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Genetic analyses of human fetal retinal pigment
epithelium gene expression suggest ocular disease
mechanisms
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Ming Chen2, Jane Hu4, Xin Li 5, Brunilda Balliu5, Dean Bok4, Stephen B. Montgomery 2,5 & Douglas Vollrath2

The retinal pigment epithelium (RPE) serves vital roles in ocular development and retinal

homeostasis but has limited representation in large-scale functional genomics datasets.

Understanding how common human genetic variants affect RPE gene expression could elu-

cidate the sources of phenotypic variability in selected monogenic ocular diseases and pin-

point causal genes at genome-wide association study (GWAS) loci. We interrogated the

genetics of gene expression of cultured human fetal RPE (fRPE) cells under two metabolic

conditions and discovered hundreds of shared or condition-specific expression or splice

quantitative trait loci (e/sQTLs). Co-localizations of fRPE e/sQTLs with age-related macular

degeneration (AMD) and myopia GWAS data suggest new candidate genes, and mechan-

isms by which a common RDH5 allele contributes to both increased AMD risk and decreased

myopia risk. Our study highlights the unique transcriptomic characteristics of fRPE and

provides a resource to connect e/sQTLs in a critical ocular cell type to monogenic and

complex eye disorders.
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The importance of vision to humans and the accessibility of
the eye to examination have motivated the characterization
of more than one thousand genetic conditions involving

ocular phenotypes1. Among these, numerous monogenic diseases
exhibit considerable inter-familial and intra-familial phenotypic
variability2–7. Imbalance in allelic expression of a handful of
causative genes has been documented8, but few common genetic
variants responsible for such effects have been discovered.

Complementing our knowledge of numerous monogenic ocu-
lar disorders, recent genome-wide association studies (GWAS)9

have identified hundreds of independent loci associated with
polygenic ocular phenotypes such as age-related macular degen-
eration (AMD), the leading cause of blindness in elderly indivi-
duals in developed countries10,11, and myopia, the most common
type of refractive error worldwide and an increasingly common
cause of blindness12–14. Despite the rapid success of GWAS in
mapping novel ocular disease susceptibility loci, the functional
mechanisms underlying these associations are often obscure.

Connecting changes in molecular functions such as gene
expression and splicing with specific GWAS genomic variants has
aided the elucidation of functional mechanisms. Non-coding
variants account for a preponderance of the most significant
GWAS loci15,16, and most expression quantitative trait loci
(eQTLs) map to non-coding variants17. Thousands of eQTLs
have been found in a variety of human tissues18, but ocular cell-
types are underrepresented among eQTL maps across diverse
tissues.

The retinal pigment epithelium (RPE) is critical for eye
development19 and for an array of homeostatic functions essential
for photoreceptors20. Variants of RPE-expressed genes have been
associated with both monogenic and polygenic ocular pheno-
types, including AMD and myopia. We recently implicated an
eQTL associated with an RPE-expressed gene as modulating the
severity of inherited photoreceptor degeneration in mice21.

To investigate the potential effects of genetically encoded
common variation on human RPE gene expression, we set out to
identify eQTLs and splice quantitative trait loci (sQTLs) for
human fetal RPE (fRPE) cells cultured under two metabolic
conditions. Here we describe hundreds of loci of each type, some
of which are condition-specific, and connect the mitochondrial
oxidation of glutamine with increased expression of lipid synth-
esis genes, a pathway important in AMD. We find that common
variants near genes with disproportionately high fRPE expression
explain a larger fraction of risk for both AMD and myopia than
variants near genes enriched in non-ocular tissues. We show that
a particular variant in RDH5 is associated with increased skipping
of a coding exon, nonsense-mediated decay (NMD) of the aber-
rant transcript, and three-fold lower minor allele-specific
expression. The e/sQTL marked by this variant colocalizes with
high statistical significance with GWAS loci for both AMD and
myopia risk, but with opposing directions of effect. Our study lays
a foundation for linking e/sQTLs in a critical ocular cell type to
mechanisms underlying monogenic and polygenic eye diseases.

Results
The transcriptome of human fRPE cells. We studied 23 primary
human fRPE lines (Supplementary Data 1), all generated by the
same method in a single laboratory22 and cultured for at least
10 weeks under conditions that promote a differentiated pheno-
type23. DNA from each line was genotyped at 2,372,784 variants.
Additional variants were imputed and phased using Beagle v4.124

against 1000 Genomes Phase 325 for a total of ~13 million var-
iants after filtering and quality control (see Methods section).
Comparison of fRPE chromosome 1 genotypes to those of
104 samples from 1000 Genomes indicated that our cohort is

mostly African American in origin, with 4 samples of European
ancestry (Supplementary Fig. 1).

Our goal was to identify RPE eQTLs relevant to the tissue’s role
in both developmental and chronic eye diseases. The balance
between glycolytic and oxidative cellular energy metabolism
changes during development and differentiation26, and loss of
RPE mitochondrial oxidative phosphorylation capacity may
contribute to the pathogenesis of AMD27, among other mechan-
isms. We therefore obtained transcriptional profiles of each fRPE
line cultured in medium that favors glycolysis (glucose plus
glutamine) and in medium that promotes oxidative phosphoryla-
tion (galactose plus glutamine)28. We performed 75-base paired-
end sequencing to a median depth of 52.7 million reads
(interquartile range: 45.5 to 60.1 million reads) using a paired
sample design to minimize batch effects in differential expression
analysis (Supplementary Data 2). To determine the relationship
between primary fRPE and other tissues, we visualized fRPE in
the context of 53 tissues from the GTEx Project v718. The fRPE
samples formed a distinct cluster situated between heart and
skeletal muscle and brain (Fig. 1a), tissues that, like the RPE, are
metabolically active and capable of robust oxidative
phosphorylation.

To identify genes with disproportionately high levels of
expression in the fRPE, we compared the median reads per
kilobase of transcript per million mapped reads (RPKMs) of fRPE
genes against GTEx tissues. We defined fRPE-selective genes as
those with median expression at least four standard deviations
above the mean (see Methods section). Under this definition, we
found 100 protein-coding genes and 30 long non-coding RNAs
(lncRNAs) to be fRPE-selective (Fig. 1b and Supplementary
Data 3). Multiple previously defined RPE “signature” genes29–31

are present in our list including RPE65 (Fig. 1c) and RGR
(Fig. 1d). Using this set of genes, we performed Gene Set
Enrichment Analysis (GSEA)32 against 5,917 gene ontology (GO)
annotations33. The two gene sets most enriched with fRPE-
selective genes were pigment granule and sensory perception of
light stimulus (FDR < 1 × 10−3), consistent with the capacity of
fRPE to produce melanin and the tissue’s essential role in the
visual cycle. Supplementary Data 4 lists the 29 GO pathways
enriched using a conservative FWER < 0.05. Recurrent terms in
enriched pathway annotations such as pigmentation, light,
vitamin, protein translation, endoplasmic reticulum and cellular
energy metabolism suggest specific functions that are central to
fRPE and outer retinal homeostasis.

Transcriptomic differences across two metabolic conditions.
To gain insight into the response of fRPE cells to altered energy
metabolism, we compared gene expression between the two cul-
ture conditions using DESeq234, correcting for sex, ancestry, RIN,
and batch (see Methods section). A total of 837 protein coding
and lncRNA genes showed evidence of significant differential
expression (FDR < 1 × 10−3, Fig. 2a and Supplementary Data 5).
Notably, three of the top ten differentially expressed genes are
involved in lipid metabolism (SCD, INSIG1, and HMGCS2 in
order). SCD codes for a key enzyme in fatty acid metabolism35,
and its expression in RPE is regulated by retinoic acid36. INSIG1
encodes an insulin-induced protein that regulates cellular cho-
lesterol concentration37. HMGCS2 encodes a mitochondrial
enzyme that catalyzes the first step of ketogenesis38, and this
enzyme plays a crucial role in phagocytosis-dependent ketogen-
esis in fRPE39. To understand the broader impact induced by
changes in energy metabolism, we performed pathway enrich-
ment analysis using GSEA32 and found that the top two upre-
gulated pathways in galactose medium are cholesterol
homeostasis and mTORC1 signaling (FDR < 1 × 10−4, Fig. 2b).
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Consistent with the cholesterol finding, forcing cells to rely pri-
marily on oxidation of glutamine for ATP generation increases
expression of a suite of genes that promotes lipid synthesis and
import (Fig. 2c).

fRPE-selective genes are enriched in genetic ocular diseases.
Disease-associated genes can have elevated expression levels in
effector tissues40. To determine whether ocular disease genes have
elevated expression levels in fRPE, we used a manually curated list
of 257 ocular disease-related genes41 (see Methods section).
Compared to all other protein-coding genes, ocular disease-
related genes are more specific to fRPE (two-sided t-test p-value:
1.6 × 10−10). Further, ocular disease gene expression demon-
strated a higher specificity to fRPE than to GTEx tissues (Fig. 3a),
suggesting fRPE as a model system for a number of eye diseases.
As a control, we repeated the analysis for epilepsy genes (n= 189)
and observed elevated expression levels in brain tissues as we
expected (Supplementary Fig. 2).

Unlike Mendelian ocular diseases, polygenic ocular disorders
are characterized by variants with smaller effect sizes scattered

throughout the genome. Using two well-powered GWAS of
AMD42 and myopia43, we performed stratified linkage disequili-
brium (LD) score regression to determine the heritability
explained by fRPE. Using a previously established pipeline44,
we selected the top 500 tissue-enriched genes for fRPE and
various GTEx tissues and assigned variants within one kilobase of
these genes to each tissue (see Methods section). Risk variants for
both AMD and myopia were more enriched around fRPE-
selective genes than GTEx tissue-selective genes (Fig. 3b, c). As an
assessment of the robustness of the LD score regression results,
we repeated the analysis with the top 200 and 1000 tissue-specific
genes. A high ranking for fRPE was consistent across all three
cutoffs (Supplementary Fig. 3).

e/sQTL discovery. To determine the genetic effects on gene
expression in fRPE, we used RASQUAL45 to map eQTLs by
leveraging both gene-level and allele-specific count information to
boost discovery power. Multiple-hypothesis testing for both glu-
cose and galactose conditions was conducted jointly with a
hierarchical procedure called TreeQTL46. At FDR < 0.05, we
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found 687 shared, 264 glucose-specific, and 166 galactose-specific
eQTLs (Table 1, Supplementary Data 6 and 7, Fig. 4a and Sup-
plementary Figs. 4 and 5). An example of a shared eQTL is RGR
(Fig. 4d), which encodes a G protein-coupled receptor that is
mutated in retinitis pigmentosa47. An example of a glucose-
specific eQTL is ABCA1 (Fig. 4b), which encodes an ATP-binding
cassette transporter that regulates cellular cholesterol efflux48.
Common variants near ABCA1 have been associated with glau-
coma49 and AMD42. An example of a galactose-specific eQTL is
PRPF8 (Fig. 4c), which encodes a splicing factor50. PRPF8
mutations are a cause of autosomal dominant retinitis pigmen-
tosa51 and lead to RPE dysfunction in a mouse model52.

Differential expression alone is unlikely to account for the
condition-specific nature of the eQTLs we identified because only
about a quarter are differentially expressed (FDR < 0.05) and
almost all of these exhibit an absolute fold change of less than
two. Rather, it is likely that regulatory specificity is the underlying
cause of these eQTLs. We therefore used HOMER53 to identify
transcription factor binding motifs enriched around metabolic-
specific eQTLs (see Methods section). Two motifs, TEAD1 (p <
1 × 10−6) and ZEB1 (p < 1 × 10−3), are among the top five motifs
in the galactose condition (Supplementary Data 8). TEAD1 is
known to play a role in aerobic glycolysis reprogramming54, and
ZEB1 is known to render cells resistant to glucose deprivation55.
We did not find enriched motifs in the glucose condition for
transcription factors with well-known metabolic functions.

We compared fRPE to GTEx eGenes using a previously
established two-step FDR approach56. We used fRPE-shared
eGenes (FDR < 0.05 in both metabolic conditions) as the
discovery set to remove any treatment-dependent regulatory
effect, and used GTEx eGenes with a relaxed threshold (FDR <
0.1) as the replication set. eGenes from the discovery set not
recapitulated in the replicated set were defined as fRPE-selective
eGenes. This approach returned three genes (Fig. 4e–g): TYR,
encoding an oxidase controlling the production of melanin; CRX,
encoding a transcription factor critical for photoreceptor
differentiation; and MFRP, encoding a secreted WNT ligand
important for eye development. The TYR eQTL maps to a variant
(rs4547091) previously described as located in an OTX2 binding
site and responsible for modulating TYR promoter activity in
cultured RPE cells57. All three genes are also fRPE-selective genes
(Fig. 1), suggesting that apparent regulatory specificity is the by-
product of expression selectivity. We also compared our eGenes
to the EyeGEx database58. Among the 687 eGenes shared across
both conditions, 498 (72.5%) are also eGenes reported in EyeGEx.

We also assessed the genetic effect on splicing by quantifying
intron usages with LeafCutter59 and mapping splicing quantitative
trait loci (sQTL) with FastQTL60 in permutation mode to obtain
intron-level p-values. Following an established approach59, we used
a conservative Bonferroni correction across introns within each
intron cluster and calculated FDR across cluster-level p-values (see
Methods section). We found 210 and 193 sQTLs at FDR < 0.05 for
glucose and galactose conditions, respectively (Table 2, Supple-
mentary Data 9 and 10). The top sQTL in the glucose condition
regulates splicing in ALDH3A2 (FDR < 2.06 × 10−9), which codes
for an aldehyde dehydrogenase isozyme involved in lipid
metabolism61. Mutations in this gene cause Sjogren-Larsson
syndrome62, which can affect the macular RPE63. The top sQTL
in the galactose condition regulates splicing of transcripts encoding
CAST, a calcium-dependent protease inhibitor involved in the
turnover of amyloid precursor protein64.

Fine mapping of complex ocular disease risk loci. To assess
whether specific instances of GWAS signals can be explained by
eQTL or sQTL signals, we performed colocalization analysis with

a modified version of eCAVIAR65 (see Methods section). All
variants within a 500-kilobase window around any GWAS (p-
value < 1 × 10−4) or QTL (p-value < 1 × 10−5) signal were used as
input to eCAVIAR, and any locus with colocalization posterior
probability (CLPP) >0.01 was considered significant. To identify
condition-specific colocalization events, we ran eCAVIAR sepa-
rately for two metabolic conditions (see Methods section). For the
AMD GWAS, we identified four eQTL colocalization events for
each condition (Supplementary Fig. 6). One of these, WDR5,
demonstrates glucose-specific colocalization (CLPP: glucose=
0.033 and galactose= 0.002). For the myopia GWAS, we identi-
fied three and seven colocalization events for galactose and glu-
cose conditions, respectively. Three are condition specific
(PDE3A, ETS2, and ENTPD5; Supplementary Fig. 7). For exam-
ple, PDE3A, shows galactose-specific colocalization (CLPP: glu-
cose= 0.0004; galactose= 0.014). eQTLs at PARP12 and CLU
colocalized with AMD and myopia signals, respectively, under
both conditions (Fig. 5a, d, Supplementary Figs. 6 and 7). While
neither locus reached genome-wide significance in the respective
GWAS, the significant co-localizations we describe implicate
PARP12 and CLU as new candidate genes for these disorders.

Among the four genes exceeding our threshold for eQTL and
AMD GWAS colocalization, RDH5, encoding a retinol dehy-
drogenase that catalyzes the conversion of 11-cis retinol to 11-cis
retinal in the visual cycle66, showed the most significant signal
(Fig. 5a and Supplementary Data 11). RHD5 was previously
suggested as an AMD candidate gene42, but no mechanism was
proposed. Two tightly linked AMD-associated variants
(rs3138141 and rs3138142, r2= 0.98) are highly correlated with
RDH5 expression (Fig. 5b). The minor haplotype identified by the
rs3138141 “a” allele is associated with a significantly smaller
percentage of total RDH5 expression (26.4%) than the major
haplotype identified by the “C” allele (73.6%) (Fig. 5g). We found
no evidence for an effect on transcripts from the adjacent
BLOC1S1 gene or on BLOC1S1-RDH5 read-through transcripts.
The same variants mark an RDH5 sQTL (Fig. 5a, c) associated
with differences in the usage of exon 3 of the transcript; samples
that are heterozygous at rs3138141 (Ca) exhibit an average of
more than three times the amount of exon 3 skipping compared
to CC homozygous samples (Fig. 5h and Supplementary Fig. 8).
The same e/sQTL also colocalized with a myopia GWAS signal
(Fig. 5d–f, Supplementary Data 12), suggesting a mechanism for
the prior association of the RDH5 locus with myopia67 and
refractive error13.

NMD as a putative mechanism underlying an RDH5 eQTL.
The association of the rs3138141/2 minor haplotype with both an
RDH5 eQTL and sQTL suggests a mechanistic relationship. We
estimate that ~80% of isoforms transcribed from the “C” haplo-
type are normal, whereas ~75% of isoforms transcribed from the
“a” haplotype are mis-spliced (see Methods section). The
increased skipping of exon 3 (out of 5) associated with the minor
haplotype results in more transcripts with a frameshift and a
premature termination codon (PTC) near the 5′ end of exon 4.
Many mammalian transcripts with PTCs are subject to NMD,
particularly when the PTC is not located in the last exon68.

Table 1 Expression QTL discoveries

Trait type No. tested No. of eQTLs (FDR < 0.05)

Glucose Galactose Shared

Protein coding 12,515 254 163 656
lincRNA 582 10 3 31
Total 13,097 264 166 687
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Treatment of cells with protein synthesis inhibitors such as
cycloheximide (CHX) has been shown to increase the abundance
of transcripts subject to NMD69. To assess a possible role for
NMD in the stability of RDH5 transcripts, we treated differ-
entiated immortalized human RPE cells (ARPE-19) with CHX
and quantified the abundance of the normal and skipped exon 3
isoforms by RT-PCR. CHX caused a significant increase in the
abundance of the skipped exon 3 isoform as compared to the
normal (Fig. 5i–k and Supplementary Fig. 9). These data are

consistent with a model in which the minor allele promotes the
formation of an aberrant RDH5 mRNA that is subject to NMD,
leading to an overall reduction in the steady state levels of RDH5
transcripts.

Discussion
The importance of the RPE for development and lifelong
homeostasis of the eye has motivated numerous studies of the
RPE transcriptome. Several of these studies proposed similar sets
of RPE “signature” genes, the largest of which comprises 171
genes29–31. Only 23 of these genes are present among our group
of 100 fRPE-selective protein-coding genes. Our approach of
comparing fRPE expression levels to GTEx data, which almost
exclusively derive from adult autopsy tissue specimens, may have
captured genes highly expressed in cultured and/or fetal cells.
Absence in GTEx of pure populations of specialized cell types,
especially ocular, may explain other genes in our set. Still, many
of the genes we identified are known to serve vital functions in the
RPE, as demonstrated by pathway enrichment for pigment
synthesis and visual processes. We also identified 30 enriched
lncRNAs, a class of transcripts not included in previous signature
gene sets. The most highly expressed lncRNA in our list, RMRP,
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Table 2 Splicing QTL discoveries

Condition Trait type No. tested No. of sQTLs

FDR <
0.05

FDR <
0.01

FDR <
0.001

Glucose Protein coding 15,516 205 129 66
lncRNA 187 5 4 4
Total 15,703 210 133 70

Galactose Protein coding 16,239 188 112 56
lncRNA 196 5 4 2
Total 16,435 193 116 58
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is critical for proper mitochondrial DNA replication and
OXPHOS complex assembly in HeLa cells70, but its role in the
RPE has not yet been investigated. RPE-enriched genes whose
functions have not been studied in the tissue afford opportunities
for advancing understanding of this important epithelial layer.

Our findings have potential implications for phenotypic
variability in monogenic ocular diseases. Mutations in all three of
the fRPE-selective eGenes cause monogenic eye diseases. For

example, heterozygous mutations in the transcription factor CRX
cause dominant forms of photoreceptor degeneration, which can
exhibit variable age at onset and disease progression among
members of the same family4. Genetically encoded variation in
the transcript levels of normal or mutant CRX alleles may con-
tribute to such variable expressivity. Indeed, mouse models of
CRX-associated retinopathies provide evidence for a threshold
effect in which small changes in expression cause large differences
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in phenotype71. Mutations in MRFP cause extreme hyperopia
(farsightedness). Affected individuals usually have two mutant
alleles, but inheritance of a lower-expressing normal allele could
explain an affected heterozygous individual in a family with
otherwise recessive disease5. The substantial number of fRPE
eQTLs associated with other ocular diseases (Fig. 3a) supports a
contribution of common genetic variants to the widespread
phenotypic variability observed in monogenic eye disorders.

Our findings also have implications for complex ocular dis-
eases. Evidence suggests that defects in RPE energy metabolism
contribute to the pathogenesis of AMD, the hallmark of which is
accumulation of cholesterol rich deposits in and around the
RPE72,73. Forcing fRPE cells to rely on oxidation of glutamine, the
most abundant free amino acid in blood, caused upregulation of
genes involved in the synthesis of cholesterol, monounsaturated
and polyunsaturated fatty acids, as well as genes associated with
lipid import. Transcripts for three of the upregulated genes
(FADS1, FADS2, and ACAT2) are increased in macular but not
extramacular RPE from individuals with early-stage AMD74.

Co-localization of the same RDH5 e/sQTL with both AMD and
myopia GWAS loci suggests risk mechanisms for these very
different complex diseases. The rs3138141/2 minor haplotype
confers an elevated risk for AMD42, but is protective for
myopia13,43,67. Reduction in RDH5 activity as a risk factor for
AMD is consistent with rare RDH5 loss-of-function mutations
that cause recessive fundus albipunctatus, which can include
macular atrophy75,76. More puzzling is the relationship between
lower RDH5 transcript levels (and presumably enzyme activity)
and a reduced risk of myopia. RDH5 is best known for its role in
the regeneration of 11-cis retinal in the visual cycle, but the
enzyme has also been reported to be capable of producing reti-
noids suitable for retinoic acid signaling77,78. Evidence from
animal models implicates retinoic acid in eye growth regulation12,
and retinal all-trans retinoic acid levels are elevated in a guinea
pig model of myopia79. Thus the same allele, which has risen to
substantial frequencies in some populations (0.38 minor allele
frequency in South Asians and 0.19 in Europeans https://www.
ncbi.nlm.nih.gov/projects/SNP/), may dampen retinoic acid sig-
naling during eye development and growth, and later contribute
to chronic photoreceptor dysfunction in older adults.

The eye is a highly specialized organ with limited representa-
tion in large-scale functional genomics datasets. Our analysis of
genetic variation and metabolic processes in fRPE cells, even with
modest sample sizes, expands our ability to map functional var-
iants with potential to contribute to complex and monogenic eye
diseases. Future studies with larger sample sizes from geo-
graphically diverse populations, and/or targeting other ocular cell
types, will likely discover additional e/sQTLs and functional
variants involved in genetic eye diseases.

Methods
Sample acquisition and cell culture. Primary human fetal RPE (fRPE) lines were
isolated from fetal eyes (Advanced Biosciences Resources, Inc., Alameda, CA) by
collecting and freezing non-adherent cells cultured in low calcium medium as

described22. When needed, fRPE cells were thawed and plated onto 6-well plates in
medium as described23 with 15% FBS. The next day, medium was changed to 5%
FBS and the cells were allowed to recover for two additional days. Cells were then
trypsinized in 0.25% Trypsin-EDTA (Life Technologies Corporation), resuspended
in medium with 15% FBS and plated onto human extracellular matrix-coated (BD
Biosciences) Corning 12-well transwells (Corning Inc., Corning, NY) at 240 K cells
per transwell. The next day medium was changed to 5% FBS. Cells were cultured
for at least 10 weeks to become differentiated (transepithelial resistance of >200Ω *
cm2) and highly pigmented. Medium with 5% FBS was changed every 2–3 days.
For the galactose and glucose specific culture conditions, differentiated fRPE cells
were cultured for 24 h prior to RNA isolation in DMEM medium (Sigma) with 1
mM sodium pyruvate (Sigma), 4 mM L-glutamine (Life Technologies Corporation),
1% Penicillin-Streptomycin (Life Technologies Corporation), and either 10 mM D-
(+)-glucose (Sigma) or 10 mM D-(+)-galactose (Sigma)28. The fRPE lines studied
here are not available for distribution.

Genotype data and quality control
Microarray library preparation and genotyping. All 24 RPE samples were genotyped
on three Illumina Infinium Omni2.5-8 BeadChip using the Infinium LCG Assay
workflow (https://www.illumina.com/products/by-type/microarray-kits/infinium-
omni25-8.html). A total of 200 ng of genomic DNA was extracted and amplified to
generate sufficient quantity of each individual DNA sample. The amplified DNA
samples were fragmented and hybridized overnight on the Omni2.5-8 BeadChip.
The loaded BeadChips went through single-base extension and staining, and were
imaged on the iScan machine to obtain genotyping information. Genotyping data
were exported from Illumina GenomeStudio to ped and map pairs, merged, and
converted to the VCF format using PLINK v1.980. We removed variants that were
missing in more than 5% of samples.

Variant annotation. We annotated variants using genomic features (including
downstream-gene variant, exonic variant, intronic variant, missense variant, splice-
acceptor variant, splice-donor variant, splice-region variant, synonymous variant,
upstream-gene variant, 3′-UTR variant, 5′-UTR variant), loss-of-function, and
nonsense-mediated decay predictions, and clinical databases (including ClinVar,
OMIM and OrphanNet) using SnpEff v4.3i81.

Imputation and phasing. We used Beagle v4.182 to perform genotype imputation
and phasing. Genotypes were imputed and phased with 1000 Genomes Project
phase 3 reference panel. Before imputation and phasing, we filtered the original
VCF file to only bi-allelic SNP sites on autosomes and removed sites with more
than 5% missing genotypes. We also re-coded the VCF file based on the reference
and alternative allele designation of 1000 Genomes Project phase 3 reference panel
using the conform-gt program which was provided with the Beagle software.

Quality control. Prior to imputation, we performed standard pre-imputation QC by
removing variants that are missing in more than 5% of samples and used the
filtered call set as input to Beagle. After imputation and phasing, we removed
variants with allelic r2 < 0.8 (higher allelic r2 indicates higher confidence). Standard
post-imputation QC also requires removing variants with low Hardy–Weinberg
Equilibrium (HWE) p-value. Due to the extensive admixture in our study cohort,
we reasoned that HWE may have trouble in distinguishing genotyping error from
admixture. We opted to not apply HWE but instead to remove multi-allelic var-
iants (variants with more than two alleles). The Ts/Tv ratio of the filtered call set
was above 2.0 for all chromosomes but chromosome 8 (=1.98) and 16 (=1.93).
Several chromosomes have Ts/Tv ratio greater than 2.1, indicating that they are
enriched with known (vs. novel) variants (Supplementary Fig. 10). To detect
sample duplication, we plotted genotype correlation across every pair of samples
and found two samples (sample 3 and 5) were duplicates of each other (Supple-
mentary Fig. 11). We removed one sample (sample 5) at random. The filtered VCF
files were used for downstream analysis.

Sex determination. We determined biological sex of each donor using genotyping
information. We extracted the genotype dosage with bcftools and calculated the
proportion of heterozygous SNPs (heterozygous: dosage= 1; homozygous: dosage
= 0 or 2) for chromosome 1 and X. Donors with low heterozygosity on

Fig. 5 Fine mapping of disease-associated variants using fRPE gene regulation. a Colocalization posterior probability for fRPE e/sQTLs with AMD. b, c
Scatter plots demonstrate clear colocalization between AMD GWAS signal at rs3138141 and RDH5 eQTL (b) and sQTL (c). d Colocalization posterior
probability for fRPE e/sQTLs with myopia. e, f Scatter plots demonstrate clear colocalization between myopia GWAS signal at rs3138141, the same variant
identified for AMD, and RDH5 eQTL (e) and sQTL (f). a–f Colocalization results are with glucose QTLs. Galactose QTL colocalizations can be found in
Figs. S18–19. g Relative allelic expression estimated by RASQUAL with 95% confidence intervals is shown. h Increased skipping of RDH5 exon 3 (middle
black rectangle) is associated with the minor allele at rs3138141. The average read counts are shown for three splice junctions in groups of fRPE cells with
different genotypes. The proportion of counts for all three sites for a given junction and genotype is shown in parenthesis. Exon and intron lengths are not
drawn to scale. Minor alleles are indicated by lowercase. i Gel image showing RHD5 normal isoform amplified from CHX or DMSO treated ARPE-19 cells. j
Gel image showing RHD5 mis-spliced isoform amplified from CHX or DMSO treated ARPE-19 cells. k Relative fold change between CHX and DMSO
treatments for normal and mis-spliced RNA isoforms. Error bars indicate standard error of the mean for n= 3 independent experiments. *p < 0.05
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chromosome X (proportion of heterozygous ≈ 0) SNP were defined as males.
Chromosome 1 was used as control to establish the baseline for heterozygosity.
This cohort has 11 male and 13 female individuals (Supplementary Fig. 12).

Ancestry determination. We determined ancestry of each donor using genotype
information. We extracted genotype dosages of chromosome 1 for 23 RPE samples
and 4 samples from each of the 26 populations (for a total of 104 individuals) in
1000 Genomes phase 3 version 5 dataset25. We calculated the principal compo-
nents using the prcomp function in R. The top three principal components
explained the most variability (Supplementary Fig. 13), and were used for down-
stream analysis. The first two principal components clearly separates the European,
African, and Asian populations. Four RPE samples are European, and the rest are
admixed. Most admixed individuals are African American (Supplementary Fig. 1).

Transcriptomic data and quality control
RNA-seq library preparation and sequencing. RNA was extracted using TRIzol
Reagent (Invitrogen) per manufacturer instructions. RNA sequencing was per-
formed on all samples with an RNA integrity number (RIN) of 8.0 or higher and
with at least 500 ng total RNA. Stranded, poly-A+ selected RNA-seq libraries were
generated using the Illumina TruSeq Stranded mRNA protocol. We performed 75
bp paired-end RNA sequencing on an Illumina NextSeq 500 on all RPE samples
(Supplementary Data 2). Glucose and galactose samples from each line were
sequenced together to minimize batch effects.

RNA sequencing read mapping. Raw data was de-multiplexed using bcl2fastq2 from
Illumina with default parameters. Reads were aligned against the hg19 human
reference genome with STAR (v2.4.2a)83 using GENCODE v19 annotations84 and
otherwise default parameters. After alignment, duplicate reads were marked using
Picard MarkDuplicates (v2.0.1) and reads marked as duplicates or with non-perfect
mapping qualities were removed.

Gene and splicing event quantification. We used HTSeq v0.6.085 to count the
number of reads overlapping each gene based on the GENCODE v19 annotation.
We counted reads on the reverse strand (ideal for Illumina’s TruSeq library),
required a minimum alignment quality of 10, but otherwise used default para-
meters. We also quantified RPKM using RNA-SeQC v1.1.886 using hg19 reference
genome and GENCODE v19 annotation with flags “-noDoC -strictMode” but
otherwise default parameters. We quantified allele-specific expression using the
createASVCF.sh script from RASQUAL45 with default parameters. For splicing
quantification, we used LeafCutter59 to determine intron excision levels with
default parameters. Briefly, we first converted bam files to splice junction counts
(bam2junc.sh) and clustered introns based on sharing of splice donor or acceptor
sites (leafcutter cluster.py). For each cluster, We required a minimum number of 30
reads, and a minimum fraction of 0.1% in support of each junction. We required
each intron must not exceed 100 kbp.

Quality control. We profiled the RNA-seq library to a median depth of 52.7 million
reads (interquartile range: 45.5–60.1 million reads), for a total of 2.5 billion reads
(Supplementary Fig. 14a). We checked the number of uniquely mapped reads to
ensure sufficient number of mapped reads. The RNA-seq libraries have a median
number of 46.8 million (88.8%) uniquely mapped reads, with an interquartile range
of 41.0–55.2 million reads (Supplementary Fig. 14b). We ran VerifyBamID87 with
parameters “—ignoreRG—best” on RNA-seq BAM files using genotype VCF files
as reference and did not find any sample swaps.

Normalization of quantifications. We extract hidden factors from RNA sequencing
data using surrogate variable analysis (sva)88 jointly (protecting the treatment
variable) and separately for glucose and galactose-treated samples. Prior to esti-
mating hidden factors, the raw count gene expression data was library size cor-
rected, variance stabilized, and log2 transformed using the R package DESeq234.
Genes with average read count below 10 and with zero counts in more that 20% of
samples were considered not expressed and filtered (to remove tails). A total of
15,056 and 15,062 expressed genes remained for glucose and galactose, respectively.
Since library size correct depends on all genes, filtered genes were again corrected
for library size, variance stabilized, and log2 transformed using DESeq2 before
being used as input to sva. We ran sva, as implemented in the sva R package, with
default parameters, and obtained seven significant surrogate variables with joint
analysis and four and five significant surrogate variables for the glucose and
galactose condition, respectively. We also extracted surrogate variables for splicing
level quantification. The joint, glucose, and galactose analysis returned four, two,
and two factors, respectively.

Correlation between known and hidden confounders. We calculated the correlation
between known (treatment, RIN, sequencing batch, sex, and ancestry) and hidden
(surrogate variables) factors to determine which factors to include in downstream
analyses. The jointly inferred factors (seven in total) captures treatment (factor 5, r
= 0.91), RIN (factor 1, r= 0.71) and batch effect (factor 7, r=−0.56), but does not
capture sex (best r=−0.18) or ancestry (best r=−0.34). This agrees with the
intuition that treatment, RIN and batch effect have broad influences on gene

expression measurement, while sex and ancestry only influence a small set of
relevant genes (Supplementary Fig. 15a). To reduce the correlation between factor
5 and treatment, we ran supervised sva protecting the treatment effect. Even with
protection on treatment, factor 5 remains correlated (r=−0.62), likely due to the
strong and broad effect exerted by metabolic perturbation (Supplementary
Fig. 15b). The glucose surrogate variables captured RIN (factor 1, r= 0.81) and
batch (factor 2, r= 0.78), and the galactose surrogate variables captured RIN
(factor 1, r=−0.61) and batch (factor 1 and 4, r=−0.54 and −0.5, respectively).
None of the glucose or galactose surrogate variables captured sex or ancestry
(Supplementary Figs. 15c, d). We also compared surrogate variables from splicing
quantification. Without protecting the treatment, surrogate variable 3 from the
joint set correlated with the treatment (Supplementary Fig. 16a). Even after pro-
tecting the treatment, surrogate variable 1 from the joint set correlated with the
treatment (Supplementary Fig. 16b), similar to what was observed for expression
surrogate variables. Surrogate variables from the glucose and galactose condition
correlated strongly with RIN (r=−0.74 and −0.76, respectively, Supplementary
Fig. 16c, d).

External datasets
RNA-seq and eQTL datasets. We used GTEx V718 as a reference dataset to perform
RPE-selective gene and RPE-specific eQTL analyses. The GTEx V7 dataset col-
lected 53 tissues across 714 donors. All tissues across all donors were used in RPE-
selective gene analysis. Among the 53 tissues, 48 tissues have sufficient sample size
to perform eQTL analysis and were used for RPE-specific eQTL calling.

GWAS datasets. We used two well-powered ocular disorder GWAS datasets to
perform colocalization analyses. The AMD study42 is a meta-analysis across
26 studies and identified 52 independent GWAS signals, including 16 novel loci.
The myopia GWAS was part of a 42-trait GWAS collection aimed at finding shared
genetic influences across different traits43.

Ocular disease genes dataset. We used ocular disease genes from the Genetic Eye
Disease (GEDi) test panel41, which encompasses 257 genes in total including
known inherited retinal disorder genes (IRD, n= 214), glaucoma and optic atrophy
genes (n= 8), candidate IRD genes (n= 24), age-related macular degeneration risk
genes (n= 9), and a non-syndromic hearing loss gene (n= 1).

RPE-selective gene and pathway enrichment analyses
Expression z-score method. To identify RPE-selective genes (high expression in RPE
relative to other tissues), we inferred expression specificity using the following
procedure.

1. Calculate the median expression level (x) across all individuals for each tissue.
2. Calculate the mean (μ) and standard deviation (σ) of median expression

values across tissues.
3. Derive a z-score for each tissue as follows: z= (x−μ)/σ.
4. Define a gene to be tissue-selective if its z-score is greater than 4.

We filtered out genes on sex and mitochondrial chromosomes, and further
filtered out genes in HLA region due to low mappability. To determine whether
technical confounders (such as batch effect) affected RPE z-scores, we used a QQ-
plot to visualize the z-score of each tissue against the average z-score across tissues.
To calculate the average z-scores, we ranked genes within each tissue and take the
average z-score for genes with the same rank across tissues. The average z-scores
represent the expected distribution. If the z-score distribution from a tissue is
markedly different from the expected distribution, this distribution will separate
from the diagonal on the QQ plot. Supplementary Fig. 17 shows that RPE z-scores
situate within the midst of z-scores from GTEx tissues. In fact, the only outlier is
testis, which is a known outlier from previous studies.

Pathway enrichment of RPE-selective genes. To identify coordinated actions by
RPE-selective transcriptomic elements, we performed GSEA32 using z-scores as
input against GO gene sets from the Molecular Signature Database89 with 10,000
permutations and otherwise default parameters. The full results are in Supple-
mentary Data 4.

Differential expression and pathway enrichment analyses
Differential expression analysis. We performed differential expression analysis with
DESeq234 to detect genes whose expression levels were affected by metabolic
perturbation. Due to the correlation between hidden factors (SVs) and treatment,
we decided to use known factors in the DESeq2 model. More specifically, we
observed moderate correlation between SVs and condition (r=−0.62) even after
protecting for condition (Supplementary Fig. 15). Adding SVs that are correlated
with conditions will bias the estimates on the coefficient for conditions. The model
is shown below:

EðexpressionÞ ¼ β0 þ βt � treatmentþ βs � sexþ
X3

i¼1

βa;i � PCi þ βr � RINþ βb � batch

Pathway enrichment analysis. We performed pathway enrichment analysis with
GSEA using a ranked gene list with 10,000 permutations but otherwise default
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parameters. The ranking metric was calculated by multiplying the −log10(FDR) by
the sign of the effect size from DESeq2. For the pathway database, we used a subset
of the Molecular Signatures Database composed of its Hallmark, Biocarta, Reac-
tome, KEGG and GO gene sets89.

fRPE-selective genes in ocular diseases
RPE-selective expression in ocular disease genes. We stratified all protein-coding
genes into two groups: (1) ocular disease genes (n= 257) and (2) non-ocular disease
genes (n= 18,477). To determine whether known ocular disease genes have elevated
expression in fRPE, we compared the expression specificity z-score distribution
(defined previously) across these two groups with a two-sided t-test. We performed
the same analysis for all GTEx tissues as a benchmark. As a control, we repeated this
analysis using known epilepsy genes (n= 189) curated from the Invitae epilepsy
gene test panel (https://www.invitae.com/en/physician/tests/03401/).

RPE-selective expression in ocular disease GWA studies. GWAS risk loci are fre-
quently enriched around causal genes, which have elevated expression in relevant
tissues90. To determine whether variants around RPE-selective genes explain
higher disease heritability than expected by chance, we performed stratified LD
score regression on tissue-selective genes using a previously established pipeline44.
Since LD score regression operates on a variant level, we assigned variants within 1-
kb around any exon of tissue-selective genes to each tissue. Although many variants
show long-range interaction, we restricted our analysis to a conservative window
size to capture only nearby cis-effects. We performed LD score regression on the
200, 500, and 1000 tissue-specific genes (Fig. 3 and Supplementary Fig. 3).

eQTL mapping and quality control
Covariate selection. We determined biological sex, genomic ancestry, and hidden
confounders as described in previous sections. We performed covariate selection by
empirically maximizing the power to detect eQTL. We randomly selected 50 genes
from chromosome 22 to perform covariate selection for computational feasibility
and to avoid overfitting. We added sex, genotype principal components (maximum
of three), and surrogate variables sequentially. We chose not to include batch effect
or RIN because they were well represented by surrogate variables. We tested the top
three genotype principal components because they explained most of the variability
in the genotyping data (Supplementary Fig. 13). After multiple hypothesis cor-
rection, the number of eAssociations (defined as a SNP-gene pair that passed
hierarchical multiple hypothesis testing by TreeQTL46) increased monotonically
for both glucose and galactose conditions as the number of covariates increased
(Supplementary Fig. 18), which agrees with our intuition that sva only returns
significant and independent surrogate variables. Therefore, we decided to use sex,
top three genotype principal components and all surrogate variables (four and five
for glucose and galactose conditions, respectively).

Per-treatment eQTL calling. We mapped eQTL using RASQUAL45, which inte-
grates total read count with allele-specific expression (ASE) to boost power for
eQTL mapping. To obtain GC-corrected library size, We first calculated GC
content using GENCODE v1984 by taking the average GC content of all exons of a
given gene. Next, we calculated GC-corrected library sizes were calculated based on
read count output from HTSeq v0.6.085. We used sex, ancestry principal compo-
nents, and all surrogate variables. Mathematically, the model is the following:

E expressionð Þ ¼ β0 þ βg � genotypeþ βs � sexþ
X3

i¼1

βa;i � PCþ
Xn

i¼1

βs;i � SV

where e stands for expressions, g stands for genotypes, PC stands for genotype
principal components, SV stands for surrogate variables, and n= 4 and 5 for
glucose and galactose conditions, respectively. We obtained gene-level and
association-level FDR using a hierarchical hypothesis correction procedure
implemented in TreeQTL46. TreeQTL uses a hierarchical FDR correction proce-
dure, which performs FDR correction first on the gene level, and then on the
association level (gene by SNP). We used FDR < 0.05 on both gene and association
levels.

eQTL quality control. We determined whether the p-values were inflated (e.g., due
to model mis-specification) by visualizing their distribution. The distribution
suggests that the p-values are slightly conservative. The spike around zero and
upward trend in the QQ plot shows clear enrichment for significant eQTL (Sup-
plementary Fig. 19a, b). As expected, eQTLs with low p-values were enriched
around transcription start sites (Supplementary Fig. 19c, d).

Differential eQTL calling with TreeQTL. We performed multi-tissue eQTL calling,
using the RASQUAL p-values and the multi-tissue version of TreeQTL46. We set
the gene as the first level, the treatment as the second level, and the gene-treatment-
SNP as the third level and used the default FDR < 0.05 cutoff for all three levels. We
showed a comparison of −log10(p-value) across two metabolic conditions in
Supplementary Fig. 4, in which the top five treatment-specific and shared eQTL are
labeled. We ranked the differential eQTL result in the order of decreasing δ|π −
0.5| (difference in allelic imbalance in two conditions). More specifically, π denotes

the allelic ratio (alternative allele/reference allele), and |π − 0.5| denotes the allelic
imbalance. The difference in allelic imbalance, δ|π − 0.5|, defines the change in
eQTL effect size across two conditions. We show the allelic ratios in Supplementary
Fig. 5.

RPE-selective eQTL. We compared RPE and GTEx eGenes with a two-step FDR
approach as described previously56. In brief, eGenes shared across both conditions
in fRPE were selected (FDR < 0.05). We decided to filter for shared eGenes because
they likely reflect regulatory effects not due to treatments. For each eGene, we
screened all GTEx tissues for association at a relaxed FDR < 0.1 and defined an
eGene as RPE-selective if no significant association were found in GTEx. Note that
such strategy is conservative on two levels. First, by selecting shared eQTL in RPE,
these eQTL must pass FDR < 0.05 in both treatments. Second, GTEx FDR cor-
rections were performed tissue-by-tissue, and per-tissue FDR is anti-conservative.
We also compared fRPE eGenes to retinal eGenes. The EyeGEx dataset used
406 samples to map eQTLs in the retina and found a total of 10,463 eGenes. We
again selected eGenes found in both glucose and galactose conditions (n= 687)
and grouped them into fRPE-specific and EyeGEx-shared if they were also eGenes
in the EyeGEx dataset.

Motif enrichment in treatment-specific eQTLs. In order to find motifs enriched
around treatment-specific eQTLs, we first selected the lead eQTLs from either
condition and extracted the 15 bp flanking the lead SNP as the target sequences. To
obtain matched background sequence, we flipped the eQTL SNP to its alternative
allele as the background. To keep the direction of effect consistent, we always used
the expression-increasing allele as the target and the expression-decreasing allele as
the background. The target and background sequences were used as input to
HOMER to identify enriched motifs.

sQTL calling and quality control
Covariate selection. We performed covariate selection by empirically maximizing
the power to detect sQTL. We used intron clusters only from chromosome 1 to
avoid overfitting, and tested only the top three genotype principal components
because they explained most of the variability in the genotyping data (Supple-
mentary Fig. 13). FastQTL were run in permutation mode (adaptively permute
100–10,000 times) to obtain intron-level sQTL p-values. After multiple hypothesis
correction, the number of significant sQTL cluster decreased as the number of
covariates increased (Supplementary Fig. 20). This is likely because LeafCutter uses
the ratio between each intron and its intron cluster as the phenotype. Suppose a
batch effect influences the expression of a gene. Such batch effect will influence the
quantification of each intron in the same direction. Taking the ratio between a
intron and its intron cluster effectively cancels out the batch effect.

Per-treatment sQTL calling. We mapped sQTLs separately for two conditions using
FastQTL60 in both nominal and permutation modes and used a simple linear
regression:

EðintronÞ ¼ β0 þ βg � genotype
where s stands for the ratio between reads overlapping each intron and the total
number of reads over-lapping the intron cluster, g stands for genotypes. To obtain
cluster-level p-values, we used a conservative approach to correct for family-wise
error rate with the Bonferroni procedure across introns within each cluster. Global
FDR estimates were calculated using the lowest Bonferroni adjusted p-values per
cluster. We used FDR < 0.05 as a significance cutoff.

sQTL quality control. As a quality control, we determined whether the p-values
were inflated by visualizing their distribution. The p-values showed a uniform
distribution with a spike near 0 (Supplementary Fig. 21a). The upward trend in the
QQ plot shows clear enrichment for significant eQTL (Supplementary Fig. 21b).
Further, sQTLs with low p-values were enriched around splicing donor and
acceptor sites (Supplementary Fig. 21c), and intronic sQTL SNPs were enriched at
intron boundaries (Supplementary Fig. 21d).

Fine-mapping of polygenic ocular disease risk loci. We used fRPE eQTL and
sQTL information to identify potential causal genes in two well-powered GWAS on
age-related macular degeneration and myopia using a modified version of eCA-
VIAR65. For every significant eQTL, we tested all variants within 500-kb of the lead
eQTL SNP for colocalization with GWAS summary statistics. At each candidate
locus, we ran FINEMAP91 twice to compute the posterior probability that each
individual SNP at the locus was a causal SNP for the GWAS phenotype and fRPE
e/sQTLs. We then processed the FINEMAP results to compute a colocalization
posterior probability (CLPP) using the method described by eCAVIAR65. We
defined any locus with CLPP > 0.01 to have sufficient evidence for colocalization.
At loci that showed colocalization between RPE eQTLs and GWAS associations, we
performed the colocalization tests again using eQTLs from each of 44 GTEx tissues.
To determine whether any potential causal genes act primarily through fRPE, we
repeated colocalization analysis with GTEx eQTLs (Supplementary Figs. 22 and
23). To identify condition-specific colocalization, we ran eCAVIAR separately for
the glucose and galactose conditions. A condition-specific colocalization is defined
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as having a CLPP > 0.01 in one condition, and at least an order of magnitude lower
in the other condition with a CLPP < 0.01.

Estimation of isoform proportions. To estimate the proportions of the normal
and mis-spliced isoform (exon-3 skipped isoform), we solved a system of equations
based on the following observations:

The “C” haplotype produces approximately 3 times as much as the “a”
haplotype.

1. The mis-spliced isoform accounts for approximately 1% of expression in
individuals with CC genotype.

2. The mis-spliced isoform accounts for approximately 4% of expression in
individuals with Ca genotype.

We use nc and na to denote the proportion of normal isoform for the “C” and
the “a” haplotypes, and pn and pm to denote the proportion of normal and mis-
spliced isoforms that pass non-sense mediated decay (not degraded). For
simplicity, we assume that pn= 1 because normal isoform should not be degraded
by NMD. We use ct, cn, and cm to denote the total, normal, and mis-spliced
isoforms for the “C” haplotype, and at, an, and am to denote the total, normal, and
mis-spliced isoforms for the “a” haplotype. We know that:

cn ¼ 100cm

cn þ an ¼ 25 cm þ amð Þ

ct ¼ 3at
Plugging in cn= nc, cm= (1− nc)pm, an= na and am= (1− na)pm:

nc ¼ 100 1� ncð Þpm
nc þ na ¼ 25 1� ncð Þpm þ 1� nað Þpmð Þ

nc þ 1� ncð Þpm ¼ 3 na þ 1� nað Þpmð Þ
Solving the system of equations leads to nc= 0.82, na= 0.25, and pm= 0.05. In

other words, 82% and 25% of isoforms transcribed from the “C” and “a” haplotypes
are normal, respectively. We estimate that NMD will degrade 95% of mis-spliced
isoforms.

Experimental validation. ARPE-19 cells were obtained from ATCC (CRL-2302).
The cells were obtained directly from ATCC within the past year. They exhibit the
expected cobblestone morphology and slight pigmentation when differentiated by
standard protocols. ARPE-19 cells were fixed, stained with DAPI and imaged by
fluorescence microscopy. No evidence of mycoplasma contamination was seen.
ARPE-19 cells were differentiated for 3 months in 6-well plates (Corning) in
medium containing 3 mM pyruvate92 and treated with 100 µg/mL cycloheximide
(CHX; Sigma) or vehicle (DMSO) for 3 h. Cells were then collected, RNA was
extracted by TRIzol (Invitrogen), and cDNA was synthesized with an iScript™
cDNA Synthesis Kit (Bio-RAD). Oligonucleotide primers were designed to speci-
fically amplify the normal or mis-spliced isoforms of the RDH5 transcript. For the
normal isoform, the forward primer (ggggctactgtgtctccaaa) was located in exon 3
and the reverse primer (tgcagggttttctccagact) was located in exon 4, with an
expected product size of 151 bp. The amplification conditions were: 94 °C 2 min
followed by 38 cycles of 94 °C 30 s, 60 °C 30 s, 72 °C 15 s. For the mis-spliced
isoform, the forward primer (gatgcacgttaaggaagcag/gcg) spanned the exon 2/4
junction with the three bases at the 3′ end located in exon 4. The reverse primer
(gcgctgttgcattttcaggt) was located in exon 5. The expected product size is 204 bp.
The amplification conditions were: 94 °C 2min followed by 50 cycles of 94 °C 30 s,
60 °C 30 s, 72 °C 15 s. AmpliTaq (ThermoFisher) and 2.5 mM MgCl2 were used for
all reactions. The identities of the normal and mis-spliced PCR products were
confirmed by Sanger sequencing. For quantification, PCR products were resolved
on 2% agarose gels containing ethidium bromide and imaged using a Bio-Rad
ChemiDoc Touch Imaging System. Equal-sized boxes were drawn around bands
for the CHX and DMSO samples, grayscale values were measured by ImageJ
(NIH), and the relative fold change was calculated (mean ± SEM; three indepen-
dent experiments). A one-sided Students t-test was used to assess the statistical
significance of a model under which CHX increased product abundance.

Statistics and reproducibility. To promote the reproducibility of our study, we
deposited raw experimental data to GEO (see Data availability) and open sourced
all scripts for data processing and analysis (see Code availability).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data are available in the Supplementary Data files (Supplementary Data 1–
12). Full eQTL and sQTL summary statistics have been made deposited into Box: https://
stanford.box.com/s/asrxy0o66xxe1j7mfj56p3z3d405gijj and are available at http://

montgomerylab.stanford.edu/resources.html. RNAseq data can be downloaded via GEO
accession number GSE129479. Source data underlying the figures is available as
Supplementary Data 13–30.

Code availability
Code to reproduce all analyses in this manuscript has been deposited on GitHub: https://
github.com/boxiangliu/rpe.
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