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Abstract

We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with 

time scale separation operating under quasi-steady state conditions. We first formulate a stochastic 

generalisation of the quasi-steady state approximation based on the semi-classical approximation 

of the partial differential equation for the generating function associated with the chemical master 

equation. Such approximation proceeds by optimising an action functional whose associated set of 

Euler-Lagrange (Hamilton) equations provides the most likely fluctuation path. We show that, 

under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so 

that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady 

state approximation can be applied. We analyse two particular examples of systems whose mean-

field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually 

inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that 

the number of molecules of the conserved species is order parameters whose variation regulates 

bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This 

prediction is fully confirmed by direct numerical simulations using the stochastic simulation 

algorithm. This result allows us to propose strategies whereby, by varying the number of 

molecules of the three conserved chemical species, cell properties associated to bistable behaviour 

(phenotype, cell-cycle status, etc.) can be controlled.

I Introduction

The networks of interacting genes and proteins that are responsible for regulation, signalling 

and response, and which, ultimately, orchestrate cell function, are under the effect of noise.

1–5 This randomness materialises in the form of fluctuations of the number of molecules of 

the species involved, subsequently leading to fluctuations in their activity. Besides external 
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perturbations, biochemical reactions can be intrinsically noisy, especially when the number 

of molecules is very low.

Far from necessarily being a mere disturbance, fluctuations are an essential component of 

the dynamics of cellular regulatory systems which, in many instances, are exploited to 

improve cell function.6,7 For example, randomness has been shown to enhance the ability of 

cells to adapt and increase their fitness in random or variable environments.8–10 Random 

noise also serves the purpose of assisting cell populations to sustain phenotypic variation by 

enabling cells to explore the phase space.3–5,7,11,12

One of the mechanisms that allows noise-induced phenotypic variability relays on multi-

stability.13,14 The basis of this mechanism was first proposed by Kauffman,15 who 

associated phenotypes or differentiated states to the stable attractors of the dynamical 

systems associated to gene and protein interaction networks. In the presence of noise, the 

corresponding phase space generates an epigenetic landscape, where cells exposed to the 

same environment and signalling cues coexist in different cellular phenotypes.16

Multi-stability is also an essential element in the control of cell response and function via 

signalling pathways.17 In particular, bi-stability as a means to generate reliable switching 

behaviour is widely utilised in numerous pathways such as the apoptosis,18 cell survival,19 

differentiation,20 and cell-cycle progression21,22 pathways. For example, bi-stability is 

used to regulate such critical cell functions such as the transition from quiescence to 

proliferation through bistable behaviour associated with the Rb-E2F switch within the 

regulatory machinery of the mammalian cell-cycle.23–28

A common theme which appears when trying to model cell regulatory systems is separation 

of time scales, i.e., the presence of multiple processes evolving on widely diverse time 

scales. When noise is ignored and systems are treated in terms of deterministic mean-field 

descriptions, such separation of time scales and the associated slow-fast dynamics are often 

exploited for several forms of model reduction, of which one of the most common is the so-

called quasi-steady state approximation (QSSA).29 This approximation is ubiquitously used 

whenever regulatory processes involve enzyme catalysis, which is a central regulation 

mechanism in cell function.17 In this paper, we investigate the effects of intrinsic noise on 

the bi-stability of two particular systems, namely, an enzyme-catalysed system of mutual 

inhibition and a gene regulatory circuit with self-activation. The mean-field limit of both 

these systems has been shown to exhibit bi-stability.22,30 The aim of this paper is to analyse 

how noise alters the mean-field behaviour associated to these systems when they operate 

under quasi-steady state conditions.

We note that this work does not concern the subject of noise-induced bifurcations.31 Such 

phenomenon has been studied in many situations, including biological systems. An example 

which is closely related to the systems we analyse here is the so-called enzymatic futile 

cycles. Samoilov et al.32 have shown that noise associated to the number of enzymes 

induces bistability. In the absence of this source of noise, i.e., in the mean-field limit, the 

system does not exhibit bistable behaviour. The treatment of these phenomena would require 
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to go to higher orders in the Wentzel–Kramers–Brillouin (WKB) expansion,57 which we do 

not explore here.

The issue of separation of time scales in stochastic models of enzyme catalysis has been 

addressed using a number of different approaches. Several such analyses have been carried 

out in which the QSSA is directly applied to the master equation by setting the fast reactions 

in partial equilibrium (i.e., the probability distribution corresponding to the fast variables 

remains unchanged), and letting the rest of the system to evolve according to a reduced 

stochastic dynamic.33,34 Other approaches have been proposed such as the QSSA to the 

exact Fokker-Planck equation that can be derived from the Poisson representation of the 

chemical master equation (CME).35 Approaches based on enumeration techniques have also 

been formulated.36 Furthermore, Thomas et al.37 have recently formulated a rigorous 

method to eliminate fast stochastic variables in monostable systems using projector 

operators within the linear noise approximation.37 Methods for model reduction based on 

perturbation analysis have been developed in Refs. 38 and 39. Additionally, driven by the 

need of more efficient numerical methods, there has been much activity regarding the 

development of numerical methods for stochastic systems with multiple time scales.40–42 

Several of these methods are variations of the stochastic simulation algorithm33,43–47 or 

the τ-leap method48 where the existence of fast and slow variables is exploited to enhance 

their performance with respect to the standard algorithms. Another family of such numerical 

methods is that of the so-called hybrid methods, where classical deterministic rate equations 

or stochastic Langevin equations for the fast variables are combined with the classical 

stochastic simulation algorithm for the slow variables.49,50 Other related methods were 

studied in Refs. 51–53.

Here, we advance the formalism developed in Ref. 38, in which a method based on the semi-

classical approximation of the chemical master equation allows to evaluate the effects of 

intrinsic random noise under quasi-steady conditions. In our analysis of the Michaelis-

Menten model of enzyme catalysis in Ref. 38, we showed that the semi-classical quasi-

steady state approximation (SCQSSA) reveals that the velocity of the enzymatic reaction is 

modified with respect to the mean-field estimate by a quantity which is proportional to the 

total number of molecules of the (conserved) enzyme. In this paper, we extend this 

formalism to show that, associated to each conserved molecular species, the associated 

(constant) number of molecules is a bifurcation parameter which can drive the system into 

bi-stability beyond the predictions of the mean-field theory. We then proceed to test our 

theoretical results by means of direct numerical simulation of the chemical master equation 

using the stochastic simulation algorithm.54 We should note that the Hamiltonian formalism 

derived from the semi-classical approximation is formulated on a continuum of particles, 

which requires the number of particles to be large enough. This must hold true for all the 

species in our model, both fast and slow. Since this separation between fast and slow species 

is based on their relative abundance, one must be careful that the scaling assumptions are 

consistent, particularly in the case of the model of self-activating gene regulatory circuit 

where the number of binding sites is typically small. This assumption, however, has been 

used in previous studies.55 Also we show that our simulation results of the full stochastic 

processes agree with our analysis and, therefore, our re-scaled equations are able to predict 

the behaviour of the system. We note that the mean-field limit, which is conventionally 
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obtained by ignoring noise in the limit of large particle numbers, is obtained by setting the 

momenta in our phase-space formalism to 1.

The approximation we develop in this paper falls within the general framework of the 

optimal fluctuation path theory.56 This framework is a particular case of the large deviation 

theory which allows us to study rare events (i.e., events whose frequency is exponentially 

small with system size). Within these frameworks, we will show that, upon carrying out the 

QSSA, the only source of noise in the system is associated to the random initial conditions 

of the species whose numbers are conserved. We therefore predict that a population of cells, 

each having a random number of conserved molecules, will have a bimodal distribution.

This paper is organised as follows. Section II is devoted to a detailed exposition of the semi-

classical quasi-steady state approximation for stochastic systems. In Sections III and IV, we 

apply this formalism to analyse the behaviour of a bistable enzyme-catalysed system and a 

gene regulatory circuit of auto-activation, respectively. We will show that our semi-classical 

quasi-steady state theory allows us to study the effect of intrinsic noise on the behaviour of 

these systems beyond the predictions of their mean-field descriptions. We also verify our 

theoretical predictions by means of direct stochastic simulations. Finally, in Section V, we 

summarise our results and discuss their relevance.

II Semi-Classical Quasi-Steady State Approximation

Our aim in this paper is to formulate a stochastic generalisation of the quasi-steady state 

approximation for enzyme-catalysed reactions and simple circuits of gene regulation and use 

such approximation to determine if the presence of noise has effects on the behaviour of the 

system beyond the predictions of the corresponding mean-field models. Specifically, we 

analyse stochastic systems for which the mean-field models predict bi-stability and 

investigate how such behaviour is affected by stochastic effects. Our analysis is carried out 

in the context of Markovian models of the corresponding reaction mechanisms formulated in 

terms of the so-called CME.57 Two examples of such stochastic systems, a bistable enzyme-

catalysed system and a gene regulatory circuit of auto-activation, are formulated and 

analysed in detail in Sections III and IV, respectively. Following Ref. 38, we formulate the 

QSS approximation for the asymptotic solution of the CME obtained by means of large 

deviations/WKB approximations.58–60 The CME is given as

∂P(X, t)
∂t = ∑

i
W i(X − ri)P(X − ri, t) − W i(X)P(X, t) , (1)

where Wi(X) is the transition rate corresponding to reaction channel i and ri is a vector 

whose entries denote the change in the number of molecules of each molecular species when 

reaction channel i fires up, i.e., P(X (t + Δt) = X(t) + ri|X(t)) = Wi(X)Δt.

An alternative way to analyse the dynamics of continuous-time Markov processes on a 

discrete space of states is to derive an equation for the generating function, G(p1,…, pn, t), of 

the corresponding probabilistic density,
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G(p1, …, pn, t) = ∑
x

p1
X1p2

X2⋯pn
XnP(X1, …, Xn, t), (2)

where P(X1,…, Xn, t) is the solution of master equation (1). G(p1,…, pn, t) satisfies a partial 

differential equation (PDE) which can be derived from the master equation. This PDE is the 

basic element of the so-called momentum representation of the master equation.51,53,61–63

Although closed, analytic solutions are rarely available, the PDE for the generating function 

admits a perturbative solution, which is commonly obtained by means of the WKB method.

63 More specifically, the (linear) PDE that governs the evolution of the generating function 

can be written as

∂G
∂t = Hk(p1, …, pn, ∂p1

, …, ∂pn
)G(p1, …, pn, t), (3)

where the operator Hk is determined by the reaction rates of master equation (1). 

Furthermore, the solution to this equation must satisfy the normalisation condition G(p1 = 1, 

… , pn = 1, t) = 1 for all t. This PDE, or, equivalently, the operator H, is obtained by 

multiplying both sides of master equation (1) by ∏i = 1
n pi

Xi and summing up over all the 

possible values (X1, … , Xn).

From the mathematical point of view, Eq. (3) is a Schrödinger-like equation and, therefore, 

there is a plethora of methods at our disposal in order to analyse it. In particular, when the 

fluctuations are (assumed to be) small, it is common to resort to WKB methods.58,59,64 

This approach is based on the WKB-like Ansatz that G(p1,…, pn, t) = e−S(p1,…, pn, t). By 

substituting this Ansatz in Eq. (3), we obtain the following Hamilton-Jacobi equation for the 

function S(p1, … , pn, t):

∂S
∂t = − Hk p1, …, pn, ∂S

∂ p1
, …, ∂S

∂ pn
. (4)

Instead of directly tackling the explicit solution of Eq. (4), we will use the so-called semi-

classical approximation. We use the Feynman path-integral representation which yields a 

solution to Eq. (3) of the type58,62,65–68

G(p1, …pn, t) = ∫
0

t
e

−S(p1, …, pn, Q1, …, Qn)
𝔇Q(s)𝔇p(s), (5)

where Q(s) p(s) indicates integration over the space of all possible trajectories and S(p1, 

… , pn, Q1,…, Qn) is given by58

de la Cruz et al. Page 5

J Chem Phys. Author manuscript; available in PMC 2019 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



S(p1, …, pn, Q1, …, Qn) = − ∫
0

t
Hk(p1, …, pn, Q1, …, Qn) + ∑

i = 1

n
Qi(s) ṗi(s) ds

+ ∑
i = 1

n
S0, i(pi, Qi),

(6)

where the position operators in the momentum representation have been defined as Qi ≡ ∂pi 
with the commutation relation [Qi, pj] = S0, iδi, j. S0, i(pi, Qi) corresponds to the action 

associated with the generating function of the probability distribution function of the initial 

value of each variable, Xi(t = 0), which is assumed to be independent random variables.

The so-called semi-classical approximation consists of approximating the path integral in 

Eq. (5) by

G(p1, …, pn, t) = e
−S(p1, …, pn, t)

, (7)

where p1(t), … , pn(t) are now the solutions of the Hamilton equations, i.e., the orbits which 

maximise the action S,

dpi
dt = −

∂Hk
∂Qi

, (8)

dQi
dt =

∂Hk
∂ pi

, (9)

where the pair (Qi, pi) is the generalised coordinates corresponding to chemical species i = 1, 

… , n. These equations are (formally) solved with boundary conditions67 Qi(0) = xi(0), pi(t) 
= pi, where xi(0) is the initial number of molecules of species i.

Eqs. (8) and (9) are the starting point for the formulation of the SCQSSA.38 In order to 

proceed further, we assume, as per the Briggs-Haldane treatment of the Michaelis-Menten 

model for enzyme kinetics,26,69 that the species involved in the system under scrutiny are 

divided into two groups according to their characteristic scales. More specifically, we have a 

subset of chemical species whose numbers, Xi, scale as

Xi = Sxi, (10)

where xi = O(1), whilst the remaining species are such that their numbers, Xj, scale as
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X j = Ex j, (11)

where xj = O(1). Key to our approach is the fact that S and E must be such that

ϵ = E
S ≪ 1. (12)

We further assume that the generalised coordinates, Qi, scale in the same fashion as the 

corresponding variable Xi, i.e.,

Qi = Sqi, (13)

where qi = O(1). We refer to the variables belonging to this subset as slow variables. 

Similarly,

Q j = Eq j, (14)

where qj = O(1), which are referred to as fast variables. Moreover, we assume that the 

moment coordinates, pi, are all independent of S and E and therefore remain invariant under 

rescaling.

Under this scaling for the generalised coordinates, we define the following scale 

transformation for the Hamiltonian in Eq. (6):

Hk p1, … , pn, Q1, … , Qn = kJSkElHκ p1, … , pn, q1, … , qn , (15)

where J identifies the reaction with the largest order among all the reactions that compose 

the dynamics and kJ is the corresponding rate constant. For example, in the case of the 

bistable enzyme-catalysed system whose reactions or elementary events and the 

corresponding transition rates are given in Table I, J = 1, as this reaction is order 3 whereas 

all the others are order 0, 1, or 2. In the case of the self-activating gene regulatory circuit, 

Table IV, J = 3, since this reaction is order 3 whereas the remaining ones are order 1 at most. 

The exponents k and l correspond to the number of slow and fast variables involved in the 

transition rate WJ, respectively.

The last step is to rescale the time variable so that a dimensionless variable, τ, is defined 

such that

τ = kJSk − 1Elt . (16)
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It is now a trivial exercise to check that, upon rescaling, Eqs. (8) and (9) read

dpi
dτ = −

∂Hκ
∂qi

, (17)

dqi
dτ =

∂Hκ
∂ pi

(18)

for the slow variables. By contrast, rescaling of the Hamilton equations corresponding to the 

subset of fast variables leads to

ϵ
dp j
dτ = −

∂Hκ
∂q j

, (19)

ϵ
dq j
dτ =

∂Hκ
∂ p j

, (20)

where ϵ is defined in Eq. (12). The QSS approximation consists on assuming that 

ϵdp j
dτ ≃ 0 and ϵdq j

dτ ≃ 0 in Eqs. (19) and (20),

−
∂Hκ
∂q j

= 0, (21)

∂Hκ
∂ p j

= 0, (22)

resulting in a differential-algebraic system of equations which provides us with the 

SCQSSA.

III Bistable Enzyme-Catalysed Systems

As a prototype of a bistable enzyme-catalysed system, we analyse a stochastic system 

proposed in Refs. 38 and 70, whose mean-field limit has been shown to correspond to a 

bistable system which is a part of a model for the G1/S transition of the eukaryote cell cycle 

proposed in Ref. 22. Tyson and Novak22 have formulated a (deterministic) model of the cell 

cycle such that the core of the system regulating the G1/S transition is a system of two 

mutually repressing proteins (Cdh1 and CycB). This system of mutual repression gives rise 
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to a bistable system where one of the stable steady states is identified with the G1 phase 

whereas the other corresponds to a state where the cell is ready to go through the other three 

phases of the cell-cycle, known as S, G2, and M. This central module, which is the one we 

focus on, is acted upon by a complex regulatory network which monitors if conditions are 

met for the cell to undergo this transition and accounts for its accurate timing. Presently, we 

ignore this network and focus on the central bistable system. It is shown in Ref. 22 that the 

mean field version of the model exhibits bistable behaviour as a function of a bifurcation 

parameter m, i.e., the mass of the cell. For very small values of m, the system is locked into 

a high (low) Cdh1(CycB)-level stable fixed point (i.e., into the G1 phase). For very large 

values m, the system has only one stable steady state corresponding to a low (high) 

Cdh1(CycB)-level fixed point. For intermediate values of m, the system exhibits bistability, 

i.e., both of these stable fixed points coexist with an unstable saddle point. In this section, we 

focus on how noise alters the behaviour of the mean-field dynamics.

The transition rates corresponding to the different reactions involved in the stochastic model 

associated to the enzyme-regulated kinetics shown in Fig. 1 are given in Table I. This 

kinetics corresponds to the enzyme regulated activation and inhibition of Cdh1 (an inhibitor 

of cell-cycle progression). Cdh1 inactivation is further (up)regulated by the presence of 

CycB, an activator of cell-cycle progression. CycB is synthesised and degraded at basal rates 

and is further degraded in the presence of active Cdh1 (see Fig. 1). Therefore, the resulting 

dynamics leads to a system with mutual inhibition which produces bistable behaviour. It is 

important to note that the associated reaction kinetics exhibits three conservation laws (see 

Table I): X3 + X5 = e0, X4 + X6 = e0, and X1 + X2 + X5 + X6 = s0. The first two of these 

conservation laws are associated to the conservation of the number of Cdh1-inhibiting and 

Cdh1-activating enzymes, respectively, whilst the latter expresses the conservation of the 

total number of Cdh1 molecules. The quantities e0 and s0 are the (conserved) number of 

enzymes and Cdh1, respectively. Note that, as per the methodology developed in Section II, 

we assume that s0 = O(S) and e0 = O(E).

The corresponding stochastic Hamiltonian, Hk, which is derived by applying the 

methodology of Section II to the master equation associated to the chemical kinetics 

described in Table I, can be split into three parts,

Hk(p1, …, p7, Q1, …, Q7) = HA + HI + HB, (23)

where HI is the Hamiltonian corresponding to the CycB-regulated enzymatic inactivation of 

Cdh1 (reactions 1 to 3 in Table I),

H1(p, Q) = k4(p6 − p2p4)Q2Q4 + k5(p2p4 − p6)Q6
+k6(p1p4 − p6)Q6, (24)

HA corresponds to enzymatic activation of Cdh1 (reactions 4 to 6 in Table I),
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HA p, Q = k1p7(p5 − p1p3)Q1Q3Q7 + k2p7(p1p3 − p5)Q5Q7
+k3p7(p2p3 − p5)Q5Q7, (25)

and, finally, HB, which corresponds to synthesis and degradation of CycB, is given by 

(reactions 7 and 8 in Table I),

HB(p, Q) = k7(p7 − 1) + k8(1 − p7)Q7
+k8ap1(1 − p7)Q1Q7 . (26)

We now proceed to apply the procedure explained in Section II in order to obtain the 

SCQSSA for the system determined by the transition rates given in Table I. We first need to 

determine which of the variables are slow variables and which ones are fast variables. As 

shown in Table II, the pairs (p1, Q1), (p2, Q2), and (p7, Q7), corresponding to the active and 

inactive forms of Cdh1 and to CycB, respectively, are the slow generalised coordinates, as 

the generalised positions scale with s0. The remaining generalised coordinates scale as e0 

and, therefore, are fast variables. Furthermore, the rescaled Hamiltonian is given by

Hk(p, Q) = k1ES2Hκ(p, q), (27)

where

Hκ(p, q) = Hκ, A + Hκ, I + Hκ, B, (28)

with

Hκ, I = κ4(p6 − p2p4)q2q4 + κ5(p2p4 − p6)q6
+κ6(p1p4 − p6)q6,

Hκ, A = p7(p5 − p1p3)q1q3q7 + κ2p7(p1p3 − p5)
× q5q7 + κ3p7(p2p3 − p5)q5q7,

Hκ, B = κ7(p7 − 1) + κ8(1 − p7)q7
+κ8αp1(1 − p7)q1q7 .

(29)

The rescaled parameters κi are given in Table II. Last, by rescaling time and defining the 

dimensionless time variable as τ = k1ESt (Table II), SCQSSA equations (17), (18), (21), and 

(22) lead to (see Ref. 38 for a detailed derivation),
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dq1
dτ = p4pe4

κ6q2
q2 + J2

− p7p3pe3

κ3q7q1
q1 + J1

+ κ8α(1 − p7)q7q1, (30)

dq2
dτ = − p4pe4

κ6q2
q2 + J2

+ p7p3pe3

κ3q7q1
q1 + J1

, (31)

dq7
dτ = κ7 − κ8(1 + αp1q1)q7, (32)

p5 = p3p1, (33)

p6 = p4p2, (34)

dp7
dτ = − (1 − p7)κ8(1 + αp1q1), (35)

where p1 = p2, p3, and p4 are constants to be determined and J1 = κ2 + κ3 and 

J2 = k4
−1(k5 + k6), and pe3 = e3/E and pe4 = e4/E. Note that for q1(τ) + q2(τ) = pc, with pc = 

s0/S, to hold p7 = 1 must be satisfied. In this case, we have

dq1
dτ = p4pe4

κ6(pc − q1)
(pc − q1) + J2

− p3pe3

κ3mq7q1
q1 + J1

, (36)

dq7
dτ = κ7 − κ8(1 + αp1q1)q7, (37)

p5 = p3p1, (38)
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p6 = p4p1 . (39)

As shown in Ref. 38, the parameter values are determined by comparing the corresponding 

mean-field approximation, which is obtained by taking pi = 167 and pc = pe3 = pe4 = 1, i.e., 

the total number of molecules of Cdh1 and its activating and inhibiting enzymes be exactly 

equal to its average, i.e., s0 = S and e3 = e4 = E, to the system originally proposed by Tyson 

and Novak.22 In Eq. (36), we have redefined κ3 → κ3m in order to make explicit the 

dependence on the bifurcation parameter, m, as used by Tyson and Novak.22 The parameter 

values are shown in Table III.

Upon rescaling of the variables (Table II) and the Hamiltonian (Eq. (15)), the action 

functional reads

S(p, q) = s0∫0

τ
−Hκ(p, q) − ∑

slow
qi

dpi
ds −∑

f ast
q j ϵ

dp j
ds ds + ∑

i

n
S0, i(pi) . (40)

It is straightforward to check that in SCQSSA conditions Hκ(p,q) = 0. Furthermore, since p1 

= p2 = const. and p7 = 1, and ϵṗ j ≃ 0 for the fast generalised coordinates, the SCQSS 

approximation of the action Eq. (40), SQSS, reduces to

SQSS p = ∑
i = 1

n
S0, i pi , (41)

where, as per the SCQSSA, p5 and p6 are determined by Eqs. (38) and (39), respectively, p7 

= 1, which implies S0,7(p7) = 0 and p1 = p2, p3, and p4 are constants that remain to be 

determined. In order to do so, we resort to the method developed in Ref. 38. The quasi-

steady state characteristic function, GQSS(p, τ), is given by

GQSS p, τ = e
−∑i = 1

6 S0, i pi = ∏
i = 1

6
G0, i pi , (42)

where G0,i(pi) = e−S0,i(pi) is the generating function of the probability distribution for the 

initial condition of species Xii = 1, … , 6. In Ref. 38, we have shown that, applying a 

Laplace-type asymptotic method71,72 to the integrals,
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P X1 τ = 0 = s0 = 1
2πi∮C

G0, 1 p1

p1
s0 + 1 dp1

= 1
2πi∮C

e
− S0, 1 p1 + s0log p1

p1
dp1,

P Xi τ = 0 = ei = 1
2πi∮C

e
− S0, i Pi + e0log pi

pi
dpi

with i = 3, 4,

(43)

where p1 = p2, p3, and p4 can be given as functions of s0 and ei, i = 3, 4, i.e., the initial 

numbers of Cdh1 molecules and Cdh1-inactivating and Cdh1-activating enzymes, 

respectively,

− p1
dS0, 1
dp1

= s0,

− pi
dS0, i
dpi

= ei for i = 3, 4.
(44)

P(X1(τ = 0) = s0), P(X3(τ = 0) = e3), and P(X4(τ = 0) = e4) are the probabilities that X1 

initially takes the value X1(τ = 0) = s0 and that X3 and X4 have initial values X3(τ = 0) = e3 

and X4(τ = 0) = e4. These probabilities can be interpreted to correspond to variability in the 

abundance of these enzymes within a population of cells. A particularly simple case results 

from assuming that P(X1(τ = 0) = s0), P(X3(τ = 0) = e3), and P(X4(τ = 0) = e0) are Poisson 

distributions with parameters S and E, respectively. In this case,38

p1 =
s0
S ,

p3 =
e3
E ,

p4 =
e4
E .

(45)

Note that, in the particular case in which the total numbers of Cdh1 and enzyme molecules 

are random Poisson variables, we have that p1 = pc, p3 = pe3, and p4 = pe4.

A Bifurcation analysis

Fig. 2 shows results regarding the bifurcation behaviour of the SCQSS approximation of the 

stochastic bistable enzyme-catalysed system Eqs. (36)-(39). In particular, we are interested 

in a comparison between the bistable behaviour of the mean-field model, corresponding to 
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taking pi = 1 for all i, and that of the SCQSS approximation with p1, p3, and p4 given by Eq. 

(44), i.e., they are determined as functions of s0 and e0.

We have shown that both the ratios of p3 and p4, ρ =
p3pe3
p4pe4

=
p3

2

p4
2 =

e3
2

e4
2 , and p1 alter the 

bistable behaviour of the system beyond the predictions of the mean-field model. In 

particular, we observe that decreasing the value of ρ extends the region of stability of the G1-

fixed point, i.e., the fixed point corresponding to the steady-state value of q1, such that q1 ~ 

1. By contrast, when ρ is increased, the stability region of the G1-fixed point shrinks. 

Intuitively, given the relation between p3 and p4 and the number of Cdh1-inactivating and 

Cdh1-activating enzyme, this result is straightforward to interpret: decreasing the number of 

Cdh1-inactivating enzyme demands a larger value of m in order to de-stabilise the G1-fixed 

point. This is fully confirmed by direct simulation using Gillespie stochastic simulation 

algorithm.54 Fig. 3 shows simulation results in which we compute the probability P(x1,T) = 

Prob(x1(τ = T)) for different values of ρ ≤ 1. T has been chosen so that the system has 

reached steady state conditions. We observe, that for ρ = 1 and m = 0.3, the system evolves 

towards the q1 ≪ 1-fixed point (i.e., the S-G2-M fixed point). As ρ decreases, i.e., there is 

more Cdh1-inactivating enzyme than Cdh1-activating enzyme, the system enters the bistable 

regime. If ρ reaches low-enough values (depending upon the initial condition), we may even 

observe an exchange of stability, i.e., the system evolves towards the q1 ~ 1-fixed point.

Regarding the dependence on p1, we have checked the predictions of the SCQSS 

approximation by means of simulations with different values of s0. Figure 2 shows the bi-

stability region of system Eqs. (36)-(39) in p1–mR-space, where mR = ρm. For a fixed value 

of mR, there is a threshold value for p1 below which the system stops being bistable to 

become entrapped into the S-G2-M fixed point (i.e., q1 ≪ 1). In order to validate this 

prediction, we have conducted stochastic simulations for different values of s0. Figure 4 

shows simulation results for P(x1,T) = Prob(x1(τ = T)). We observe that for small values of 

s0, the system is locked into the S-G2-M fixed point, as predicted by the SCQSS 

approximation. As s0 increases, the system enters a fluctuation-dominated bistable regime 

where, as the system goes through the bifurcation point, the system undergoes bistable 

behaviour. This behaviour is typical in a system undergoing a phase transition, where 

fluctuations unboundedly increase.73 Finally, as s0 continues to increase, the system 

becomes trapped into G1-fixed point (see Figure 4). These results fully reproduce the 

behaviour predicted by our SCQSSA stability analysis.

The aforementioned behaviour regarding unbounded increase of fluctuations close to a 

bifurcation73 is used to locate the critical value of the associated control parameter, i.e., ρ 
and pc for the simulations shown in Figs. 3 and 4, respectively. This property allows us to do 

a quantitative comparison between the simulations and asymptotic analysis. To this end, we 

plot how the variance, σ2 = 〈(x1 − 〈x1〉)2〉, where x1 = X1(τ = T)/S, changes as the 

corresponding control parameter varies. Regarding the results shown in Fig. 5(a) (associated 

to the simulations shown in Fig. 3), we observe that the critical value of the control 

parameter ρ, ρB, is approximately ρB ≃ 0.7, which, taking into account that m = 0.3, implies 

that the critical value of the renormalized mass, mR = ρm, mB = ρBm ≃ 0.21. Our asymptotic 
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analysis predicts that mB = 0.11 (see Fig. 2(b) with pc = 1). The results shown in Fig. 5(b) 

(corresponding to the simulations shown in Fig. 4), the critical value of pc, pB, is 

approximately pB ≃ 0.7. The prediction of our asymptotic analysis (see Fig. 2(b) with ρ = 1) 

is pB = 0.6.

IV Auto-Activation Gene Regulatory Circuit

We now proceed to analyse the effects of intrinsic noise in a model of a bistable self-

activation gene regulatory circuit30,55,74 in the context of the quasi-steady regime. Many 

instances of genetic switches, i.e., bistable gene regulatory circuits, have been identified.

25,26,75–77 Most of them are characterised by the presence of a positive feedback in which 

one of the molecular species involved in the system upregulates its own production. All of 

these systems exhibit bi-stability and hysteresis, i.e., a form of memory associated to 

bistable systems, and some of them are thought to exist in regimes where stochastic 

switching is frequent.77,78 Noise effects on this kind of system have been extensively 

analysed and found to have both constructive and deleterious effects. For example, Frigola et 
al.30 have found that noise stabilises the inactive (OFF) steady-state of a model of a bistable 

self-activation gene regulatory circuit by extending its stability region. In this section, we 

analyse the effects of noise specifically associated to the quasi-steady state regime in the 

large-deviations (large number of molecules) limit.

We study the stochastic system of the simple self-activating gene regulatory circuit 

schematically represented in Fig. 6. In this circuit, the gene product binds to form dimers 

which then act as its own transcription factor by binding to the promoter region of the gene. 

The rate-limiting factor is therefore the number of available binding sites within the 

promoter of the gene. For simplicity, our stochastic model associated to the rates shown in 

Table IV does not explicitly account for dimer formation. We will assume that this process is 

very fast so it can be subsumed under the formation of transcription-factor dimer/promoter 

binding site trimers (reaction 3, Table IV). Furthermore, it is important to note that our 

stochastic dynamics exhibits a conservation law: X2 + X3 = e0 at all time. This conservation 

law expresses the fact that the total number of binding sites, e0, is constant.

In order to proceed with our analysis of the stochastic model of self-activated gene 

regulation (see Table IV and Fig. 6), we apply the general methodology associated to our 

SCQSS approximation. Following the general procedure explained in Secs. I–III, we start by 

deriving the stochastic Hamiltonian associated to the process defined by the transition rates 

shown in Table IV (see Section II),

H(p, Q) = (p1 − 1)(R + k1Q2p2) + k2(1 − p1)Q1 + k3(p2 − p1
2p3)Q1

2Q3 + k4(p1
2p3 − p2)Q2,

(46)

which, according to our theory (see Section II), gives rise to the re-scaled Hamiltonian, 

Hκ(p, q), defined by
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Hκ(p, q) = (p1 − 1)(R + κ1q2p2) + κ2(1 − p1)q1 + (p2 − p1
2p3)q1

2q3 + κ4(p1
2p3 − p2)q2, (47)

where H(p, Q) = k3ES2Hκ(p, q) and the re-scaled variables, qi, and re-scaled rate constants, 

κj, are defined in Table V. The re-scaled Hamilton equations are thus given by

dq1
dτ = R + κ1q2p2 − κ2q1 − 2q1

2q3p1p3 + 2κ4p1p3q2, (48)

ϵ
dq2
dτ = (p1 − 1)κ1q2 + q1

2q3 − κ4q2, (49)

ϵ
dq3
dτ = − q1

2q3p1
2 + κ4p1

2q2, (50)

dp1
dτ = κ2(p1 − 1) − 2q1q3(p2 − p1

2p3), (51)

ϵ
dp2
dτ = κ1(1 − p1)p2 − κ4(p1

2p3 − p2), (52)

ϵ
dp3
dτ = q1

2(p1
2p3 − p2) . (53)

From these equations, we observe that for q2(τ) + q3(τ) = p, where p = e0/E, to hold we must 

have that p1(τ) = 1 for all τ. Imposing this condition on Eq. (51) implies that p2(τ) = p3(τ), 

which, in turn, together with Eqs. (52) and (53), imply that p2 = p3 = const. Finally, applying 

the QSS approximation to remaining equations, Eqs. (48)-(50), we obtain

dq1
dτ = R + κ1pp2

q1
2

κ4 + q1
2 − κ2q1, (54)
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q2 = p − q3 = p
q1

2

κ4 + q1
2 . (55)

As for the bistable enzyme-catalysed system, the parameter values are determined by 

matching the mean-field limit of our stochastic model, which is obtained by setting pi = 1 for 

all i67 and p = 1 (i.e., the number of binding sites exactly equal to its average), to the mean-

field system proposed by Frigola et al.30 The mapping of our parameters to those of Ref. 30 

and their associated values is given in Table VI.

Finally, according to the theory developed in Section II, p2 is determined in terms of the total 

number of binding sites within the gene promoter, e0,

− p2
dS0
dp2

= e0, (56)

where S0(p) = ln(G0(p)) and G0(p) is the generating function associated to the probability 

distribution of e0, P(e0). This probability distribution can be interpreted as corresponding to 

the distribution over a cell population of the number of binding sites in the promoter of gene 

x1. For example, if P(e0) is a Poisson distribution, the Eq. (56) reads38

p2 =
e0
E , (57)

where E ≡ 〈e0〉, i.e., the average of e0 over a population of cells. Therefore, according to this 

analysis, we have that p = p2, provided that P(e0) is a Poisson distribution with parameter E.

A Bifurcation analysis

Fig. 7 shows results regarding how the bifurcation diagram varies as we change pp2 = p2
2,

which, we recall, is determined by the (probability distribution of the) total number of 

binding sites within the gene promoter. Inspection of Eq. (54) shows that p2 has the effect of 

renormalising the self-activation rate κ1. If p2
2 < 1, then the rate of gene self-activation is 

effectively reduced, and consequently, the stability region of the inactive steady-state, q1 ~ 0, 

is extended. That is, we need to go to larger values of κ4 to enter the region where the active 

steady-state, q1 > 1, becomes stable (see Fig. 7). On the contrary, p2
2 > 1 has the effect of 

extending the stability region of the active steady-state, q1 > 1.

In order to verify the predictions of our bifurcation analysis (Fig. 7), we consider Eqs. (56) 

and (57), which relate the momentum variable p2 to the number of binding sites within the 

gene promoter. If we assume that the latter is distributed according to a Poisson distribution, 

then Eq. (57) holds and p2 = p = e0/E. Under these conditions, our bifurcation analysis 
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predicts that the probability distribution of X1, i.e., the random variable associated to the 

generalised coordinate q1, should change, as e0 decreases, from being uni-modal with a 

single maximum about the ON value of X1 (or, when scaled with s0, q1) to exhibiting bi-

modality, as the system approaches the saddle-node bifurcation which annihilates the ON 

state as it collides with the saddle point, with two peaks about the ON and OFF states. If e0 

is further reduced, the system will be driven passed this saddle-node bifurcation, the 

probability distribution becomes uni-modal but, unlike its large e0 counterpart, its peak is 

about the OFF q1-steady-state. We have verified this prediction by running simulations using 

the SSA. The results, which agree with our prediction, are shown in Fig. 8.

Quantitative comparison between our asymptotic analysis and the simulation results follows 

the same procedure as in Section III, i.e., we look at how the variance aforementioned 

behaviour regarding unbounded increase of fluctuations close to a bifurcation73 is used to 

locate the critical the variance σ2 = 〈(x1 − 〈x1〉)2〉, with x1 = X1(τ = T)/S changes as the 

control parameter varies: the maximum of σ2 as a function of the control parameter 

corresponds to the critical value. According to Fig. 9(b), the critical value of p, pB, is 

approximately given by pB ≃ 0.7. Our asymptotic analysis (see Fig. 9(b)) predicts that pB = 

0.78.

V Conclusions and Discussion

By means of the semi-classical quasi-steady state approximation, Section II, we have 

analysed stochastic effects affecting the onset of bi-stability in cell regulatory systems. Our 

theory shows that there exists a conserved momentum coordinate associated to each 

conserved chemical species. In the case of the enzyme-catalysed bistable system, Section III, 

there are three such conserved momenta, associated to each of the conserved chemical 

species, i.e., Cdh1 and its activating and inhibiting enzymes. For the self-activation gene 

regulatory network, we have one conserved momentum, corresponding to conservation of 

the number of binding sites of the gene’s promoter region.

According to the SCQSSA analysis of Ref. 38, the maximum rate achieved by an enzymatic 

reaction, Vmax, predicted by the mean-field theory29 is renormalised by a factor which 

equals the value of the (constant) momentum coordinate pi associated to the conserved 

enzyme: Vmax
(SC) = pe jpiVmax where Vmax

(SC) is the maximum rate predicted by the SCQSSA. 

Similarly, we have shown that the mean-field maximum activation rate associated to the 

auto-activation gene regulatory model, Amax, is renormalised in the presence of noise by a 

factor equal to the conserved momentum coordinate corresponding to the number of binding 

sites in the gene promoter, p2, i.e., Amax
(SC) = pp2Amax, with Amax

(SC) being the SCQSSA 

maximum activation rate. As a consequence of this parameter renormalisation, we have 

shown that variation in the value of the conserved momenta can trigger bifurcations leading 

to the onset of bistable behaviour beyond the predictions of the mean-field limit, i.e., for 

values of parameters where the mean-field limit predicts the system to be mono-stable, the 

SCQSSA predicts bi-stability, and vice versa (see Figs. 2 and 7).
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Furthermore, we have established that the value of the constant momenta is actually 

determined by the probability distribution of the associated conserved chemical species, and, 

ultimately, by the number of molecules of these species (see Eqs. (44), (56), and (57)). 

Therefore, our theory establishes that the numbers of molecules of the conserved species are 

order parameters whose variation should trigger (or cancel) bistable behaviour in the 

associated systems. This prediction is fully confirmed by direct numerical simulation using 

the stochastic simulation algorithm (see Figs. 3, 4, and 8). Quantitative comparison between 

the predictions of our asymptotic analysis and the simulation results (see Figs. 5 and 9) 

shows that our theoretical approach slightly underestimates the critical value for the bistable 

enzyme-regulated system. The theoretical prediction for the self-activating gene regulatory 

network appears to slightly overestimate the critical value.

Our results allow us to propose a means of controlling cell function. For example, regarding 

the enzyme-catalysed bistable model analysed in Section III, varying the number of 

molecules of the three conserved chemical species (Cdh1 and the associated activating and 

inhibiting enzymes) enables us to lock the system into either of the G1 or the S-G2-M stable 

fixed points or to drive the system into its bistable regime where random fluctuations will 

trigger switching between these two states. This could be accomplished by ectopically 

increasing the synthesis of the corresponding molecule or by targeting the enzymes with 

enzyme-targeted drugs.79,80 Similarly, the dynamics of the self-activating gene regulatory 

system could be driven into or out of its bistable regime by supplying an inhibitor that 

irreversibly binds to the promoter region, thus decreasing the effective number of binding 

sites.

This result allows us to explore strategies, for example, in the field of combination therapies 

in cancer treatment. Cellular quiescence is a major factor in resistance to unspecific 

therapies, such as chemo- and radio-therapy, which target proliferating cells. Bi-stability is 

central to control cell-cycle progression and to regulate the exit from quiescence, with 

enzyme catalysis (usually accounted for by (mean-field) Michaelis-Menten, quasi-steady 

state dynamics) being ubiquitously involved.25,26,28,77 Our findings will allow us to 

formulate combination strategies in which chemo- or radio-therapy is combined with a 

strategy aimed at driving cancer cells into proliferation or quiescence depending on the 

phase of the treatment cycle. Evaluation of the viability and efficiency of such combination 

require the formulation of multi-scale models70,81 whose analysis is beyond this scope of 

this paper, and it is therefore postponed for future work.

Our approach differs from previous work, such as Dykman et al.82 in a significant aspect, 

namely, whilst their aim is to estimate the rate of noise-induced transition between 

metastable states in systems exhibiting multi-stability, the purpose of our analysis is to 

ascertain whether noise can alter the multi-stability status of the system. Dykman et al.82 do 

not address such issue.

Eqs. (36)-(39), (54), and (55) are derived from a semi-classical approximation of the master 

equation (or its equivalent description in terms or the generating function PDE). This 

approximation yields a set Hamilton equations (Eqs. (8) and (9)) whose solutions are the 

optimal fluctuation paths and, as such, they describe fluctuation-induced phenomena which 
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cannot be accounted for by the mean-field approximation. One of the best known examples 

of this is exit problems from metastable states in noisy systems (e.g., extinctions), where the 

semi-classical approximation provides the optimal escape path from which information such 

as mean-first passage time or waiting time for extinction can be obtained (see, for example, 

Refs. 63, 67, and 83). Furthermore, Eqs. (36)-(39), (54), and (55) are derived from the 

general Hamilton equations, Eqs. (8) and (9), by means of an approximation based on 

separation of time scales, not on any mean-field assumption.

A closely related subject to that analysed in this paper is that of noise-induced bifurcations.

31 Such phenomenon has been studied in biological systems where the mean-field limit does 

not predict bistability, such as the so-called enzymatic futile cycles32 where noise associated 

to the number of enzymes induces bistability. In the absence of this source of noise, the 

system does not exhibit bistable behaviour. We have not dealt with such noise-induced 

phenomena in the present paper, in the sense that all the systems analysed in this paper are 

such that their mean-field limit exhibits bistability. We leave the interesting issue of whether 

our SCQSSA framework can be used to analyse noise-induced bifurcation phenomena for 

future research.
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Fig. 1. 
Reactions for the bistable enzyme-catalysed system proposed by Tyson and Novak.22 X1 

represents active Cdh/Apc, X2 inactive Cdh/Apc, X3 inactivating enzymes, X4 activating 

enzymes, X5 active Cdh/Apc-inactivating-enzyme complexes, X6 inactive Cdh/Apc-

activating-enzyme complexes, and X7 the number of CycB-CDK complexes. The first two 

reactions correspond to enzyme-catalysed inactivation and activation of Cdh/APC. The third 

reaction corresponds to the dynamics of CycB activity: synthesis at a constant rate, k7, and 

degradation by natural decay and active Cdh/Apc-induced inactivation.
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Fig. 2. 
(a) Bifurcation analysis for the SCQSS approximation of the stochastic bistable enzyme-

catalysed system Eqs. (36)-(39). The panels on the top plot (a) show the bifurcation 

diagrams for different values of the parameters p1, pc = p1, and ρ =
p3pe3
p4pe4

. If e0 and s0 are 

random Poisson variables with parameter S and E, respectively, then ρ =
p3

2

p4
2  (see Eq. (45)). 
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In these panels, solid lines correspond to r = 1, dotted-dashed lines to r = 2, and dashed lines 

to r = 3. The bottom plot (b) shows the bi-stability boundaries in p1–mR parameter space. 

The region between the boundaries corresponds to the bistable region of the stochastic Tyson 

and Novak system according to the SCQSS approximation.
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Fig. 3. 
Simulation results for the stochastic bistable enzyme-catalysed system Table I. We have 

plotted the probability P(x1, T) = Prob(x1(τ = T)), where x1 = X1/S and T = 100 for different 

values of ρ. The initial number of Cdh1-inactivating and Cdh1-activating enzymes is fixed 

according to X3(t = 0) =
e0
ρ  and X4(t = 0) = e0, respectively, m = 0.3. We aim to check our 

predictions regarding the effect of the ratio ρ =
p3

2

p4
2 =

e3
2

e4
2  on the stability properties of the 

system. According to our results shown in Fig. 2, decreasing the ratio between the number of 

Cdh1-inactivating (e4) and Cdh1-activating (e3) enzymes, the system should be driven away 

from bistability and into the stable G1-phase regime (see Fig. 2(b)). The remaining 

parameter values are inferred from those given by Tyson and Novak22 as shown in Tables II 

and III. We see that when varying ρ, the system switches from a state of high x1 (ρ ≥ 0.9) to 
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a state of low x1 (ρ ≤ 0.6), whereas at the intermediate levels (e.g., ρ = 0.7 and ρ = 0.8), the 

system is in a bistable state. We take p1 = pc = 1 in all the simulations shown in this figure. 

Average is performed over 1000 realisations.
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Fig. 4. 
Simulation results for the stochastic bistable enzyme-catalysed system Table I. We have 

plotted the probability P(x1, T) = Prob(x1(τ = T)), where x1 = x1/S and T = 100 with 

different initial conditions and different values of pc. Average is performed over 1000 

realisations. m = 0.3 and X3(t = 0) = e0 and X4(t = 0) = e0. The remaining parameter values 

are inferred from those given by Tyson and Novak22 as shown in Tables II and III. We see 

that when varying pc, the system switches from a state of high x1 (pc ≥ 0.8) to a state of low 

x1 (pc ≤ 0.6), whereas at the intermediate levels of pc = 0.7, the system is in a bistable state.
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Fig. 5. 
Plots showing the variance σ2 = 〈(x1 – 〈x1〉)2〉, where x1 = X1(τ = T)/S associated to the 

simulation results shown in Fig. 3 (panel (a)) and in Fig. 4 (panel (b)). These plots show how 

σ2 changes as the control parameter (ρ, for the simulations associated to plot (a), and pc for 

the simulations shown in plot (b)). The maximum of σ2 as a function of the control 

parameter helps us to quantitatively determine the corresponding critical value.73
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Fig. 6. 
Schematic representation of the self-activating gene regulatory circuit. The gene product X1 

is its own transcription factor which, upon dimerisation, binds the promoter region of the 

gene thus triggering gene transcription. The transition rates corresponding to this gene 

regulatory circuit are given in Table IV. For simplicity, we use an effective model in which 

the formation of the dimer and binding to the promoter region are taken into account in a 

single reaction, and the resulting number of promoter sites bound by two transcription 

factors is denoted as X2.
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Fig. 7. 
Bifurcation analysis for the SCQSS approximation of the stochastic auto-activation gene 

regulatory circuit Eqs. (54) and (55). This figure shows the bifurcation diagram for different 

values of the parameters of p2. In these, solid lines correspond to p2
2 = 1, dashed lines to p2

2 = 

0.9, dotted to p2
2 = 0.8, and dashed-dotted lines to p2

2 = 0.7 (recall that p2 = p). Parameter 

values as given in Table VI.

de la Cruz et al. Page 31

J Chem Phys. Author manuscript; available in PMC 2019 May 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 8. 
Simulation results for the stochastic gene regulatory circuit of self-activation (Table IV). We 

have plotted the probability P(x1, T) = Prob(x1(τ = T)), where x1 = X1/S and T = 100 as the 

number of binding sites in the gene promoter, given by X3(t = 0) = p E. Average is 

performed over 1000 realisations. Parameter values are inferred from those given by Frigola 

et al.30 as shown in Tables V and VI. We see the emergence of bistability at p = 0.7, 

whereas for smaller(larger) values of p, the system will be in the stable steady state 

corresponding to low(high) number of transcription factor molecules.
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Fig. 9. 
Plot (a): bifurcation analysis for the SCQSS approximation of the stochastic auto-activation 

gene regulatory circuit Eqs. (54) and (55), with κ1 = 3.0. Parameter values as given in Table 

VI. Plot (b): simulation results for the variance σ2 = 〈(x1–〈x1〉)2〉, with x1 = X1(τ =T)/S, 

associated to the simulation results shown in Fig. 8. This plot shows how σ2 changes as the 

control parameter, p. The maximum of σ2 as a function of the control parameter helps us to 

quantitatively determine the corresponding critical value.73
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Table I

Random variables and transition rates of the stochastic model associated to the enzymatic reaction shown in 

Fig. 1.

Variable Description

X1, X2 Number of active and inactive (respectively) Cdh1 molecules

X3, X4 Number of Cdh1-inactivating and Cdh1-activating (respectively) enzyme molecules

X5, X6 Number of enzyme-active Cdh1 and enzyme-inactive Cdh1 (respectively) complexes

X7 Number of active cyclin molecules

Transition rate r Event

W1(x) = k1X7X1X3 r1 = (−1, 0,−1, 0,+1, 0, 0) Enzyme and active Cdh1 form complex

W2(x) = k2X7X5 r2 = (+1, 0,+1, 0,−1, 0, 0) Enzyme-active Cdh1 complex splits

W3(x) = k3X7X5 r3 = (0,+1,+1, 0,−1, 0, 0) Inactivation of Cdh1 and enzyme release

W4(x) = k4X2X4 r4 = (0,−1, 0,−1, 0,+1, 0) Enzyme and inactive Cdh1 form complex

W5(x) = k5X6 r5 = (0,+1, 0,+1, 0,−1, 0) Enzyme-inactive Cdh1 complex splits

W6(x) = k6X6 r6 = (+1, 0, 0,+1, 0,−1, 0) Activation of Cdh1 and enzyme release

W7(x) = k7 r7 = (0, 0, 0, 0, 0, 0,+1) CycB synthesis

W8(x) = k8(1 + aX1)X7 r8 = (0, 0, 0, 0, 0, 0,−1) CycB degradation
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Table II

Dimensionless variables used in Eq. (29). S and E are the average concentration of Cdh1 (active plus inactive) 

and the average concentration of both Cdh1-activating and Cdh1-inactivating enzymes, respectively. We 

further assume that the stationary concentration of active CycB also scales with S.

Rescaled variables Dimensionless parameters

τ = k1ESt 𝝐 = E/S, α = aS

q1 = Q1/S κ2 = k2/(k1S)

q2 = Q2/S κ3 = k3/(k1S)

q3 = Q3/E κ4 = k4/(k1S)

q4 = Q4/E κ5 = k5/(k1S2)

q5 = Q5/E κ6 = k6/(k1S2)

q6 = Q6/E κ7 = k7/(k1ES2)

q7 = Q7/S κ8 = k8/(k1ES)
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Table III

Parameter values used in simulations of the stochastic bistable enzyme-catalysed system.

Rescaled parameter Parameter Units Reference

κ2 = J4 − κ3 a1′ = 0.04 min−1 22

κ3m =
a4m

k1ES
a2′ = 0.04 min−1 22

κ6 =
a3′

k1ES
a2″ = 1 min−1 22

κ5 = κ4J3−κ6 a3 = 1 min−1 22

κ7 =
a1′

k1ES
a4 = 35 min−1 22

κ8 =
a2′

k1ES
m = 0.3 Dimensionless …

a =
a2″

k1ESκ8

E = 0.01 Dimensionless 38

S = 1.0 Dimensionless 38

k1 = 1 min−1 33

κ4 = κ3 Dimensionless 38

J3 = J4 = 0.04 Dimensionless 22
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Table IV

Random variables and transition rates associated to the stochastic dynamics of an auto-activation gene 

regulatory circuit.30,74 X2 corresponds to the number of transcription-factor dimer/promoter binding site 

trimers. See Fig. 6 for a schematic representation.

Variable Description

X1 Number of transcription factor molecules

X2 Number of bound promoter sites in the gene promoter region

X3 Number of unoccupied (unbound) binding sites in the gene promoter region

Transition rate r Event

W1(x) = R+k1X2
r1 = (1, 0, 0) Synthesis of the transcription factor

W2(x) = k2X1 r2 = (−1, 0, 0) Degradation of the transcription factor

W3(x) = k3X1(X1−1)X3 r3 = (−2,+1,−1) Dimer binding to the gene promoter region

W4(x) = k4X2 r4 = (+2,−1,+1) Unbinding from the gene promoter region
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Table V

Dimensionless variables used in Eq. (29). s0 is a characteristic scale associated to the average number of 

molecules of transcription factor, X1, and E is the average number of binding sites in the promoter of the self-

activating gene. We further assume that S ≫ E.

Rescaled variables Dimensionless parameters

τ = k3ESt ϵ = E/S, R = R/(k3ES2)

q1 = Q1/S κ1 = k1/(k3S2)

q2 = Q2/E κ2 = k2/(k3ES)

q3 = Q3/E κ4 = k4/(k3S2)
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Table VI

Parameter values used in simulations of the stochastic self-activation gene regulatory circuit.

Rescaled parameter Parameter Units Reference

κ1 = a
kdeg Kd

Kd = 10 nM 30

κ2 = 1 kdeg = 2 min−1 30

κ4 = 1 r = 0.4 nM min−1 30

R = r
kdeg Kd

S = 1.0 …

k3ES = kdeg E = 0.1 …
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