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Abstract
Purpose  Constructed from a theoretical framework, the coordinated undermining of survival paths in glioblastoma (GBM) 
is a combination of nine drugs approved for non-oncological indications (CUSP9; aprepitant, auranofin, captopril, celecoxib, 
disulfiram, itraconazole, minocycline, quetiapine, and sertraline) combined with temozolomide (TMZ). The availability of 
these drugs outside of specialized treatment centers has led patients to embark on combination treatments without systematic 
follow-up. However, no experimental data on efficacy using the CUSP9 strategy in GBM have been reported.
Methods  Using patient-derived glioblastoma stem cell (GSC) cultures from 15 GBM patients, we described stem cell proper-
ties of individual cultures, determined the dose–response relationships of the drugs in the CUSP9, and assessed the efficacy 
the CUSP9 combination with TMZ in concentrations clinically achievable. The efficacy was evaluated by cell viability, 
cytotoxicity, and sphere-forming assays in both primary and recurrent GSC cultures.
Results  We found that CUSP9 with TMZ induced a combination effect compared to the drugs individually (p < 0.0001). 
Evaluated by cell viability and cytotoxicity, 50% of the GSC cultures displayed a high sensitivity to the drug combination. 
In clinical plasma concentrations, the effect of the CUSP9 with TMZ was superior to TMZ monotherapy (p < 0.001). The 
Wnt-signaling pathway has been shown important in GSC, and CUSP9 significantly reduces Wnt-activity.
Conclusions  Adding experimental data to the theoretical rationale of CUSP9, our results demonstrate that the CUSP9 treat-
ment strategy can induce a combination effect in both treatment-naïve and pretreated GSC cultures; however, predicting 
response in individual cultures will require further profiling of GSCs.
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Introduction

Glioblastoma (GBM) is an aggressive brain tumor that, 
despite multimodal oncological therapy, relapses within 
6–9 months (Stupp et al. 2005). A major challenge in devel-
oping new treatments is the intricate tumor heterogeneity at 
the molecular and cellular level (Brennan et al. 2013; Qazi 
et al. 2017; Lan et al. 2017). Targeted therapies have been 
sought to address the molecular heterogeneity in GBM, but 
dozens of clinical trials have failed to demonstrate survival 
benefit (Touat et al. 2017).

The application of targeted therapies is hampered by the 
existence of complex intra- and intertumoral heterogene-
ity in tumor-promoting signaling systems along with tumor 
evolutionary dynamics leading to acquired resistance to 
targeted drugs (Szerlip et al. 2012; Sottoriva et al. 2013; 
Klingler et al. 2015). To circumvent tumor heterogeneity, 
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polytherapeutic approaches combining compounds acting on 
different targets simultaneously are receiving rising interest 
(Qazi et al. 2017). Moreover, the dramatic increase in costs 
for new oncological drugs has increased both the academic 
and public interest into possibilities in repurposing well-
known drugs used for non-oncological indications for their 
potential anticancer activity (Bertolini et al. 2015; Huang 
et al. 2018). And as drugs used for decades have established 
dosing schedules and well-known toxicity profiles, both the 
time frame and costs to reposition for new indications can 
greatly be reduced.

Recently, a new treatment approach combining well-
known drugs approved for non-oncological indications for 
polytherapeutic therapy has been suggested in GBM (Kast 
et al. 2013, 2014). The rationale consists of coordinated 
undermining of survival paths (CUSP) active in GBM by 
nine repurposed drugs, termed CUSP9. The concept of 
simultaneous blockade of multiple signaling pathways aims 
to prevent cancer cells to escape therapeutic challenges, 
rendering them susceptible for the cytotoxic effects of 
temozolomide (TMZ). Due to toxicities, the composition of 
drugs has been revised, and the current version consists of 
aprepitant, auranofin, captopril, celecoxib, disulfiram, itra-
conazole, minocycline, quetiapine, and sertraline (Halatsch 
et al. 2017).

Since the proposal, the concept of CUSP has been 
debated among neuro-oncology academics and practitioners 
(Prados et al. 2015; Purow 2016). More importantly, how-
ever, we experience that patients inquire and also adhere 
to parts or the entire CUSP9 combination along standard-
of-care treatments outside of clinical trials within a do-it-
yourself approach. Although case reports of patients treated 
with CUSP9 on a compassionate-use basis (Kast et al. 2014; 
Halatsch et al. 2017), and a recent registration of a clinical 
trial (NCT02770378), no experimental data have shown effi-
cacy using the CUSP9 strategy. This prompted us to explore 
the efficacy of CUSP9 with concomitant TMZ using clinical 
achievable drug concentrations in patient-derived glioblas-
toma stem cells (GSCs), which may be responsible for tumor 
progression and recurrence in GBM (Lan et al. 2017).

Materials and methods

Brain tumor cultures

Glioblastoma biopsies were obtained from 15 informed and 
consenting patients undergoing surgery for GBM at Oslo 
University Hospital, Norway, approved by The Norwegian 
Regional Committee for Medical Research Ethics (REK 
2017/167). The IDH mutational status was evaluated by 
immunohistochemistry and sequencing, and the MGMT-pro-
moter methylation status evaluated by methylation-specific 

quantitative PCR. Cell cultures were established and main-
tained in serum-free conditions enriched for bFGF (R&D 
Systems) and EGF (R&D Systems), as previously described 
(Vik-Mo et al. 2010). Patient- and GSC culture characteris-
tics are summarized in Online Resource 1. The self-renewal 
potential of the GSCs was quantified by the total number of 
cells following serial passages. Differentiation was induced, 
and cells were fixed and stained, as previously described 
(Vik-Mo et al. 2010). Images were acquired using Olympus 
Soft Imaging Xcellence software v.1.1.

Flow cytometry

Cells were suspended in PBS with 2% fetal bovine serum 
(Biochrom) and stained with directly conjugated antibodies 
(CD15-PerCP, R&D Systems, CD133-PE, Miltenyi Biotec) 
according to the manufacturer’s instructions. Cells were 
washed three times before analysis by flow cytometer LSRII 
(BD Bioscience). Dead cells were identified by propidium 
iodine (Thermo Fisher Scientific). Flow Jo software v.10.4.1 
was used for data analysis.

qRT‑PCR

The qRT-PCR experiments were performed, as previ-
ously described (Fayzullin et al. 2019). The high-capacity 
cDNA Reverse Transcription Kit, TaqMan Fast Advanced 
Master Mix, TaqMan oligonucleotide primers and probes 
[Hs00157674_m1 (GFAP), Hs00801390_s1 (TUBB3), and 
Hs01009250_m1 (PROM1/CD133)], the ABI Prism Detec-
tion System, and software (all from Applied Biosystems) 
were used according to the manufacturer’s instructions. 
Human β-Actin [Hs9999999903_m1 (ACTB)] was used as 
housekeeping gene. The relative gene expression levels were 
calculated using the standard curve method.

Intracranial transplantation

The National Animal Research Authority approved the 
animal procedures (FOTS 8318). C.B.-17 SCID female 
mice (7–9 weeks old, Taconic) were anesthetized with an 
injection of zolazepam (3.3 mg/mL), tiletamine (3.3 mg/
mL), xylazine (0.45 mg/mL), and fentanyl (2.6 μg/mL), 
and placed in a stereotactic frame (David Kopf Instru-
ments). Cells were prepared and transplanted, as previously 
described (Vik-Mo et al. 2010). The animals were regularly 
monitored for signs of distress and killed by cervical dislo-
cation after 15 weeks or earlier if weight loss > 15% or neu-
rological symptoms developed. The brains were harvested 
and further processed as previously described (Vik-Mo et al. 
2010). Images of brain sections were acquired using Axio 
Scan.Z1 (Carl Zeiss). Processing of images was performed 
using ImageJ 2.0.
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Drugs

Drugs used in this study: aprepitant (Selleck Chemicals, 
Cat# S1189), auranofin (Santa Cruz Biotechnology, Cat 
#sc-202476), captopril (Selleck Chemicals, Cat# S2051), 
celecoxib (Selleck Chemicals, Cat# S1261), copper(II)
chloride dehydrate (Sigma-Aldrich, Cat# C3279), disul-
firam (Selleck Chemicals, Cat# S1680), itraconazole 
(Selleck Chemicals, Cat# S2476), minocycline (Selleck 
Chemicals, Cat# S4226), quetiapine fumarate (Selleck 
Chemicals, Cat# S1763), sertraline (Selleck Chemicals, 
Cat# S4052), and temozolomide (Sigma-Aldrich, Cat# 
T2577). Copper(II)chloride dehydrate (CuCl2) was added 
to all wells containing disulfiram (DSF) and corresponding 
control wells (Skrott et al. 2017). A fixed concentration of 
20 µM Cu was used in this study (Twomey et al. 2008). 
Minocycline was dissolved in H2O, while all other drugs 
were dissolved in DMSO for generation of stock solutions 
and stored according to the manufacturer’s instructions.

Drug concentrations

The clinical plasma concentrations of the individual drugs 
were obtained from reports of pharmacokinetic evalua-
tions [aprepitant (Azuma and Fukase 2013), auranofin 
(Gottlieb 1982; Furst and Dromgoole 1984), captopril 
(Kripalani et al. 1980; al-Furaih et al. 1991), celecoxib 
(Davies et al. 2000), disulfiram (Johansson 1988, 1992), 
itraconazole (Heykants et al. 1989; Prentice et al. 1994), 
minocycline (Macdonald 1973; Agwuh 2006), quetiapine 
(DeVane and Nemeroff 2001; Jaskiw et al. 2004), sertra-
line (DeVane et al. 2002), and temozolomide (Ostermann 
et al. 2004)], and from drug labels by the U.S. Food and 
Drug Administration (http://label​s.fda.gov).

Cell viability and cell cytotoxicity assay

Cells were plated at 5000 cells/well in a 96-well plate 
(Sarstedt), cultured for 24 h before adding drugs and fur-
ther incubated for 72 h. Cell viability was assessed using 
Cell Proliferation Kit II XTT (Roche) solution, incubated 
for 24 h before absorbance was analyzed on a PerkinElmer 
EnVision. Cell survival is reported relative to background 
corrected negative control of the drug. Cell cytotoxicity 
was assessed using CellTox™ Green Cytotoxicity Assay 
(Promega) solution, incubated for 15 min before fluores-
cence was analyzed on a Perkin Elmer EnVision. Measure-
ments were corrected for background fluorescence, and 
raw data were scaled with reference to positive (sepantro-
nium bromide) and negative control.

Sphere‑forming assay

Cells were plated at 500 cells/well in 96-well plate 
(Sarstedt), cultured for 24 h before adding drugs and fur-
ther incubated for 10 days. After 10 days, the spheres were 
stained using Thiazolyl Blue Tetrazolium Bromide (Sigma-
Aldrich) 4 h prior to image acquisition and counting using 
an automated colony counter (GelCount, Oxford Optron-
ics). Spheres > 30 µM in diameter were included in the final 
analysis, and results are reported relative to negative control.

Wnt‑pathway activity (luciferase assay)

The GSCs were stably transfected with a luciferase reporter 
containing a synthetic 7xTCF-responsive promoter (7TFP 
was a gift from Roel Nusse, Addgene plasmid 24308). The 
lentiviral Renilla luciferase reporter was used as control 
(Amsbio, Cat# LVP370). The cells were plated at 20,000 
cells/well in a 96-well plate before adding the respective 
drugs of CUSP9. To boost WNT/β-catenin signaling, 10 mM 
LiCl was added. The cells were incubated for 24 h before 
luciferase activity was quantified using the Dual-Glo Lucif-
erase Assay System (Promega) according to the manufac-
turer’s protocol.

Statistical considerations

Data analysis and graphic presentation were undertaken 
using GraphPad Prism 7.0 and Microsoft Excel 14.7.3. 
Dose–response curves were fitted on the basis of a four-
parameter sigmoidal logistic fit function defined by maximal 
and minimal cell survival, slope, and inflection point (EC50). 
In the curve fitting, the maximal cell survival was fixed to 
100%, the minimal cell survival was allowed to float between 
0% and 75% and slope between 0 and − 2.5. For drugs not 
reducing any cell survival, the constraints were removed. 
Statistical analyses were performed using paired sample t 
test or one-way ANOVA corrected for multiple comparisons 
using Dunnett’s test, as stated when the analysis was applied. 
Correlation analysis was undertaken using Spearman corre-
lation coefficient. A p value < 0.05 was chosen to represent 
significance for the statistical analyses.

Results

Validation of GSCs

We have extensive experience in culturing and characteri-
zation of the GSC population from patient-derived GBM 
biopsies (Varghese et al. 2008; Vik-Mo et al. 2010; Mughal 
et al. 2018).

http://labels.fda.gov
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We have previously characterized selected GSC cultures 
(T10965, T1008) in this sample cohort (Vik-Mo et al. 2010; 
Joel et al. 2015; Mughal et al. 2018). Of the remaining GSC 
cultures, we confirmed stem cell properties by functional 
assays of self-renewal potential, expression of stem cell 
markers, ability to generate different brain cell lineages 
upon differentiation with differential expression profiles, 
along with the ability to form tumors upon xenografting to 
immunocompromised mice in both cultures derived from 
treatment-naïve and heavily pretreated recurrent disease 
(Fig. 1, Online Resource 1).

The dose–response relationships and clinical 
relative drug concentrations

Next, we established the dose–response relationships to 
all drugs comprised in the CUSP9 and TMZ in four dif-
ferent primary GSC cultures (T1456, T1459, T1502, and 
T1506, Fig. 2). Each drug was tested in a dose range cov-
ering clinically achievable concentrations. To capture both 
cytostatic (cell viability) and cytotoxic (cell cytotoxicity) 
responses, we utilized two independent evaluations of cell 
death. Except for auranofin (AUR) and DSF, no drugs dis-
played any marked inhibitory effect individually within the 
concentration range tested (Fig. 2). The marked inhibitory 
effect (cell survival < 25%) of AUR and DSF was found to 
be in concentrations well above what could be considered 
clinically achievable.

After establishing the dose–response relationships, clin-
ical plasma concentrations (CPC) were obtained for each 
drug. As CPCs vary depending on the dose, route of admin-
istration, and drug half-life [maximal concentration (Cmax) 
versus steady-state levels], we decided to pursue drug con-
centrations in the CUSP9 combination in the lower end of 
reported Cmax-values at standard dosing schedules for the 
individual drugs intended use (Fig. 2). As AUR and itracon-
azole (ITZ) have a half-life of > 10 days and > 24 h, respec-
tively (Gottlieb 1982; Heykants et al. 1989; Kast et al. 2014), 
we used the steady-state drug concentration of AUF and 
ITZ to reflect a clinical situation. However, as steady-state 
concentrations of AUR (≥ 500 nM) were within the area of 
inflection with inhibitory effects in GSC cultures, we used 
250 nM of AUR in the CUSP9 combination to remove a 
possible substantial inhibitory effect of a single drug. The 
concentrations further pursued in the study related to CPCs 
are outlined in Fig. 2.

Combination effect of CUSP9 in patient‑derived 
primary GSC cultures

We next investigated the effect of all drugs individually 
along with the combined effect of CUSP9 with TMZ (w/
TMZ). In T1459, the drugs were not effective individually; 

we found, however, a significant combination effect when 
evaluating both viability and cytotoxicity (both p < 0.0001, 
Fig. 3a, b). We further investigated the efficacy of CUSP9 
in a third assay evaluating sphere formation. Despite the 
limitations of detailed clonal analysis using sphere-form-
ing assays (Singec et al. 2006), marked differences in the 
number of spheres and sphere diameter capture inhibitory 
effects. We observed selected individual effects of drugs in 
reducing the total number of spheres (AUF, DSF, and ITZ, 
Fig. 3c) and the total area of spheres (AUR, DSF, ITZ, and 
TMZ, Fig. 3d). However, the CUSP9 w/TMZ combination 
confirmed a significant combination effect by completely 
eradicating all spheres (both p < 0.01, Fig. 3c–e).

We further investigated the effect of all drugs individually 
and in the CUSP9 w/TMZ combination in three additional 
primary GSC cultures (T1456, T1502, and T1506). In two 
of the cultures (T1456 and T1506) the same effect was found 
across all assays (Fig. 4a–c). In one culture (T1502), how-
ever, the combination had very limited efficacy (> 75% cell 
survival) in both the viability and cytotoxicity evaluation 
(Fig. 4a). Furthermore, in T1502, the combination treatment 
did not reduce the total number of spheres, but inhibited the 
capacity to form large spheres (p < 0.001, Fig. 4b, d).

The efficacy of CUSP9 in a heterogeneous 
population of GSC cultures

The CUSP9 approach was originally coined for the treatment 
of recurrent GBM (recGBM) (Kast et al. 2013, 2014). We, 
therefore, cultured GSCs from five patients undergoing sur-
gery for relapsed disease to evaluate efficacy of the CUSP9 
w/TMZ combination in recGBM. As GBM display complex 
tumor heterogeneity, we further included additionally six 
primary GSC cultures, adding up to 15 individual GSC cul-
tures in total (Fig. 5). The viability and cytotoxicity evalua-
tion demonstrated a continuum in response patterns ranging 
from insensitive (> 75% cell survival) to highly sensitive 
(< 25% cell survival), with seven and eight clustering as 
highly sensitive, respectively, which included both primary 
and recurrent GSC cultures (Fig. 5a, b). The correlation of 
drug responses displayed an excellent correlation (p < 0.01, 
Fig. 5c). The longer incubation for evaluation of sphere for-
mation resulted in more cultures categorized as highly sen-
sitive, and evaluation by the total area of spheres suggested 
a broad effect. To compare efficacy of the combination 
treatment to the standard-of-care (TMZ), we compared the 
results from the sphere-forming assay, as incubation > 72 h 
in required for detecting TMZ efficacy at CPCs (Lun et al. 
2016). The combination regimen displayed a significant 
superior efficacy to TMZ monotherapy (p < 0.0001, Fig. 5d, 
e). Interestingly, all GSC cultures from recGBM were highly 
resistant to TMZ monotherapy compared to the heterogene-
ous response in primary GSC cultures (Fig. 5d–f).
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Fig. 1   Patient-derived GSCs harbor stem cell properties. a T1 con-
trast-enhanced MRI of T1454 displaying the GBM located in the 
right temporal region. b Upon cultivation, the tumor formed free-
floating spheres, c which could be exponentially propagated in serial 
passages. d Upon xenografting, the tumor formed an invasive tumor. 
Invasive rim of the tumor delineated. Staining with hematoxylin and 
eosin. Scale bar = 200 μm. e The GSCs in T1454 expressed the stem 
cell markers CD133 and CD15. The expression was reduced upon 
differentiation. f qRT-PCR confirmed the reduction of stem cell-
related expression of CD133, along with the increased expression 
of the more lineage-specific GFAP and β3-tubulin upon differen-

tiation. The results are presented as mean and standard error to the 
mean of three independent experiments. g Upon differentiation in 
serum-containing media, the tumor cells formed arborizations and 
twisting processes associated with a more mature morphology, and 
stained positive for GFAP and β3-tubulin. Nuclei stained with DAPI. 
h, i T1 contrast-enhanced MRI of the primary GBM T1547 and the 
pretreated and recurrent GBMs T1513 and T1534 with the corre-
sponding in vitro spheroid morphology upon cultivation and the cor-
responding xenograft. Brain sections are stained with hematoxylin & 
eosin. Scale bar 1 mm
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Drug Common usage Dose-response    Viability  
     (EC50) 

   Cytotoxicity 
        (EC50)

Clinical plasma 
concentration

In vitro concentration 
used in this study

Aprepitant Anti-emesis >100 µM >100 µM 1.5 - 3.5 µM 1.5 µM

Auranofin Rheumatic 
disease 1700 nM 1000 nM 500 - 1500 nM 

(steady state) 250 nM

Captopril Anti-hypertensive >100 µM >100 µM 1.0 - 3.5 µM 1.5 µM

Celecoxib
Non-steroidal 

anti-inflammatory 
drug

72.9 µM >100 µM 2 - 7 µM 2 µM

Disulfiram Alcohol aversion 
therapy 265 nM 310 nM 100 - 200 nM 100 nM

Itraconazole Fungal disease >25 000 nM 5500 nM 1000 - 3000 nM 
(steady state) 1000 nM

Minocycline Antibiotic >100 µM >100 µM 3 - 7.5 µM 3 µM

Quetiapine Anti-psychotic >100 µM >100 µM 0.2 - 2.5 µM 1 µM

Sertraline Anti-depressant 15 100 nM 6300 nM 350 - 550 nM 400 nM

Temozolomide Alkylating agent >250 µM >250 µM 30-75 µM 50 µM
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CUSP9 responsiveness cultures are enriched 
for proneural subtype

In the 14 cultures tested for sensitivity to the CUSP9 com-
bination w/TMZ evaluated by the viability and cytotoxicity 
assay [one culture (T1561) failed the cytotoxicity evalua-
tion], both primary and recurrent GSC cultures were found 
ranging from less to highly sensitive. However, 50% of the 
cultures (n = 7) clustered with a highly sensitive response 
pattern (< 25% cell survival in both assays) (Fig. 5c). We 
explored possible patient- or GSC culture-specific traits 
associated with high response. We found that all high 
responders were of proneural subtype; however, cultures of 
proneural subtype were also among the insensitive cultures 
(Online Resource 1). Correlation of response patterns to 
CD133 expression, proliferative capacity, MGMT-promoter 
methylation, and patient age or survival did not establish any 
significant relationships.

CUSP9 reduces cancer stem cell signaling pathway 
activity

The rationale of the drug composition in CUSP9 was to add 
drugs that both inhibit general growth factor-related signal-
ing pathways (e.g., Akt, mTOR, and STAT), and specifically 
target the stem cell population in GBM (e.g., ALDH and 
hedgehog signaling) (Kast et al. 2013, 2014). Although not 
outlined in the original CUSP9 protocol; we noticed that two 
of the drugs (celecoxib, quetiapine) also have been reported 
to attenuate Wnt-signaling in commercially available GBM 
cell lines (Sareddy et al. 2013; Wang et al. 2017). Previously 
reporting on the importance of dysregulated Wnt-signaling 
in GSCs (Sandberg et al. 2013; Kierulf-Vieira et al. 2016), 
we investigated whether Wnt-signaling could play a role in 
the CUSP9 protocol. We, thus, explored both the individual 
drugs and the complete combination for functional inhibi-
tion of canonical Wnt-activity and found a significant reduc-
tion in Wnt-activity by the combined treatment (p < 0.001, 

Fig. 6a, b). This attenuation of the Wnt-activity was a com-
bination effect, as we could not ascribe the inhibition to any 
drugs individually, including no substantial attenuation by 
celecoxib or quetiapine at CPCs.

Discussion

Using clinically achievable concentrations, we provide, in 
this study, experimental data of a functional combination 
effect utilizing a coordinated pharmacological blockade 
by nine well-known drugs approved for non-oncological 
indications together with TMZ (the CUSP9 strategy) in 
patient-derived GSC cultures from both primary and recur-
rent GBMs.

As some GBM patients already supplement the conven-
tional treatment with the CUSP9 strategy, we conducted 
this study with a clinical focus. However, mirroring clinical 
practice in preclinical studies is challenging. One fundamen-
tal aspect is the determination of drug concentrations that 
are achievable within the tumor of the patients (Liston and 
Davis 2017). What drug concentrations to pursue preclini-
cally to reflect a clinical situation are not well defined (Smith 
and Houghton 2013). It has been suggested that preclinical 
drug levels can be decided using Cmax as an upper reference 
limit to mirror a clinical situation and remove potential off-
target effects of individual drugs (Liston and Davis 2017). 
In this study, we initially determined the dose–response 
relationships to each drug spanning the therapeutic range to 
investigate the inhibitory effects of individual drugs in clini-
cally achievable concentrations. This led us to more care-
fully investigate a combined effect by reducing dominant 
effects of single drugs in CPCs. However, CPCs and Cmax 
varies by different dosing schedules and routes of adminis-
tration (Liston and Davis 2017). In this study, we decided to 
pursue concentrations in the lower end of reported clinical 
values at standard dosing regimens for the individual drug 
intended use. The adaptation of our experimental conditions 
to clinical plasma concentrations may, however, not reflect 
therapeutic drug concentrations achievable intratumorally 
or within the brain parenchyma. Although the drugs in 
CUSP9 are designed based on the properties of the drugs to 
cross the blood–brain barrier (Kast et al. 2014), penetrabil-
ity and brain tissue levels of the individual CUSP9 drugs 
are unclear, as are intracerebral concentrations of most 
anticancer agents (Pitz et al. 2011). Moreover, when inter-
preting the results on combined effects, it is important to 
consider the limitations of the artificial stable drug exposure 
in vitro, which do not reflect the complex pharmacokinetics 
in patients–a complexity that increases by orders of magni-
tude when adding up to ten drugs in combination in vivo.

Different assays capturing different evaluations of cell 
death create more robust data when reporting drug efficacy 

Fig. 2   Drugs comprised in the CUSP9 combination, their common 
usage, dose–response curves, and related drug concentrations used 
in this study. The dose–response relationships of all the drugs in the 
CUSP9 combination in GSCs evaluated by cell viability (blue line) 
and cell cytotoxicity assays (red line). Each dose–response curve rep-
resents the average dose–response relationship (± standard deviation) 
of four different primary GSC cultures (T1456, T1459, T1502, and 
T1506). Each concentration was tested in biological triplicates in the 
individual tumor. Half-maximal effective drug concentrations (EC50) 
to the individual drugs, clinical plasma concentrations, and in  vitro 
concentrations used in the CUSP9 combination are provided in the 
figure along with the common usage of the respective drugs. The 
vertical line in the dose–response curves represents the in vitro con-
centration of the individual drug used in this study, whereby the drug 
individually did not reduce the average cell survival across the GSC 
cultures

◂
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in preclinical studies (Begley and Ellis 2012). In this study, 
the evaluation of overall efficacy after exposure to CUSP9 
w/TMZ using cell viability and cytotoxicity readouts dis-
played a very good correlation. In selected drug responses 

(e.g., AUR and ITZ, Fig. 1), the tetrazolium-based cell via-
bility assay displayed a bimodal dose–response pattern with 
a paradoxical increase in cell viability before the inhibitory 
effects occurred. This effect was similarly found for the same 
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Fig. 3   The efficacy of the individual drugs and the CUSP9 com-
bination in T1459. a, b None of the drugs in the CUSP9 or TMZ 
reduced the cell survival individually evaluated by the cell viability 
or cytotoxicity assay; however a significant effect was observed when 
applied as a drug combination in CPCs (both p < 0.0001, one-way 
ANOVA). c–e Selected individual effects of drugs in CPCs were 
found in the sphere-forming assay evaluated by count (AUR, DSF, 

and ITZ) and total area of spheres (AUR, DSF, ITZ, and TMZ); how-
ever, a significant combination effect was observed eradicating all 
spheres (both p < 0.01, one-way ANOVA). e Representative images 
of sphere formation following exposure with indicated drugs. Scale 
bar 500 µm. Each bar in the graphs represents the mean and standard 
error to the mean of ≥ 3 individual experiments
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drugs when tested in CPCs (Fig. 2a). This may suggest a 
growth stimulatory effect; however, the inhibitory effects of 
these drugs evaluated by the sphere-forming assay (Fig. 2c, 
d) suggest that the response rather reflected a cellular stress 
response increasing the metabolic activity of the cells. A 
cellular stress response is biased in cell-based assays where 
metabolic activity is used as a surrogate marker for cell 
viability. This observation is in accordance with reported 
inaccuracies in using tetrazolium-based cell viability assays 
when interpreting subtle differences in cell viability evalu-
ations (Sims and Plattner 2009; Stepanenko and Dmitrenko 
2015). It further points to the importance of using different 
readouts for more accurate evaluation of drug efficacy in 
preclinical studies. For the sphere-forming assay, cells were 
incubated for a longer time. This could explain some of the 
more pronounced effects that were observed in this experi-
mental setup.

Although not described as a key target of the CUSP9 com-
bination, we found a significant reduction of Wnt-signaling 
activity by CUSP9 w/TMZ treatment, suggesting that this 
pathway may play a role in the combined treatment effect. 
In concentrations tenfold higher than clinically achievable 

in commercially available GBM cell lines, celecoxib and 
quetiapine have been shown as inhibitors of canonical Wnt-
signaling in GBM (Sareddy et al. 2013; Wang et al. 2017). 
In this study, using CPCs, we found no individual effects of 
the drugs comprised in the CUSP9, and thus, the inhibition 
of the signaling pathway was related to a combined effect, 
which suggests a significance of the Wnt-signaling pathway 
as a mediator of the combined effect of CUSP9 w/TMZ. 
This finding, however, requires further studies exploring 
both the heterogeneity between patient-derived GSC cultures 
and exploring the entire spectra of expected key signaling 
target pathways.

In this study, the efficacy of the CUSP9 combination 
was evaluated using patient-derived GSC cultures from 
both primary and recurrent GBMs. Compared to commer-
cially available GBM cell lines grown in serum, the GSC 
model system is recognized as a superior representation 
of GBM as it can recapitulate the cellular spectrum and 
malignant phenotype of GBM upon xenotransplantation, 
and preserve genomic feature of the parent tumor (Lee 
et al. 2006; Vik-Mo et al. 2010; Davis et al. 2016; Rosen-
berg et al. 2017; Lan et al. 2017). Experimental models 
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Fig. 4   The efficacy of individual drugs and CUSP9 combination in 
primary GSC cultures. a Heat maps (blue; viability, red; cytotoxicity) 
of the individual drug responses and the CUSP9 combination in three 
primary GSC cultures display the combination effect of the combina-
tion in T1456 and T1506 and the resistance in T1502. b Heat maps 
of the individual drug responses and the CUSP9 combination in the 
sphere-forming assay display the similar combined effect in T1456 
and T1506, while T1502 was sensitive evaluated by the total area of 

spheres (p < 0.001, one-way ANOVA). The cytotoxicity evaluation of 
T1456 represents the mean of two individual experiments; all other 
values represent the mean of  ≥ 3 individual experiments in every 
tumor. c, d Representative images of sphere formation in T1456 and 
T1502, respectively, after exposure to indicated drugs. In T1456, a 
substantial effect of DSF at 100 nM was found; however, the CUSP9 
w/TMZ confirmed the combination effect completely eradicating all 
spheres. Scale bar 500 µm
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that faithfully recapitulate the human disease are essen-
tial for preclinical studies; however, we acknowledge that 
selection of the aggressive GSC population underestimates 
the complexity in drug responses compared to the situa-
tion in vivo. Interestingly, we found that the recGBM cul-
tures displayed resistance to TMZ, consistent with cultures 
being derived from recurrent tumors after TMZ treatment. 
This finding supports the external validity of the presented 
drug sensitivity data. Despite demonstrating a combination 
effect, we have not delineated whether all, some, or only 
a few of the drugs are required for the observed effect. 
However, patients following the CUSP9 strategy aim to 
utilize a combination of all drugs; therefore, detailed elu-
cidation of whether only some of the drugs are required 
for the observed combination effect was not the scope 
of the current investigation. The use of patient-derived 
cultures from both treatment-naïve and pretreated tumors 
suggests that the combined effect can be found in several 
cultures sampled from a genetically heterogeneous GBM 
population. And as in vitro sensitivity to the standard-of-
care, TMZ, a GSC gene signature, and the ability of GSC 
to expand as tumorspheres are independent predictors of 
patient outcome (Laks et al. 2009; Sandberg et al. 2013; 
D’Alessandris et al. 2017), a growing body of experimen-
tal data suggests the clinical relevance of using the GSC 
model system in preclinical GBM research.

In summary, using clinically achievable drug concen-
trations, we have added preclinical experimental data of a 
combined effect utilizing the CUSP9 strategy with TMZ 
in patient-derived GSCs, which supports clinical assess-
ment of this approach. However, predicting response in 
individual cultures will require further profiling of GSCs. 
As some patients adhere to the CUSP9 treatment strategy 
outside of clinical trials within a do-it-yourself approach, 
we emphasize the importance of providing experimental 
data and trials with systematic follow-up of new treatment 
approaches consisting of drugs available for patients out-
side of specialized neuro-oncology treatment centers for 
adequate delineation of efficacy and toxicity.
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