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Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a complex progressive neurodegenerative 

disorder with an estimated prevalence of about 5 per 100,000 people in the United States. In this 

study, the disease progression of ALS is measured by the change of Amyotrophic Lateral Sclerosis 

Functional Rating Scale (ALSFRS) score over time. The study aims to provide clinical decision 

support for timely forecasting of the ALS trajectory as well as accurate and reproducible 

computable phenotypic clustering of participants.
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Methods: Patient data are extracted from DREAM-Phil Bowen ALS Prediction Prize4Life 

Challenge data, most of which are from the Pooled Resource Open-Access ALS Clinical Trials 

Database (PRO-ACT) archive. We employed model-based and model-free machine-learning 

methods to predict the change of the ALSFRS score over time. Using training and testing data we 

quantified and compared the performance of different techniques. We also used unsupervised 

machine learning methods to cluster the patients into separate computable phenotypes and 

interpret the derived subcohorts.

Results: Direct prediction of univariate clinical outcomes based on model-based (linear models) 

or model-free (machine learning based techniques – random forest and Bayesian adaptive 

regression trees) was only moderately successful. The correlation coefficients between clinically 

observed changes in ALSFRS scores relative to the model-based/model-free predicted 

counterparts were 0.427 (random forest) and 0.545(BART). The reliability of these results were 

assessed using internal statistical cross validation and well as external data validation. 

Unsupervised clustering generated very reliable and consistent partitions of the patient cohort into 

four computable phenotypic subgroups. These clusters were explicated by identifying specific 

salient clinical features included in the PRO-ACT archive that discriminate between the derived 

subcohorts.

Conclusions: There are differences between alternative analytical methods in forecasting 

specific clinical phenotypes. Although predicting univariate clinical outcomes may be challenging, 

our results suggest that modern data science strategies are useful in clustering patients and 

generating evidence-based ALS hypotheses about complex interactions of multivariate factors. 

Predicting univariate clinical outcomes using the PRO-ACT data yields only marginal accuracy 

(about 70%). However, unsupervised clustering of participants into sub-groups generates stable, 

reliable and consistent (exceeding 95%) computable phenotypes whose explication requires 

interpretation of multivariate sets of features.
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Introduction

Prior clinical studies pooling heterogeneous datasets across sites and sources have been 

successful in examining, simulating and modeling disease progression patterns, e.g., studies 

of Alzheimer’s disease [1–3] and Parkinson’s disease [4, 5]. Recently, similar effort has 

been made to integrate all available Amyotrophic Lateral Sclerosis (ALS) clinical 
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information. The Pooled Resource Open-Access ALS Clinical Trials (PRO-ACT) (https://

nctu.partners.org/ProACT/) [6] database collects and aggregates clinical data of 16 ALS 

clinical trials and one observational study completed in the recent twenty years [7]. These 

big data initiatives to better characterize ALS are ongoing and have the potential to provide 

insight into disease progression and heterogeneity. While PRO-ACT includes clinical 

variables on a large number of participants, other programs such as Answer ALS are 

incorporating “omics” and even wearables data. As ALS enters the era of big data, we 

utilized the PRO-ACT dataset to help explore the differences in analytical techniques, 

potential pitfalls, and how these methods can be leveraged in the future. These initiatives, 

especially when pulled from electronic medical record systems, require acquiring raw data, 

computational preprocessing, aggregation, harmonization, analysis, and visualization 

leading to clinically relevant result interpretation. We report on building such workflow that 

is tested to examine complex ALS data. Next, we employ model-based methods and model-

free machine learning techniques for automated disease progression tracking in ALS patients 

and discuss the relative strengths/weakness of each.

Statistical Model-based vs. Data Science Model-free Methods

Model-based and model-free techniques represent complementary approaches for predictive 

big data analytics [8]. The former class of techniques includes classical parametric models 

under some of the following specific assumptions: time series analyses assume model 

parameters are constant over time, residuals are homoscedastic, and stationarity over some 

order, and use historic or training data to capture trends or patterns and extrapolate 

prospective or forecast future observations. Other examples of model-based methods include 

(1) multivariate regression methods [9], which represent variable interdependencies between 

predictors and responses in terms of some base functions (e.g., polynomials) whose 

coefficients capture the influence of all variables on the outcomes and facilitate forward 

predictions, (2) generalized estimating equations models [10] is a semiparametric technique 

for population-average inference, rather than subject-specific inference in the linear models, 

and structural equation models [11], which assume asymmetric causal relationships among 

normally distributed interval-level measured variables. In general, model-based methods are 

contingent on many (parametric) assumptions that may not be satisfied in many situations, 

particularly with heterogeneous sources of data.

Alternatively, model-free machine-learning techniques [12], classification theory [13], 

network analysis [14], and hierarchical clustering [15] may be employed for unsupervised 

data mining [16], hyperparameter tuning [17, 18], pattern recognition [19], trend 

identification [20], k-means [21] or fuzzy [22] clustering. Contrary to the reductionist 

approach of reality-simplification employed in the model-based methods, model-free 

techniques combine, evolve, ensemble and train algorithms that adapt to the contextual 

affinities of a process learning the dynamic characteristics that may explain the observations. 

Just like with cognitive and social brain development, maturation and aging, model-free 

techniques may need to be constantly adjusted and are not guaranteed to always be correct. 

However, when properly trained, effectively maintained, and continuously reinforced, 

model-free learning based methods provide powerful and reliable forecasting for complex 

phenomena.
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Model-based statistical estimation relies on training data to estimate concrete parameters, 

like model coefficients, that are explicitly assumed to be included in a specific analytical 

framework representing a proxy of the underlying process (e.g., GEE, SEM, LASSO, etc.) 

In contract, model-free inference does not rely on a predetermined analytical framework as a 

fixed stereotypic representation of the problem. Rather, model-free techniques adapt their 

structure to the characteristics of the specific data they emulate. For instance, in this context, 

random forests and decision trees are model-free techniques, as the topology of the graphical 

networks, as well as the actual branching rules, are freely determined by the data affinities, 

instead of being prescribed in advance by a specific graph model. Similarly, whereas some 

clustering techniques are model-based, e.g., Gaussian mixture models, others do not have an 

apriori structure and rely simply on data affinities, manifold distance measures, or entropy 

information criteria to group cases into clusters.

In principle, no technique, algorithm, or an approach is really completely model-free, as 

there are always underlying axiomatic assumptions or characterizations that are expected in 

all scientific settings. However, the degree to which a specific technique relies on a strict 

rendition of its analytical representation does divide model-based analyses from model-free 

inferential approaches. Solving constrained or unconstrained linear models is rather different 

from solving non-convex machine-learning optimization problems [23–25]. The solutions to 

many model-based problems are largely consistent and reproducible, and can be obtained in 

polynomial time [26]. Model-free solutions to non-convex problems may be NP-hard, 

frequently rely on heuristics, and may be unstable [27, 28].

Prior ALS predictive modeling studies

In a previous DREAM-Phil Bowen ALS Prediction Prize4Life crowdsourcing challenge 

[29], teams of investigators developed several promising predictive models based on the 

clinical database PRO-ACT [30]. The modeling methods introduced by these teams include 

Bayesian trees, Random Forest, and Nonparametric regression, which outperformed support 

vector regression (baseline method), multivariate regression, and linear regression. Notably, 

among teams implementing the same machine learning algorithm, the accuracy and 

reliability of the predictive models was influenced by the ways they preprocessed the 

longitudinal data in the raw dataset. Unlike the time-static features, all time points for 

longitudinal clinical measurements may be transformed by linear regression into a signature 

vector of congruent measurements, e.g., four-tuple like correlation, variability, slope and 

intercept of a temporal linear model.

Random Forest [31] is popular modeling method. In this PROACT dataset, the decline in 

ALSFRS score is highly correlated with changes in other time series, and there could be 

interaction among different body parts while the ALS is worsening. Random Forest is 

considered to be good at dealing with predictor variables of high co-linearity and interaction. 

However, the graphic interpretability is relatively low. Moreover, overfitting does exist and it 

can be improved by cross-validation [32, 33].

Some prior studies used the approximated classification expectation-maximization (CEM) 

algorithm to obtain clusters of patients based on 6 features (onset_delta, fvc_percent, 
ALSFRS_Total, weight, ALSFRS speech (Q1), and Trunk muscle), see https://
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www.synapse.org/#!Synapse:syn4957429/wiki/237065. Another group employed CART-

based clustering techniques [34] to split the patients into 7 clusters using various clinical 

outcomes, including ALSFRS_slope. This classification approach generates results that are 

more intuitive to interpret compared to classical methods such as PCA, see https://

www.synapse.org/#!Synapse:syn4942470/wiki/235991.

The previous investigations using PRO-ACT data to predict ALS progression or forecast 

survival have demonstrated mostly marginal prediction accuracy. For instance, the top-

ranked method for predicting survival of individual patients yielded a concordance index of 

0.717 [35], the optimal RUS-Boost model predicting ALSFRS-R decline generated a cross-

validation AUC of 0.82, and the best prediction model for slow progressing patients had an 

overall prediction accuracy of 0.74 [36]. Another recent European study examined 

longitudinally about 2,000 patients over two decades. A multivariable Royston-Parmar 

model was used to predict the composite survival outcome in individual patients [37]. The 

authors evaluated the model reliability (prediction accuracy 0.77–0.80) using external 

populations as well as statistically via cross-validation.

This study addresses the following four specific problems:

• Using baseline and 3-month follow-up data, fit models and learn multi-feature 

affinities to predict the 12-month ALSFRS slope change.

• Identify the most salient PRO-ACT data features that are associated with specific 

clinical phenotypes.

• Forecast the forced vital capacity (FVC) percent change between 3 and 12 

months.

• Use machine learning techniques to derive computed phenotypes clustering the 

ALS patients.

The main finding of this investigation confirms that predictions of specific univariate clinical 

ALS outcomes, using the PRO-ACT data, are not expected to be highly accurate, reliable, or 

consistent. However, unsupervised clustering of the ALS patients into subgroups generates 

exceptionally stable, reliable and consistent computed phenotypes whose explication as 

clinically relevant traits requires interpretation of multivariate sets of features.

Methods

We used the PRO-ACT dataset downloaded on June 16, 2017. For each time-resolved 

feature, four statistics are included. e.g., the maximum and minimum measurement value, 

delta values for the first and last measurement value, and the slope of the time series. The 

outcome of interest was the ALS Functional Rating Scale (ALSFRS), original version [38], 

instead of the revised version, ALSFRS-R [39]. This choice was motivated by the fact that 

the majority of PRO-ACT records contained only original ALSFRS scores. We successfully 

preprocessed and incorporated all categorical variables as binary features or dummy 

variables, see Supplementary Table S.2.
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The Supplementary Materials Methods section describes the model-based (e.g., ordinary and 

regularized linear models) and model-free (e.g., Random Forest (RF), Knockoff (KO) 

filtering, and Bayesian Additive Regression Tree (BART)) techniques. Similarly, the Data 

Source and Pre-processing section in the Supplementary Materials includes all details about 

the data management and manipulations, e.g., the conversion of the longitudinal time 

varying data elements into signature vectors (min, median, max, slope) and missing data 

imputation. Figure 1 illustrates the end-to-end flowchart of our approach starting with the 

pre-processed training and testing PRO-ACT data. The protocol includes aggregation of the 

longitudinal data elements into a signature vector of four components, resolving incomplete 

data elements, and application of alternative model-based and model-free machine learning 

prediction techniques. The final external validation of the training-data based models is 

accomplished using the forecasting results on the separate testing cases. To compare the 

results of different prediction methods we used the coefficients of determination and 

correlation.

We employ several machine learning methods for predicting 3–12 month ALSFRS slope of 

change, without estimating ALSFRS at different time points. By partitioning the open 

Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) data 

(www.ALSdatabase.org) [15] into training (estimation) and testing (validation) sets, we fit 

different models to forecast the progression of the disease. We report both positive and 

negative findings as well as the accuracy and efficacy of the successful approaches to predict 

clinical phenotypes. In support of open-science principles and to facilitate community-based 

validation and collaborative revision and expansion of these methods, we are releasing the 

entire end-to-end protocol, software tools, and research findings.

The Supplementary Materials section includes all details about the techniques for data 

processing, classification and predictive analytics, including random forest clustering and 

imputation, Bayesian Adaptive Regression Tree (BART) classification, knockoff filtering 

and feature selection, and appropriate forecasting assessment strategies. Briefly, we 

generated summary statistics for all raw data elements, selected highly-observed features, 

imputed the data, computed linear model-based predictions and model-free forecasts of 

specific clinical outcomes, used unsupervised machine learning methods to obtain derived 

computable phenotypes, i.e., cluster all patients into subgroups, and finally evaluated all 

clustering and classification results.

Results

In this section, we report cohort-based descriptive statistics and selection of salient features, 

as well as results from model-based predictions of specific clinical outcomes, model-free 

classification, and computable-phenotype clustering.

Descriptive statistics.

A summary of the patient demographics is shown in Table 1.

The missing pattern in the data, prior to imputation, is shown on Supplementary Figure S.1. 

Although it shows substantial missingness in a number of features, the pattern does not 
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suggest strong non-random missingness. After excluding the highly correlated covariates 

“fvc_normal_min”, “fvc_normal_median” and “fvc_normal_slope”, 20 imputed datasets 

were created using 20-chain multiple imputation [40–42]. The multiple imputed datasets 

were homogeneous between different chains. Supplementary Table S.3 shows an example of 

the descriptive statistics of a randomly selected complete dataset, the 11th element of the 

imputation chain.

Prediction of 12-month ALSFRS slope change.

Table 2 shows the results of training RF and BART classifiers on baseline and 3-month 

follow up data and predicting ALSFRS slope change at 12-month follow up. Random forest 

and BART methods generated the best supervised machine learning predictions of the 

ALSFRS slope change. Albeit the correlations between the observed and predicted slope 

change was around 0.45–0.47, which suggests that this univariate outcome (ALSFRS Total 

slope change between 3–12 months) can’t be reliably predicted using the available baseline 

and 3-month follow up data.

Feature Selection.

Table 3 depicts the results of the feature selection using knockoff (KO) filtering, left, and 

random forest (RF), right. Commonly identified features are highlighted. For both feature 

selection approaches, highly salient features as ranked as influential and placed in the top 

rows, according of the rank-order of the corresponding raw frequencies and relative 

proportions. As expected, ALSFRS_Total_slope (baseline to 3 month follow up), 

onset_delta.x, fvc_percent_slope, and Absolute.Monocyte Count_slope are selected as 

salient predictors of the 12-month ASLFRS Total slope change. To make the results of RF 

and KO feature selection comparable and to identify their agreement, we report the relative 

proportion (Prop) of times each feature is chosen by either algorithm, instead of relying on 

default measures of variable importance.

Forecasting FVC percent change.

Table 4 shows the results of random forest-based prediction of another clinically relevant 

outcome variable, FVC percent change. The top and bottom rows in the table report two 

types of change prediction results – either using the baseline FVC as a predictor or not. 

Clearly the prediction power increases substantially when we include the baseline FVC%, 

the correlation between observed and predicted FVC%-change increases from 0.67 (no 

baseline FVC) to 0.83 (with baseline FVC).

We also used supervised classification to group the patients by specific clinical phenotypes, 

however, the results were not particularly reliable or precise, i.e., the assigned classification 

labels were not highly associated with specific univariate clinical outcomes.

Unsupervised Clustering.

Next, we tried unsupervised classification, e.g., k-means clustering, to stratify the 

participants into separate cohorts. These results were interesting as clustering all patients 

into four groups allowed us to examine deeper the four computed phenotypes (machine 

learning derived phenotypic subgroups). Figure 2 shows a plot of the objective function 
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capturing the within-group error rate across increasing number of clusters. The rapid error 

rate decrease until the elbow (corresponding to 4 clusters) suggests four as a reasonable 

number of computable phenotypes present in this ALS cohort. The clinical interpretation of 

these four computable phenotypes requires special attention as the clusters do not 

necessarily correspond to univariate clinical outcomes. Figure 3 illustrates ALSFRS total 

score changes over time for each of these machine learning derived sub-cohorts. Notice the 

intertwined nature of these trajectories suggesting that the four computed phenotypes blend 

a mix of participants with a widely varying distribution of this specific clinical outcome, in 

this case ALSFRS Total score over time (horizontal axis).

As neither the model-based nor the model-free classification results showed strong 

coherence with the specific univariate clinically relevant outcome (ALSFRS Total score 

change), we examined the consistency and reliability of automated unsupervised clustering. 

Table 5 demonstrates the regularity and dependability of unsupervised clustering into four 

categories across 1,000 randomly-initialized clustering iterations. The reported mean 

proportions (consistency) and standard deviations (reliability) indicate the robustness of the 

patients’ clustering across all experiments. The large mean proportions (mean~1) and small 

dispersions (SD~0) suggest that patients remain largely and consistently grouped within the 

same cohorts, with very few patients transitioning from one group to another across the 

repeated automated unsupervised re-clustering. This suggests reliable and consistent 

automated machine learning clustering of ALS patients into four computable phenotypic 

sub-cohorts. The interpretations of these machine learning derived computed phenotypes 

(clusters) requires a deeper exploration of multiple factors, rather than examining simple 

univariate clinical outcomes. The size of each of the four clusters and their corresponding 

average silhouette width values are shown on Table 6. Clearly the unsupervised clustering 

splits the patients in four balanced sub-cohorts representing separate computable 

phenotypes. The relatively high silhouette values for all phenotypes suggest that the 

grouping of subjects into clusters is consistent and reliable.

Table 7 shows the main features associated with significant statistical differences between 

clusters. Cell indicators “1” and “ “ (blank values) denote significant and insignificant 

differences between a pair of clusters (column) for a specific variable (row). Generally 

speaking, we only include the most wide-spread cluster discriminants, skipping over 

features, among the 171, that may have discriminated only between one pair of clusters or 

none at all. Note that the interpretation of clinical and phonotypic differences between a pair 

of clusters 𝐼 and 𝐽, e.g., 2–3 (column 5), typically involves a number of features. Explication 

of the derived subcohorts complicates the objective understanding of the four computable 

phenotypes. This reflects the reality that ALS is an extremely heterogeneous progressive 

neurodegenerative disorder with multifaceted clinical manifestations. Selecting a very small 

number of features is unlikely to yield highly predictive models. Our results hint to a more 

nuanced computable phenotypic motifs whose elucidation requires joint interpretation of 

multiple clinical features.

These findings illustrate that clinical interpretations of unsupervised machine learning 

clustering results, representing derived or computed clinical phenotypes, require joint 

inspection and holistic review of multiple data features. For example, Table 7 shows that the 
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trunk_max feature was an important discriminant between the four computable phenotypes, 

as it played a vital role in separating all pairs of sub-cohorts, except the first two. Whereas, 

another feature, Q9_Climbing_Stairs_slope, only discriminated between cohorts 1 and 2, as 

well as 2 and 3, but not among the others. Thus, in this reliable and consistent unsupervised 

clustering of patients into four computable phenotypic groups, the explication of clinical 

relevance relies on high-dimensional multivariable interpretation.

A deeper exploration of the salience of observed features as discriminants of the 

automatically identified computed phenotypes is illustrated on Table 8. For each pair of 

clusters and each observable variable, we can explicate the contrast specific distributions (for 

continuous) and factor-levels (for categorical) features. Demonstrating all possible scenarios 

is impractical, due to the number of possible combinations (of cluster pairs) and the large 

number of features. However, Table 8 illustrates this capability specifically for the 

“onset_delta.x” and “trunk_max” covariates. Graphical exploration of violin plots, box-and-

whisker plots, histogram of estimated density plots provide a mechanism to examine the 

core univariate characteristics that segregate the derived computed phenotypes.

Dimensionality reduction using t-Distributed Stochastic Neighbor Embedding (t-SNE) [43] 

provided an additional confirmation of the intriguing four computable phenotypes identified 

independently by the unsupervised clustering. Figure 4 illustrates the flat 2D t-SNE 

manifold representation of the data where each case is post-hoc color-coded by its 

corresponding derived cluster label. The clear separation of the computed phenotypes in the 

t-SNE space, with only minor label overlaps, provides evidence of structure in the 

multivariate data recovered independently by the clustering and the t-SNE embedding 

methods.

Discussion and Conclusions

Hothorn and colleagues [44] applied conditional random forests to model the trajectory of 

ALSFRS score over time, and their results indicated high variability of the ALSFRS ratio 

among the study subjects (RMSE=0.5208, Pearson correlation=0.4014). Gomeni et al. [45] 

used a non-linear Weibull model to describe the ALS disease progression based on 

ALSFRS-R, and identified two clusters of trajectories (slow progression vs fast progression) 

using stepwise logistic regression. Taylor and co-workers [46] selected 3,742 out of 10,700 

patients, using completeness in ALSFRS-R and forced vital capacity (FVC) records, to 

report a random forest model outperforming other approaches in predicting 6-month 

ALSFRS-R score (R2 = 0.582, RMSE=0.470). Ong et al. [47] found the exponential model 

was the best fit and categorized the subjects into fast and slow progressors based on score 

declined per day. Beaulieu-Jones and colleagues [48] implemented different imputation 

methods showing imputation does not have a significant effect on prediction. They also 

discovered that the progression of ALS approximately follows normal distribution.

ALS studies are complicated by the heterogeneity of this neurodegenerative disorder as well 

as the enormous challenges in handling, processing, and interpreting massive amounts of 

multi-source incongruent data serving as proxy of the onset and advancement of the disease. 

Providing clinical decision support to accurately prognosticate the course of the disease 
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would be extremely valuable to identify reliable individualized predictions of the likely 

progression of ALS. In this study, we examined model-based (e.g., linear models) and 

model-free (e.g., machine-learning) methods to predict clinically relevant outcomes, e.g., 

change of ALSFRS score of FVC. Using independent training data (for model estimation 

and machine learning) and testing data (for assessing the accuracy and reliability of the 

predictions) we quantified the performance and compared the results of different forecasting 

techniques. The change of the Amyotrophic Lateral Sclerosis Functional Rating Scale 

(ALSFRS) slope between 3 and 12 month of monitoring was used as a diagnostic predictive 

outcome variable.

A 2018 postmortem study of ALS heterogeneity identified factors contributing to survival 

duration (0–10 years) in 800 patients [49]. Using survival regression, classification models 

(GML and RF), and dimensionality reduction the authors identified 38 salient measures 

(e.g., respiratory function, FVC, oxygen saturation, negative inspiratory force) that predicted 

ALSFRS-R, and other clinical outcomes. The main conclusion reported by the authors 

suggests that for personalized forecasting of survival, new independent metrics, as well as 

revisions to current metrics (e.g., ALSFRS-R), may need to be developed to capture the 

observed ALS heterogeneity.

Our study was based on training and testing data of patients and controls from the open 

Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) archive. The 

results of the study included both positive and negative findings about the impact of 

alternative processing protocols and the power of different analytical methods to forecast 

specific clinical phenotypes. The best model-based and model-free results highlight that 

initial measures of ALSFRS and its sub-questions most significantly contributed to the 

overall prediction the ALSFRS at 1 year (12-month follow up). Other variables that 

contributed to overall prediction included time since disease onset and various measures of 

hematocrit, creatinine, potassium, calcium, and alanine transaminase (ALT). The 

contribution of creatinine confirms some prior reports, however, in this study, uric acid was 

not a strong clinical predictor. That changes in ALSFRS over the initial 3 months of data 

collection are the most significant predictors of future ALSFRS score, which is not 

surprising given the curvilinear nature of this clinical measure. Our findings highlight that 

the ALSFRS is an informative measure, but new biologic markers are needed to improve 

univariate disease progression prediction and increase the reliability of such machine-

learning based decision support systems. It is worth pointing out that strictly speaking, the 

values of each single ALSFRS item is intrinsically a discrete (ordinal/categorical) covariate. 

However, most studies model ALSFRS scores as continuous variables. From a 

methodological point of view, depending on the specific analytical strategy, treating 

ALSFRS as a continuous outcome may or may not be valid, e.g., classification and 

clustering of categorical outcomes is meaningful, but continuous regression linear modeling 

may be less appropriate.

Albeit direct implementations of these findings in clinical settings may still be in the future, 

our technique provides a roadmap for scientifically rigorous variable selection, 

computationally efficient inference using model-based and model-free methods, 

reproducible scientific discovery, and collaborative validation.
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We also determined that the data preprocessing protocols may impact the results of the 

predictive analytics. We tried several alternative data preprocessing strategies. The main 

problems with preserving the bulk of the information content of the data related to data 

incongruency (e.g., different sampling rates) and data heterogeneity (e.g., missingness). To 

address the longitudinal incongruency within one covariate and one subject, we used the 

arithmetic average of all observed values. Initially, to handle missing values, we employed 

multiple imputation across all data elements and subjects. However, shot-gun approaches did 

not work well. This may be due to violations of the missing-at-random assumption or 

instability of the iterative multiple imputation algorithm on this large-scale data. Our final 

strategy for managing the missing data included a blended approach of (1) selective triaging 

of cases and variables, (2) imputing missing cells by the median value of a feature, and (3) 

multiple imputation on selected cases and data elements.

The Synapse ALS challenge initiative presented cluster analysis as an important approach in 

examining and simulating ALS disease progression. Our classification and prediction of 

specific univariate clinical traits were not impressive. It’s possible that better classification 

models can be built, estimated, and validated on larger cohorts of patients sharing similar 

(congruent) clinical features. Our classification attempts were not reliable in identifying 

specific univariate clinically-relevant outcomes. There is also little evidence of prior 

successful classification results in other peer-reviewed publications. However, our 

unsupervised clustering analysis generated highly reliable, reproducible, and consistent 

computable phenotypes representing four complementary sub-cohorts, which are 

discriminated by multivariate clinical factors. This salient phenotypic clustering based on 

families of clinical features may explain the observed heterogeneity of ALS morbidity.

Our investigation faced two difficult challenges. The first one was transforming and 

harmonizing the longitudinal data into signature vectors congruent across subjects including 

maximum, minimum, median and the rate. Other investigators have suggested using the 

“first visit”, “the last visit”, “mean” and “standard deviation” to summarize the longitudinal 

information. However, bringing additional per-encounter information, does not resolve the 

sampling incongruency. Our approach compromises between increasing the volume of 

preserved information and minimizing the sampling incongruency. There is some evidence 

that ALSFRS is not linear but curvilinear [50], however, further investigation is warranted. 

Another interesting prospective examination may include information about adverse events. 

It’s not clear if utilizing observed adverse events may improve the predictive power of the 

algorithms to discriminate between different ALS clinical phenotypes.

The same compromise also applies when dealing with the missing data. On the one hand, to 

preserve the amount of observed information, we need to keep as many features as possible. 

On the other hand, a large number of data elements increases the demand on the subsequent 

data harmonization and aggregation. Larger number of subjects included in the training and 

testing collections would increase the predictive power of the methods (using the training 

data) and improve the forecasting results (using the testing data). The strategy we used was 

first triaging highly missing subjects and features, followed by handling missing testing data 

to ensure the final training-data-derived predictors are applicable to the validation data. This 

homogenized the predictive features and allowed aggregation of the data that led to 
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consistent and reliable clustering results. When some variables are highly correlated, the 

multiple imputation may leave a few elements as missing, e.g., when the imputation 

algorithm does not converge. Novel numerical methods may help to alleviate the 

convergence problem. Adding an observation-derived prior could shrink the covariance 

matrix and ease the difficulty in converging. In this study, 1% of the total observations are 

used for constructing the empirical prior.

This study has limitations. The PRO-ACT data contains mostly subjects that entered a 

clinical trial. These subjects may not reflect the true population of ALS subjects given study-

specific exclusion criteria. For example, subjects with dysarthria or dysphagia or early onset 

respiratory insufficiency may be ineligible for a trial and may not be represented in this 

dataset. Nonetheless, the presented study does offer important insights into modeling 

complex ALS data. This is important especially when considering designing prospective 

ALS studies or deciding on data elements to collect in large ongoing clinical studies. Our 

choice to only use the original ALSFRS scores may be an additional limitation as the revised 

version (ALSFRS-R) includes additional assessments, e.g., dyspnea, orthopnea and 

ventilatory support, which could potentially provide complementary information for 

forecasting ALS progression or identifying ALS clinical phenotypes.

There are some reports that ALSFRS may be time sensitive [49], which would make it a 

tricky clinical outcome to track the longitudinal progression of ALS. Our unsupervised 

approach is less sensitive to the dynamics of specific clinical outcomes, as we make no 

assumptions on a univariate response, but rather consider all observables as time-varying 

predictors. In this manuscript, we did not explore specifically predicting survival duration, 

however, elsewhere, we have demonstrated alternative non-parametric strategies to forecast 

patient survival [35].

Based on the reported findings, a deductive approach examining the specific from the 

general may be employed to develop clinical decision support system for prospective 

(individualized) personalized medicine based on first understanding the (global) ALS 

population characteristics. Due to low signal relative to normal biological and medical 

variation, accurate and highly-robust predictions of ALSFRS/ALSFRS-R may not be 

possible using the type of data provided in the PRO-ACT archive. For instance, a Rasch-

analysis of the dimensionality, reliability and validity of ALSFRS-R suggested the need for 

improvements of its metric quality [51]. The three factors identified by the authors included 

bulbar function, fine and gross motor function, and respiratory function.

Following open-science principles, we share the entire data processing protocol to enable 

community-wide validation, improvements, and collaborative transdisciplinary research on 

complex healthcare and biomedical challenges. To ensure scientific reproducibility and 

promote community validation of our methods and findings, the R-based ALS Predictive 

Analytics source-code is released under permissive LGPL license on our GitHub repository 

(https://github.com/SOCR/ALS_PA).
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Highlights

• Used a large ALS data archive of 8,000 patients consisting of 3 million 

records, including 200 clinical features tracked over 12 months.

• Employed model-based and model-free methods to predict ALSFRS changes 

over time, cluster patients into cohorts, and derive computable phenotypes.

• Research findings include stable, reliable, and consistent (95%) patient 

stratification into computable phenotypes. However, clinical explication of the 

results requires interpretation of multivariate information.
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Figure 1: 
Diagrammatic depiction of the protocol from raw data preprocessing to the clustering, 

prediction modeling, results comparison and validation
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Figure 2. 
Unsupervised clustering identified four phenotypic subgroups.
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Figure 3. 
Plot of the locally weighted scatterplot smoothing (LOESS) models of the overall observed 

ALSFRS Total score trajectories for the patients in the four phenotypic subgroups. 

Confidence bands are drawn for each trajectory to illustrate the expected dispersion at each 

delta – time point (in days). The fairly tight packing of the trajectories for all four clusters 

suggests that the computed clinical phenotypes are not distinguishable with respect to a 

single clinical outcome feature, e.g., ALSFRS Total score.
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Figure 4: 
2D t-SNE manifold representation of the data where each case is post-hoc color-coded by its 

corresponding derived cluster label.
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Table 1:

Basic cohort descriptive statistics.

Gender
N Observed Rate F M

2424 100% 876(36.14%) 1548(63.86%)

Onset-Site
N Observed Rate Bulbar Limb and Bulbar Limb

2424 100% 494(20.38%) 18(0.74%) 1912(78.88%)

Race
N Observed Rate Asian Black Hispanic Other Unknown White

2424 100% 21 (0.87%) 31 (1.28%) 10 (0.41%) 9 (0.37%) 46 (1.90%) 2307 (95.17%)

Treatment Group
N Observed Rate Active Placebo

1622 67% 1268(78.18%%) 354(21.82%)

ALS Family History
N Observed Rate No Yes

375 15% 296(78.93%) 79(21.07%)

Riluzole Use
N Observed Rate No Yes

2060 85% 709(34.42%) 1351(65.58%)
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Table 2:

Metrics assessing the machine learning based prediction of ALSFRS slope change, using the coefficient of 

determination (R2), root mean square error (RMSE), and the paired correlations (observed vs. predicted 

ALSFRS slope values).

R2 RMSE Correlation

Random Forest 0.1916 0.5633 0.4460

BART 0.2187 0.5537 0.4718
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Table 3:

Top 20 features selected by knockoff filtering (left) and random forest (right). Highlighted features are chosen 

by both feature-selection methods.

KO RF

Features Freq Prop Features Freq Prop

treatment_group 364 0.60181 ALSFRS_Total_slope 100 1

Age.x 300.5 0.49683 onset_delta.x 100 1

Gender 286 0.47285 fvc_percent_slope 84.5 0.845

if_use_Riluzole 226 0.37365 weight_slope 83 0.83

Q1_Speech_min 220 0.36373 fvc_slope 56 0.56

pulse_max 215.5 0.3563 bp_systolic_slope 55 0.55

onset_delta.x 208.5 0.34472 fvc_percent1_slope 54 0.54

fvc_percent_slope 165 0.2728 Phosphorus_median 49 0.49

ALSFRS_Total_slope 156.5 0.25875 Sodium_slope 44 0.44

Phosphorus_max 156 0.25792 Creatinine_slope 43 0.43

onset_site 153 0.25296 Absolute.Monocyte Count_slope 43 0.43

Q3_Swallowing_min 148.5 0.24552 mouth_slope 42 0.42

Absolute.Monocyte Count_slope 139 0.22981 bp_diastolic_slope 40.5 0.405

fvc_percent1_min 134 0.22155 Bicarbonate_slope 40 0.4

mouth_min 130 0.21493 Absolute.Lymphocyte Count_slope 40 0.4

Absolute.Neutrophil
Count_min 118 0.1951

Alkaline Phosphatase_slope
39 0.39

Protein_max 115 0.19013 Red.Blood.Cells RBC._median 39 0.39

fvc_percent_min 110 0.18187 CK_slope 38 0.38

leg_max 108 0.17856 fvc1_slope 38 0.38

leg_slope 108 0.17856 Total Cholesterol_slope 38 0.38
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Table 4:

Metrics assessing the machine learning prediction of FVC change.

R2 RMSE Correlation

Using baseline FVC 0.6817 14.27 0.8293

Without Baseline FVC 0.4308 19.10 0.6671
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Table 5:

Reliability and consistency of machine-learning based ALS classification.

Class ID Mean Proportions SD

1 1 0

2 0.986 0.018

3 0.956 0.053

4 (unclassified) 0.985 0.018
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Table 6:

Cluster sizes and average silhouette width values. Silhouette values measure the similarity of participants 

within their own cluster (cluster cohesion), relative to other phenotypes (cluster separation), −1 ≤ Silhouette ≤ 

+1 with low or high values indicating poor or reliable matching of participants within their phenotypic sub-

group, respectively.

Cluster size 565 427 699 733

Average silhouette widths 0.581 0.626 0.503 0.500
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Table 7:

Main ALS variables associated with significant between-cluster differences.

Feature Name
Between Cluster Significant Differences

1–2 1–3 1–4 2–3 2–4 3–4

onset_site 1 1 1

onset_delta.x 1 1 1 1 1 1

onset_delta.y 1 1 1 1 1

Red.Blood.Cells..RBC._min 1 1 1

Red.Blood.Cells..RBC._median 1 1 1

Red.Blood.Cells..RBC._slope 1 1

Q4_Handwriting_max 1 1 1

Q4_Handwriting_min 1 1 1

Q4_Handwriting_median 1 1 1

Q9_Climbing_Stairs_max 1 1 1 1

Q9_Climbing_Stairs_min 1 1 1 1

Q9_Climbing_Stairs_median 1 1 1 1

Q9_Climbing_Stairs_slope 1 1

Q8_Walking_max 1 1 1 1

Q8_Walking_min 1 1 1 1

Q8_Walking_median 1 1 1 1

trunk_max 1 1 1 1 1

trunk_min 1 1 1 1

trunk_median 1 1 1 1

Protein_slope 1 1 1

Creatinine_max 1 1 1

Creatinine_min 1 1 1 1

Creatinine_median 1 1 1 1

respiratory_rate_max 1 1 1

hands_max 1 1 1

hands_min 1 1 1

hands_median 1 1 1

Q6_Dressing_and_Hygiene_max 1 1 1 1

Q6_Dressing_and_Hygiene_min 1 1 1

Q6_Dressing_and_Hygiene_median 1 1 1 1

Q7_Turning_in_Bed_max 1 1 1 1

Q7_Turning_in_Bed_min 1 1 1

Q7_Turning_in_Bed_median 1 1 1 1

Sodium_slope 1 1 1

ALSFRS_Total_max 1 1 1 1

ALSFRS_Total_min 1 1 1
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Feature Name
Between Cluster Significant Differences

1–2 1–3 1–4 2–3 2–4 3–4

ALSFRS_Total_median 1 1 1 1

ALSFRS_Total_slope 1 1

Hematocrit_max 1 1 1

Hematocrit_min 1 1 1

Hematocrit_median 1 1 1

leg_max 1 1 1 1

leg_min 1 1 1 1

leg_median 1 1 1 1

mouth_min 1 1 1

Absolute.Basophil.Count_max 1 1 1

Absolute.Basophil.Count_min 1 1 1

Absolute.Basophil.Count_median 1 1 1

Absolute.Basophil.Count_slope 1 1 1

Absolute.Eosinophil.Count_max 1 1 1

Absolute.Eosinophil.Count_median 1 1 1

Absolute.Eosinophil.Count_slope 1 1 1

Absolute.Lymphocyte.Count_slope 1 1 1

Absolute.Monocyte.Count_slope 1 1 1
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Table 8:

Examples of deeper exploration explicating the relation between machine-derived computed phenotypes 

(clusters) and observable clinical phenotypes (in terms of some ALS variables).
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