan; do not 

sleep and keep looking at the fixation point (a tiny cross-hair) presented at the center of the 

display; do not think of anything in particular.” Functional T2* images were acquired with 

the following parameters: TR= 2.5s; TE= 30 ms; flip angle= 80°; in-plane matrix 

resolution= 64 × 64; number of slices= 41; field of view= 212 × 212 mm; and number of 

volumes= 234 [87]. The anatomical T1 scans were acquired using the following sequence: 

isotropic resolution 1mm; TR= 2.25s; TE= 3.06 ms; time of inversion= 900 ms; flip angle= 

9°; in-plane matrix resolution= 256 × 256; number of slices= 208; and field of view= 256 × 

256 mm [87].

Dataset 4: The MRI scans were performed with a 3T Siemens MRI Scanner Tim Trio 

scanner with a 12-channel head coil at Addenbrooke’s Hospital in Cambridge, UK. During 

resting state scanning, participants were instructed to: “please relax during the scan; do not 

sleep and keep looking at the fixation point (a tiny cross-hair) presented at the center of the 

display; do not think of anything in particular.” Functional T2* images were acquired with 

the following parameters: TR= 2s; TE= 30 ms; flip angle= 80°; in-plane matrix resolution= 

64 × 64; number of slices= 32; field of view= 212 × 212 mm; and number of volumes= 300 

[87]. The anatomical T1 scans were collected using the following sequence: isotropic 

resolution 1mm, TR= 2.3s; TE= 2.98ms; time of inversion= 900ms; flip angle= 9°; in-plane 

matrix resolution= 256 × 256; number of slices= 176; and field of view= 256 × 256 mm 

[87].

fMRI data preprocessing—FMRI data were preprocessed for whole brain rsFC using 

CONN toolbox v17f (http://www.conn-toolbox.org) implemented in Statistical Parametric 

Mapping software package (SPM v.12; http://www.fil.ion.ucl.ac.uk/spm/software/spm12)) 

and ran on MATLAB (R2016b v.9.1; Mathworks, Nantick, MA) [141]. Each participant’s 

Ayoub et al. Page 6

Pain. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.conn-toolbox.org/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12


anatomical T1-weighted and functional T2*-weighted scans were imported into CONN. 

Data was preprocessed as follows. Briefly, functional T2* scans underwent co-registration to 

the participant’s structural T1 scans. Functional images were spatially realigned and 

unwarped. Realignment is defined by default by six dimensions, three translations and three 

rotations along the x, y and z axes. Furthermore, each anatomical image was segmented for 

grey and white matter, and cerebrospinal fluid (CSF) and normalized to the T1-weighted 

MNI152 template. FMRI data were also aligned to the MNI template. Data was resliced 

after normalization using the default Tissue Probability Maps (structural target resolution= 2 

mm, functional target resolution= 2 mm) and subsequently smoothed with a Gaussian kernel 

of 8-mm at full-width half-maximum (FWHM). Once preprocessed, we checked the 

histogram plots of rsFC values (voxel-to-voxel correlation coefficient between BOLD times 

series and 512 subset of voxels) for alignment centered at zero for quality assurance. If the 

data are completely without noise, then the correlation of a random subset of connections 

should center around zero; i.e. no correlations. Skewness in the plots indicate noise related 

to physiological processes or subject motion; this skewness may artificially inflate 

connectivity strengths. Several steps were taken to mitigate these confounds. First, 

physiological noise was corrected by using aCompCor, an algorithm which performs a 

principal components analysis on fMRI signal from the white matter and cerebrospinal fluid 

(CSF), areas of non-neuronal origin [10]. The white matter and CSF masks were generated 

by tissue segmentation performed using SPM, and then eroded to minimize partial volume 

effects for each subject. These masks were visually inspected. In the denoising step, we 

regressed the following confounds: realignment of six dimensions with their first temporal 

derivatives (12 components), white matter (5 components) and CSF (5 components). A 

band-pass filter of 0.008–0.09 Hz was additionally applied to the data. To control for 

excessive motion, we used a criterion of framewise displacement (FD) greater than the 

absolute value of 0.5mm threshold [29,87]. The mean FD (mFD) was computed using the 

weighted sum across six dimensions of the mean absolute scan to scan differences [117]. 

Participants were excluded if they met any of the following motion criteria: mFD > ∣0.5mm∣ 
and at least 20 % of the suprathreshold FD value > ∣0.5mm∣ [87,110]. Both mFD and 

maximum FD (maxFD) were also computed for comparative purposes between healthy 

participants and CBP for each site (see Supplementary Table 1). The maxFD was calculated 

using the weighted sum across six dimensions of the maximum absolute scan to scan 

differences [117]. The Mann-Whitney U test compared FD values between healthy 

participants and CBP for each site at p< 0.05. In addition, we excluded participants based on 

quality assurance, if they still presented a heavily skewed histogram plot of correlation 

coefficient following denoising. The residual fMRI signal of the included participants was 

used for whole brain rsFC analysis.

Participants were removed from each dataset, as follows. Further, a summary is provided in 

Supplementary Table 2.

Dataset 1: We excluded 11 participants (three healthy participants and eight CBP) from the 

initial dataset after matching for age with the other three datasets (n=1 control), after 

preprocessing (n=3; 1 control and 2 CBP, scans could not be aligned), after denoising (n=1 

CBP, to meet quality assurance standards), and after motion correction (n=6; 1 control, 3 
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CBP had a mFD value > ∣0.5 mm∣ and at least 20% of the suprathreshold FD value > ∣0.5 

mm∣) and 2 CBP had at least 20% of the suprathreshold FD value > ∣0.5 mm∣. We included 

57 participants in our analysis, which consisted of 26 CBP and 31 age-matched healthy 

participants.

Dataset 2: We excluded nine participants (four healthy participants and five CBP): two 

healthy participants from the initial cohort to age match with the other three datasets and two 

that had at least 20% of the suprathreshold FD value > ∣0.5 mm∣ . Five CBP were excluded 

after motion correction (n=5; one participant had a mFD value > ∣0.5 mm∣ and at least 20% 

of the suprathreshold FD value > ∣0.5 mm∣) and 4 CBP had at least 20% of the 

suprathreshold FD value > ∣0.5 mm∣ . In sum, we included 27 participants in our analysis: 15 

CBP and 12 age-matched healthy participants.

Dataset 3: We excluded 15 participants (12 healthy participants and three CBP) to age-

match with the other datasets (n=7 healthy participants), to exclude healthy participants with 

pain (n=4), to exclude one CBP after preprocessing since the skull was not properly removed 

(n=1), to exclude after motion correction (n=3; one healthy participant had at least 20% of 

the suprathreshold FD value > ∣0.5 mm∣, one CBP had a mFD value > ∣0.5 mm∣ and one 

CBP had a mFD value > ∣0.5 mm∣ and at least 20% of the suprathreshold FD value > ∣0.5 

mm∣ . We included 48 participants in our analysis, 21 CBP and 27 age-matched healthy 

participants.

Dataset 4: We excluded ten participants (eight healthy participants and two CBP) to age-

match with the other datasets (n=1 healthy participant), to exclude healthy participants with 

pain (n=6), and to exclude after motion correction (n=3; one healthy participant with at least 

20% of the suprathreshold FD value > ∣0.5 mm∣, one CBP with a mFD > ∣0.5 mm∣ and one 

CBP with a mFD > ∣0.5mm∣ and at least 20% of the suprathreshold FD value > ∣0.5 mm∣. 
Finally, we included 24 participants in our analysis, 15 CBP and 9 age-matched healthy 

participants.

Whole brain functional connectivity—We performed seed-to-voxel rsFC of the right 

antHC to the rest of the brain using the CONN toolbox. The antHC mask was derived from 

our previous parcellation study, which delineated the region of the right antHC using a 

hippocampal mask based on the Harvard-Oxford subcortical atlas on FSL v4.0 [3]. This 

region overlaps with the result from our chronic pain meta-analysis. The center-of-gravity of 

the mask was (MNI=24, 13, −21) [3]. We conducted a first-level, fixed-effects analysis, 

which was a seed-to-voxel based correlation between the right antHC ROI timeseries and 

every other voxel in the brain. We then performed a second-level random effects analysis to 

evaluate differences between healthy participants and CBP while regressing each dataset 

(site) and sex as covariates of no-interest. Site was included as a covariate of no-interest to 

account for scanner/site specific noise. Sex was also included as a covariate as there are sex 

differences in resting state networks [22,45,54,60,123,140], and our samples were not sex-

matched. Voxelwise correlation coefficients were z-scored using the Fisher r-to-z 

transformation. To test whether the functional connectivity data were normally distributed, 

we performed the Shapiro-Wilk’s test, with significance set at p< 0.05, in SPSS (v25, IBM 
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corp, Armonk, NY). Group differences between CBP and healthy participants were assessed 

with parametric cluster-based statistics using family-wise error (FWE), and maps were 

thresholded using cluster-size at PFWE< 0.05 (cluster-forming height threshold of p< 0.001).

Post-hoc correlations: We performed post-hoc correlations to determine whether the 

aberrant antHC functional connectivity (CBP vs. healthy participants) was associated with 

pain characteristics (i.e., pain intensity and pain duration). Pain intensity was collected with 

the VAS scale on SF-MPQ on scan day in three datasets (1,3,4). Dataset 2 also collected part 

of the SF-MPQ, but VAS scores were not collected, as such this dataset was excluded for 

this analysis. In all datasets, pain duration was evaluated in number of years. We extracted 

the connection strength between the antHC seed and the resultant cluster (connection 

strength here is defined as the fisher-transformed correlation coefficient between BOLD 

activity in the antHC seed region and the resulting cluster) for each CBP subject, to assess 

whether they were correlated with clinical characteristics, including disease duration (n=69 

CBP) and pain intensity (n=59 CBP) using Spearman’s rank correlation. Significance was 

set at p< 0.05.

RESULTS

Article selection

Our database and reference search identified a total of 49 articles that met our criteria of 

selection, as shown in Fig.1. Table 2 provides a summary of the 21 studies included in the 

first meta-analysis, which reported MTL activity in response to experimental pain, compared 

to a control condition. Table 3 provides a summary of the 28 studies of chronic pain patients 

reporting abnormal MTL activity compared to healthy participants that were included in our 

second meta-analysis.

Article quality assessment

Quality scores for each article included in each of the two meta-analyses is provided in 

Tables 2 and 3. Average scores for all articles included in the first meta-analysis were 17.52 

± 0.75 (mean ± SD score out of 20) and 17.93 ± 1.05 for the articles in the second meta-

analysis. The most notable limitation of these articles is that most did not report whether 

sample size calculations were conducted a priori. In addition, some articles did not account 

for variables of potential interest, such as sex/gender.

Contrasts results

Our experimental pain and chronic pain meta-analyses resulted in the following number of 

experiments (contrasts within studies were accounted), foci, and participants as follows:

From the 21 studies investigating experimental pain, and reporting HC or PHG activation:

1. Healthy participants during experimental pain > control conditions (baseline): 22 

experiments, 398 foci, 385 participants;

2. Healthy participants during experimental pain < control conditions (baseline): 3 

experiments, 100 foci, 105 participants.
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From the 28 studies investigating chronic pain, and reporting HC or PHG 

activation:

3. Chronic pain patients > healthy participants: 17 experiments, 173 foci, 629 

participants;

4. Chronic pain patients < healthy participants: 11 experiments, 81 foci, 583 

participants.

ALE Meta-Analyses

Experimental pain studies—Our ALE meta-analysis of experimental pain studies in 

healthy participants is reported in Table 4, Fig.2 and Supplementary Fig.3. The contrast 

experimental pain > control conditions identified consistently greater activations in the right 

antHC, amygdala and parahippocampal gyrus at a cluster-corrected p< 0.05 at cluster-

forming height threshold of p< 0.005 with 1000 permutations. The experimental pain < 
control conditions contrast did not have a sufficient number of experiments to perform the 

analysis.

Chronic pain studies—Our ALE meta-analysis of chronic pain studies versus healthy 

participants is shown in Table 4, Fig.3 and Supplementary Fig.4. The contrast chronic pain 
patients < healthy participants found consistently less activation in the right antHC at a 

cluster-corrected p< 0.05 at cluster-forming height threshold of p< 0.005 with 1000 

permutations. There were no significant clusters for the chronic pain patients > healthy 
participants contrast.

Group differences in antHC functional connectivity

Our whole brain seed-to-voxel functional connectivity analysis of the right antHC seed 

yielded reduced connectivity in CBP compared to healthy participants in the medial 

prefrontal cortex (mPFC; peak MNI coordinates: −10, 56, −02; cluster size= 328 mm3, 

cluster-corrected PFWE< 0.05) including bilateral pregenual anterior cingulate cortex 

(pACC) and the left medial frontal pole (Fig.4). We found that the functional connectivity 

result was normally distributed (p>0.05). Data is shown in Supplementary Fig.5. Post-hoc 

analyses were performed to determine whether the aberrant connectivity was related to pain 

characteristics (pain intensity and pain duration). Reduced antHC-mPFC connectivity values 

in CBP were not significantly correlated with pain intensity (n=59 CBP, r= −0.129, p= 

0.329) nor pain duration n=69 CBP, r= −0.088, p= 0.471). Post hoc analyses investigating 

sex-differences are reported in the Supplementary Materials.

DISCUSSION

Neuroimaging evidence suggest that MTL structures are involved in acute pain and exhibit 

abnormal activity in chronic pain. To determine which regions of the MTL are involved, we 

performed two meta-analyses. The first meta-analysis investigated MTL activation in 

experimental pain studies of healthy participants and found consistent activation in the right 

antHC. The second meta-analysis investigated MTL activation in chronic pain patients 

compared to controls and found that patients have consistently less activation in the right 
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antHC. Since functional connectivity of the antHC region has been previously shown to be a 

predictor for the transition from subacute to chronic back pain [107], we further conducted a 

seed-to-voxel rsFC analysis of the right antHC region in a large sample of CBP patients 

pooled from four different cohorts. Our analysis showed reduced antHC-mPFC functional 

connectivity compared to controls. These data suggest the right antHC is involved in healthy 

nociception but is dysfunctional in chronic pain.

MTL activity during experimental pain

The first key ALE finding is that experimental pain leads to right antHC activation. The HC, 

PHG and amygdala are key structures of the Papèz circuit, which is involved in memory and 

emotional processing. The HC/PHG is canonically responsible for learning and retention; 

the HC being a key structure for consolidation of contextual and spatial memory [116]. 

Notably, these MTL structures show pain-related activity in animal studies [27,34,68,84,97]. 

In contrast, several human studies have linked HC/PHG activity to a negative affect 

modulation of pain [11,119,121]. For example, one study found greater activity in the 

entorhinal cortex (the major interface between the HC and neocortex) during painful heat 

stimuli under elevated anxiety, compared to a low anxiety condition [114]. Activity in 

entorhinal cortex was correlated with the mid-insula in anxiety-induced hyperalgesia [114]. 

This finding is in line with the Gray-McNaughton theory of anxiety: the hippocampal 

formation amplifies anxiety-related signals in threatening situations [49].

Furthermore, the amygdala plays an integral role in the affective component of pain and is 

an opiate rich brain region [13,41,83,86,99,119,129]. The amygdala engages autonomic and 

emotional responses such as unpleasantness and fear [109], suggesting an intrinsic role in 

pain-related negative affect processing. In the context of stress or fear, the amygdala may 

induce hypoalgesia to minimize pain sensation during noxious stimuli [136]. There are well-

known antHC-amygdala interactions in both encoding and retrieval of affective information 

[31,111] which can certainly extend to situations involving experimental pain.

To our knowledge, we present the first meta-analysis of experimental pain studies with MTL 

activity and report that MTL structures are consistently co-activated. Thus, our findings lend 

some new insights into potential memory and affective processing in this context.

MTL activity in chronic pain

Our second aim was to identify which MTL region show consistent activation in chronic 

pain since recent studies have highlighted the MTL as a potential site for understanding the 

onset and development of chronic pain [6,134]. Our main finding yielded consistently less 

activation in the right antHC in chronic pain patients, compared to controls. This antHC 

region overlaps with the area activated in experimental pain in healthy participants.

The HC is longitudinally divided into the antHC and posterior HC with distinct functional 

properties [3,116]. The antHC is implicated in mood related functions [69,115], and stress 

modulation [40], likely through interactions with the amygdala. Thus, abnormal antHC 

activity in chronic pain may be related to dysregulation in stress modulation. Chronic pain 

can be considered as a stressor, eliciting a prolonged stress response [26] – i.e., chronic pain 

poses an allostatic load on the brain [16,96,135]. The HC is particularly sensitive to the 

Ayoub et al. Page 11

Pain. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurotoxic effects of prolonged exposure to stress hormones [24,92], thus affecting its 

structure [96] and function [53]. While working memory deficits have been reported in 

chronic pain [12,93], there has not been a systematic investigation of types of memory 

processes most sensitive to hippocampal dysfunction such as associative recollection. A few 

neuroimaging studies addressed the interruptive function of pain in relation to memory 

function [14,44], where reduced right antHC activity and poor visual encoding were 

observed in response to pain stimuli [44]. Interestingly, HC activity is related to 

psychologically induced analgesia [50]. As such, our finding could reflect HC dysregulation 

related to prolonged stress exposure, with chronic pain as the stressor. The HC subregions 

could certainly be further investigated in the context of memory and pain in future 

mechanistic studies.

antHC functional connectivity in CBP

Our third aim was to identify whether abnormal right antHC activity was accompanied by 

abnormal rsFC in CBP. We found reduced right antHC-mPFC connectivity in CBP 

compared to controls, in line with a previous study that showed disrupted antHC-mPFC 

connectivity predicts the transition from subacute to chronic back pain [107]. These results 

suggest this aberrant connectivity is also involved in sustaining maladaptive pain, but how it 

is implicated in chronic pain is not well understood.

The literature indicates antHC-mPFC interaction in memory encoding and retrieval, future 

decision-making and autobiographical memory [95,105]. Specifically, the mPFC integrates 

spatial and contextual information [30,62,142], attributing behavioral, cognitive and 

emotional relevance to a particular stimulus [142]. As such, the antHC-mPFC connectivity 

facilitates the encoding and retrieval of global schemas, contextual event information and 

emotional cues and enables future memory-guided behaviours [105,120]. Reduced 

connectivity between these regions is seen in conjunction with poor autobiographical 

memory in patients with MTL damage [94] and is associated with deficits in emotional 

decision-making as observed previously in CBP [7]. Of interest, the right antHC is 

consistently activated to a greater extent when simulating future events compared to 

recalling past memories [2,122]. The antHC-mPFC functional connectivity also mediates 

extinction learning [65,100]. Extinction learning is the process of forming new memories 

that decouple conditioned responses (e.g., fear) to a stimulus (e.g., tone). This results when 

the stimulus is repeatedly presented without the unconditioned stimulus (e.g., electric shock) 

which caused the conditioned response [112,118]. Chronic stressors, including chronic pain, 

impair extinction learning [1,42,59,101]. In particular, chronic stress blocks long-term 

potentiation between the HC and mPFC [47,89] and contributes to dendritic regression in 

mPFC and HC [77]. In CBP, there is impaired extinction learning and slower extinction to 

pain and verbal responses [43], and muscular reactivity [43,125] compared to controls. 

Perhaps reduced antHC-mPFC connectivity in CBP reflects a memory network deficit which 

fails to inhibit the memory of pain or to enable non-pain memory schemas that would allow 

retrieval of alternate memories.
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Study limitations

Chronic pain conditions are heterogeneous and, accordingly, may have different patterns of 

brain activity. This is compounded by individual variability in chronic pain. Hence, the 

antHC network found in CBP is only relevant for the specific cohorts and not representative 

of chronic pain as a whole. For example, in burning mouth syndrome, patients had stronger 

antHC-mPFC connectivity than controls, but only in the presence of spontaneous pain [67]. 

The finding that successful recovery in patients with subacute back pain is accompanied by 

increased antHC-mPFC connectivity [107] suggests it is at least robust in back pain.

Furthermore, advances in MRI technology have led to variability in data quality and 

coordinates collected between laboratories through years of publications. To minimize this 

variability, we used the Turkeltaub algorithm, which accounts for such heterogeneity. In 

addition, foci derived from heterogeneous statistical thresholds were included in the meta-

analyses—not accounting for these studies could lead to false negative findings, and thus 

bias the outcome of the result. Importantly, given our article selection and use of an MTL 

mask, our results do not speak to the consistency of MTL activation in pain in general, nor to 

co-activated regions outside the MTL.

In order to achieve sufficient statistical power, it has been reported that an ALE meta-

analysis requires 8–15 experiments per contrast [129,138]. Based on this heuristic, our 

contrast of healthy participants during experimental pain < control conditions was 

underpowered, and this negative result should be interpreted with caution.

We hope the current findings stimulate future studies that could provide a mechanistic 

account of antHC in pain. The seeming contradiction of greater antHC activation in acute 

pain and reduced activity associated with chronic pain portrays a complex role and raises 

questions as to whether activation magnitude is a cause or consequence of pain experience. 

Experimental fMRI studies of pain and analgesia would be useful here. Furthermore, 

investigating functional connectivity during acute pain would be helpful to clarify how 

correlated activity in the target regions vary with the stimulus and task. Finally, investigating 

the relationship of these pain-related effects to other known functions of the antHC such as 

autobiographical memory retrieval or context modulation of anxiety are clearly warranted. 

Such studies are necessary to provide ‘meat on the bones’ for the relationship of antHC and 

pain that we have identified.

CONCLUSION

In conclusion, we performed the first meta-analyses of the MTL in pain and determined that 

in studies reporting MTL abnormalities in chronic pain, the most common subregion was the 

antHC. The antHC has abnormal rsFC to the mPFC in CBP, reflecting cognitive and 

affective abnormalities. These data shed novel and important mechanistic information on the 

role of the HC in chronic pain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1. 
PRISMA flow diagram representing the process for article selection.
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Fig.2. Peak activation in the anterior hippocampus in healthy participants during experimental 
pain conditions, compared to control conditions.
The ALE meta-analysis of noxious experimental conditions and baseline conditions in 

healthy participants with MTL activation (n=22 experiments). (A) Close-up of foci 

activation in the MTL, color-labelled according to stimuli. (B) The map shows one 

significant cluster (red) in the right anterior hippocampus (antHC), parahippocampal gyrus 

and amygdala (cluster-corrected p< 0.05, cluster-forming height threshold of p< 0.005 with 

1000 permutations). (C) The map shows the delineation of the significant cluster in red and 

the different regions of the MTL: parahippocampal gyrus (yellow), amygdala (blue) and 

hippocampus (green). The black line represents MNI Y=−21, which represents the border 

between the anterior and posterior hippocampus [116].
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Fig.3. The anterior hippocampus shows significantly less activity in chronic pain, compared to 
healthy participants.
The ALE meta-analysis compared chronic pain studies versus healthy participants with 

MTL activation (n=11 experiments). (A) Close-up of foci activation in the MTL, color-

labelled according to stimuli. (B) The map represents one significant cluster in the right 

anterior hippocampus (antHC). Patients with chronic pain had consistently lower activity in 

this region compared to healthy participants (cluster-corrected p< 0.05 at cluster-forming 

height threshold of p< 0.005 with 1000 permutations). (C) The map shows the cluster in 

relation to other MTL structures: the hippocampus (green), the amygdala (blue) and the 

parahippocampal (yellow). The black line represents MNI Y=−21, which represents the 

border between the anterior and posterior hippocampus [116].
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Fig.4. CBP have weaker functional connectivity to the medial prefrontal cortex.
Whole brain seed-to-voxel resting state functional connectivity in four datasets (n=156) of 

the right anterior hippocampus (antHC) seed in CBP patients compared to healthy 

participants. Patients had weaker functional connectivity between the right antHC the medial 

prefrontal cortex, including the bilateral pregenual anterior cingulate cortex and the left 

medial frontal pole, compared to healthy participants (cluster-size PFWE < 0.05, with a 

cluster-forming height threshold of p< 0.001). Functional connectivity strength (mean ± SD) 

is represented for both patients with chronic low back pain and healthy participants. 

Significant clusters are shown on a semi-inflated MNI brain in CONN. Abbreviations: 
antHC anterior hippocampus, CBP chronic low back pain patients, mFP medial frontal pole, 

pACC pregenual anterior cingulate cortex.
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