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Genotype–covariate correlation and interaction
disentangled by a whole-genome multivariate
reaction norm model
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The genomics era has brought useful tools to dissect the genetic architecture of complex

traits. Here we propose a multivariate reaction norm model (MRNM) to tackle

genotype–covariate (G–C) correlation and interaction problems. We apply MRNM to the UK

Biobank data in analysis of body mass index using smoking quantity as a covariate, finding a

highly significant G–C correlation, but only weak evidence for G–C interaction. In contrast,

G–C interaction estimates are inflated in existing methods. It is also notable that there is

significant heterogeneity in the estimated residual variances (i.e., variances not attributable to

factors in the model) across different covariate levels, i.e., residual–covariate (R–C) inter-

action. We also show that the residual variances estimated by standard additive models can

be inflated in the presence of G–C and/or R–C interactions. We conclude that it is essential to

correctly account for both interaction and correlation in complex trait analyses.
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Variation in complex traits between people is determined
both by genetic and non-genetic factors. The non-genetic
component will include environmental risk factors, but

also unknown factors that are characterised by stochastic varia-
tion. The interplay between genetic and identifiable environ-
mental factors has long been a topic of research interest1–3, since
the identification of genotype–environment interactions has the
potential to inform on health interventions to overcome genetic
predisposition to disease. However, many so-called environ-
mental risk factors (e.g., smoking, alcohol consumption, stressful
life events, educational attainment) are themselves complex traits
whose variation also reflects both genetic and non-genetic factors.
For example, the relationship between smoking and body mass
index (BMI) is complex, i.e., common causal genetic variants
have biological effects on both traits (pleiotropy or genetic cor-
relation)4 while BMI is also modulated by smoking status
(interaction)5–7 (Fig. 1). The relationship between smoking and
BMI is a good example for a complex association which can be
best modelled using a framework that can account both for
genotype–covariate correlation and interaction (GCCI).

Both correlation (‘association’) and interaction (‘effect mod-
ification’) are fundamental in biology8–10, but it is critical to
distinguish between them because their biological mechanisms
differ, as do their implications. This association/interaction pro-
blem has been well posed in the classical twin study approach11,
showing that association and interaction can be disentangled and
correctly estimated with an appropriate model and sufficient data.
Unfortunately, large well-powered data sets with measures on
multiple family members are few. However, genome-wide asso-
ciation studies (GWAS) now provide different types of genetically
informative data to investigate GCCI. The genomic era has
brought useful tools to dissect the genetic architecture of complex
traits, where genetic variance and covariance can be estimated
based on genome-wide single nucleotide polymorphisms (SNPs)
genotyped in large-scale population samples. The increased
availability of sufficiently powered data sets, with information on
measured genetic and non-genetic risk factors, motivates the need
to develop appropriate statistical tools for GCCI analysis. Locus
specific interaction at single locus level has been widely studied12.

However, it is desirable to estimate whole-genome level interac-
tion, which is accumulated from every locus across the genome
and has a direct implication on actual phenotypic modulations.

The reaction norm model (RNM) has been developed and
applied to genotype–environment interaction analyses in ecol-
ogy13 and agriculture14,15. The RNM allows environmental
exposures to be modelled such that the genetic effects of a trait
can be fitted as a nonlinear function of a continuous environ-
mental gradient. The possible modulators of the phenotypes of
the trait are not limited to environmental exposures, but can
include any covariates, regulated by environmental and genetic
factors, which are shared with the phenotypes. In other words, the
genetic effect, and therefore the phenotype, of one trait often
depends on the phenotype of another trait. This can be modelled
by introducing dependence between the phenotype and the
covariate, where the covariate represents the phenotype of the
modulating trait, with both phenotypes having shared genetic and
environmental components.

In the context of whole genome analyses of human complex
traits, there is currently no approach that can fit GCCI effects to
disentangle interaction from correlation at the genome-wide level.
Yet, ignoring either the genotype–covariate (G–C) correlation or
the G–C interaction may cause biased estimates of variance
components which form the basis of SNP-heritability or interac-
tion estimation11. Random regression-genomic restricted max-
imum likelihood (RR-GREML)16,17 and G–C interaction (GCI)-
GREML18 have been used to detect and estimate G–C interaction
at the whole genome level for BMI modulated by smoking
quantity16. However, the analytical approach used in this study
was based on univariate models which did not account for G–C
correlation, thereby assuming that there is no correlation between
the covariates and the outcomes. This can inflate signals indicating
the presence of G–C interaction and lead to biased estimates by
the failure to account for the G–C correlation. A further limitation
with the existing methods is that these cannot be applied to
continuous covariates without an arbitrary stratification into dis-
crete exposure groups16. Importantly, additive models used for the
estimation of SNP heritability (such as GREML17,18 which is based
on individual level data, or LDSC19–21 based on summary statis-
tics) may give biased estimates for genetic and residual (error)
variance if the trait of interest is moderated by (unknown) cov-
ariates due to failure in adequate capture of the interaction effects.
It is currently not possible to use RR-GREML or GCI-GREML to
assess such bias especially when using continuous covariates.

In this study, we develop a whole-genome reaction norm model
(RNM) that is computationally flexible and powerful when esti-
mating genome-wide G–C interactions for complex traits. We also
extend this approach to a whole-genome multivariate RNM
(MRNM) framework to capture fully the GCCI effects, jointly
modelling pleiotropy and interactions at the genome-wide level. As
the proposed methods will be able to more realistically account for
the complexity of GCCI effects, we hypothesise that they will lead to
a significant reduction in bias and notably improve the estimation
of the genetic architecture of complex traits.

Results
Overview of methods. We propose an extension of the whole-
genome RNM that can estimate G–C interactions, where covariates
can be continuous phenotypes of traits correlated with the response.
In a simplified form of this model, the response variable (y)
representing the main trait is modulated by a continuous covariate
variable (c) as

yi ¼ gi þ ei ¼ αi0 þ αi1 � ci þ ei

where gi and ei are the genetic and residual effects for the ith

Existing model

Proposed model

a

b

Smoking Genes BMI

Smoking Genes

Unexplained residuals

BMI

Fig. 1 A simplified path diagram of the existing and proposed interaction
model. a Existing interaction model where smoking modulates genes such
that their expression, regulation and effects underlying BMI are changed
(genotype–covariate interaction). b Proposed MRNM where
genotype–covariate interaction is only a part of the latent mechanism that
also includes pleiotropic effects on smoking and BMI (magenta arrow),
residual–covariate interaction (blue arrow) and residual correlation (green
arrow). Unexplained residuals may be partly due to epigenetic or unknown
factors that are not captured by the genetic component, resulting in
heterogeneous error (co)variance across different covariate values
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individual record, and gi can be further decomposed to the zero and
first order random regression coefficients, denoted as αi0 and αi1
(i.e., the regression coefficients may vary between individuals) and ci
is the unique covariate value for the ith individual (see Methods for
the formal model specification and covariance structure). This
model is the same as RR-GREML16,17 proposed by Maier et al.22

except the fact that ci in our model is a continuous variable, as
opposed to a discrete variable. The RNM can be generalised to
account for residual heterogeneity or residual–covariate (R–C)
interaction, by decomposing ei as follows:

yi ¼ gi þ ei ¼ αi0 þ αi1 � ci þ τi0 þ τi1 � ci
where αi0, αi1, and ci are defined as above, and τi0 and τi1 are the
zero and first order of random regression coefficients for the resi-
dual variance (see Methods).

The RNM described above is used to model G–C and R–C
interaction effects without accounting for G–C and R–C
correlation. As briefly explained in Introduction section, the
same genetic factors can affect both the covariate trait and the
main trait (response variable), and at the same time, the covariate
trait phenotypes can directly modify the main trait. For example,
both BMI and smoking have non-zero SNP-based heritability23,
there is a direct genetic association between BMI and smoking
quantity, and BMI is known to be modulated by smoking.
Typically, the covariate itself (here, smoking) is affected by
genetic effects and residual error (i.e., ci= βi+ εi), and there can
be non-negligible correlations between α0 and β, α1 and β, τ0 and
ε, and τ1 and ε (for the full covariance structure, see Methods).
We used MRNM to take into account the G–C and R–C
correlation.

We compared the performance of previously published
methods (RR-GREML16,17 and GCI-GREML18), RNM, and
MRNM using simulated and real data from the UK Biobank24

(see Methods and Supplementary Note 1). The models used in
these comparisons are summarised in Supplementary Table 1. In
the simulation, we used likelihood ratio tests to obtain the p-
values, and assessed bias, type I error rate and power of detecting
G–C and R–C interactions. In the analyses using the UK Biobank,
we modelled BMI as the main trait and fitted separate models
using information on pack years of smoking (SMK), neuroticism
score (NEU) and the first principal component of genotypes
(PC1) as the covariates. We used SMK and NEU because of their
well-known association with BMI16,25,26 although the variance
and covariance components of the interaction effects were not
clearly known. We would expect to see little or no evidence for
interaction due to PC1 because BMI was reported to have
relatively small interaction across different populations27 and the
data used in this study were stringently restricted according to
their ancestry (see Methods). In addition, we applied the standard
GREML17,18 and LDSC19–21 methods to estimate SNP-based
heritability for the main response variable (y), where y is
modulated by one or more unknown covariates. With this
analysis, we are able to explore the potential bias in results
obtained by these methods in the presence of non-negligible
interactions.

Type I error rate, power and estimates for G–C interaction. We
used simulation (see Methods) to quantify type I error rate and
power of detecting G–C interaction for the proposed RNM, RR-
GREML and GCI-GREML, without considering G–C correlation.
As shown in Fig. 2, there was no inflation of type I error rate for
all methods under the null model, when there was no G–C cor-
relation and interaction. In contrast, when there were non-
negligible G–C interactions, RNM outperformed RR-GREML and
GCI-GREML in detecting G–C interactions (Fig. 3). The power to

detect G–C interaction was slightly higher for RR-GREML
compared to GCI-GREML. The type I error rate and power of
MRNM were very similar to those of RNM (Supplementary
Fig. 1).

We also tested if the methods can give unbiased estimates for
variance components of random regression coefficients under-
lying the mechanism of G–C interaction. When G–C interactions
were present, RNM gave unbiased estimates, whereas estimates
from RR-GREML and GCI-GREML differed from true values
(Supplementary Table 2). Note that RR-GREML and GCI-
GREML required the stratification of the sample into discrete
groups, resulting in an artificial heterogeneity of phenotypic
variances across the discrete groups (Supplementary Fig. 2).

Type I error rate, power and estimates for GCCI. We also
considered the GCCI model in simulations (Methods). Under the
null (no G–C interaction), in the presence of non-negligible genetic
correlations between the main response and covariate variables, we
observed spurious signals for G–C interaction in the univariate
analysis using the RNM (Fig. 4). This was probably due to the fact
that the unmodelled association of the main genetic effects between
the phenotypes and covariate, cov(α0, β), was partly captured and
estimated as interaction variance, var(α1 · c), from the model, y=
α0+ α1 · c+ e. However, MRNM performed notably better in these
analyses, being able to control for type I error rate (0.046) in
detecting G–C interaction (Fig. 4). With a more modest genetic
correlation (e.g., 0.1), type I error rate was still inflated (0.25 in
Supplementary Fig. 3) and the estimates were biased (Supple-
mentary Table 3) when applying the univariate model.

In the presence of G–C correlations and G–C interactions, both
RNM and MRNM performed similarly in detecting G–C
interactions (Supplementary Fig. 4) although the significance of
the G–C interaction for RNM was slightly inflated due to over-
estimated parameters (see var(α1) for RNM in Supplementary
Table 4). Importantly, MRNM gave unbiased estimates for both
G–C correlation and G–C interaction (Supplementary Table 4).

When using RNM, the spurious signals for detecting G–C
interaction could be controlled by adjusting the main response for
the covariate, i.e., using residuals (as the response) from the
regression of the main response on the covariate (Supplementary
Figs. 5 and 6). However, such adjustment was crude, and the
genuine effects were sometimes over-corrected, again leading to
biased estimates especially in the estimated variance of the main
effects (Supplementary Table 5).

Residual–covariate (R–C) correlation and interaction. In
addition to GCCI, it is possible that the residual effects (ei) are
correlated with the covariate (ci) and that there is interaction
(RCCI) (see Eq. (3) or Methods). We tested various scenarios for
detecting G–C interactions in the presence of R–C correlation
and/or interaction (Supplementary Figs. 7–11). In the absence of
G–C interactions but with R–C interactions, type I error rate was
well controlled in all methods (Supplementary Fig. 7 and Sup-
plementary Data 1). In the presence of G–C interactions and R–C
interactions, RNM had greater power to detect G–C interaction
compared to RR-GREML or GCI-GREML (Supplementary Fig. 8
and Supplementary Data 2). In the absence of G–C interaction
but with G–C correlations and RCCI, all three methods were able
to control type I errors in detecting G–C interaction (Supple-
mentary Fig. 9 and Supplementary Data 3). With the full GCCI
model in the presence of G–C correlation and interaction, and
R–C correlation and interaction, MRNM had greater power than
RR-GREML or GCI-GREML (Supplementary Fig. 10 and Sup-
plementary Data 4). When increasing the variance explained by
the G–C interaction, the statistical power reached 100% with all
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three methods (Supplementary Fig. 11 and Supplementary
Data 5). It is notable that MRNM gave unbiased estimates of the
components whereas the other methods generated some degree of
bias in the estimation (Supplementary Data 3–5, and Supple-
mentary Table 6).

Inflated residual variance using LDSC or GREML. LDSC SNP-
based heritability estimates have been widely used19,20,28. How-
ever, it is not clear if G–C or R–C interactions have an effect on
LDSC SNP-based heritability estimations. When using LDSC,
GWAS summary stats are typically used without knowing
(accessing) the information of specific covariates. So, it is
important to assess the biasness of estimates if interaction effects

are not properly modelled either because of the model limitation
(i.e., LDSC is an additive model) or lack of covariate information.
With simulated data based on the G–C or R–C interaction model,
we showed that both the GREML and LDSC overestimated the
residual variance for the main response variable hence under-
estimating the SNP-based heritability (Fig. 5 and Supplementary
Fig. 12). When the interaction component explained 10% of the
total variance, the estimated residual variance based on GREML
or LDSC was 1.5 times higher than the true simulated value
(Fig. 5). When the variance of the interaction was increased to
25% of the total variance, GREML or LDSC overestimated the
residual variance up to 3-fold. However, RNM generated
unbiased estimates for the residual variance in most cases. It was
noted that the estimated genetic variance and covariance were
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Fig. 2 Type I error rate for detecting G–C interaction is under control. Five hundred replicates of data were simulated under a null model that assumed
no genotype–covariate interaction. Simulation was based QCed ARIC data consisting 7,263 individuals and 583,058 SNPs. The model is specified as y=
α0 + α1 × c+ e with c= β+ ε, all effects drawn from a multivariate normal distribution, where the variance–covariance structure between α0, β, and α1 (in

this order) is
1 0 0
0 1 0
0 0 0

2
4

3
5 and that between e and ε is 1 0

0 1

� �
. For every replicate, each of the three models was fitted to obtain a p-value for the G–C

interaction via a comparison between the null (H0) and alternative hypothesis (H1) models using a likelihood ratio test. For RNM, the H0 and H1 models
were y= α0+ e and y= α0+α1 × c+ e. For RR-GREML and GCI-GREML, the H0 and H1 models were y= α0+ e and y=α0+ α1 × c+ e. In RR-GREML
and GCI-GREML, samples were arbitrarily stratified into four different groups according to the covariate levels. RR-GREML explicitly estimate residual
variance for each of the four groups whereas GCI-GREML assumes homogeneous residual variance across the four groups and estimates a single residual
variance. The left panels show the proportions of significant p-values, i.e., type I error rate, for RNM, RR-GREML and GCI-GREML, which are 0.048, 0.048
and 0.034, respectively. Note that p-values are inverse normal transformed, such that the statistical significance level, i.e., 1.65, shown as dashed lines, is
equivalent to the 0.05 level before the transformation. The right panels are quantile–quantile (Q–Q) plots of −log10(p-values) from RNM, RR-GREML and
GCI-GREML to detect G–C interaction using simulated data (λ is the ratio of observed to expected median test statistic). The low lambda values for RR-
GREML and GCI-GREML was probably due to the fact that the methods stratify individuals into multiple groups. In addition, GCI-GREML constrains the
negative estimated variance to zero
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mostly unbiased whether using GREML, LDSC or RNM (Fig. 5
and Supplementary Table 7). This implies that a consistent esti-
mate of SNP-based heritability can be obtained across the
methods given that the phenotypic variance is correctly estimated
on the original scale, which is invariant to whether there are
interactions or not.

GCCI and RCCI analysis for real data (UK Biobank). We used
the first release of UK Biobank (see Methods) to compare various
models that test interaction using RR-GREML (M1) and GCI-
GREML (M2), and the proposed approaches RNM (M3-M7) and
MRNM (M8-M12) (Table 1). We applied the models with BMI as
the outcome trait using either SMK, NEU or PC1 as the covariate
of interest, in order to detect G–C and/or R–C interactions.

Table 1 shows the p-values for interaction effects from the
likelihood ratio tests and the corresponding estimates for variance
and covariance components are presented in Supplementary
Data 6. We found that BMI was significantly modulated by SMK
using RR-GREML (M1, p-value= 1.00E-03) or GCI-GREML
(M2, p-value= 1.99E-07), confirming published results16. How-
ever, published methods did not account for G–C correlation or
RCCI (Supplementary Data 4 and 5). Using RNM (M3-M7), we
found that the combined G–C and R–C interaction effects were
highly significant (M3-M5). We then used RNM to test for the
G–C interaction corrected for R–C interaction (M7) and found
similar results (p-value= 1.83E-04 and var(α1)= 0.47 with SE=
0.12) compared to those obtained using RR-GREML (M1) and
GCI-GREML (M2). It is noted that residual heterogeneity
(reflected by R–C interaction) was partly controlled in M1 and
M2 as these models adjusted for group differences with the
covariate stratified into four discrete groups, which however
generated biased estimates as shown in Supplementary Data 4
and 5 from simulation. We next applied MRNM to test for
interactions, accounting for both G–C interaction and G–C
correlation effects (M8-M12). We found that the signal for the
combined G–C and R–C interaction increased (M8-M10)
compared to that seen using RNM, which turned out to be
mostly due to the increased R–C interaction (M11). It is likely
that this was due to the large negative residual correlation
between BMI and SMK (Fig. 6 and Supplementary Data 6) which
could be more properly modelled in MRNM than in RNM. We
finally tested G–C interaction controlled for G–C correlation, and
R–C correlation and R–C interaction (M12), and showed that the
signal for G–C interaction was marginally significant (p-value=
3.26E-02). This was probably due to the fact that the non-
negligible G–C correlation (Fig. 6 and Supplementary Data 6)
would inflate the signal of G–C interaction in M1, 2 and 7 (all
based on univariate framework). As shown in the simulations, the
MRNM was the most reliable model (Supplementary Data 4 and
5). Hence, this demonstrates that conclusions from models using
the MRNM applied to real data can differ from those obtained
using methods based on more simplified models (Fig. 6 and
Supplementary Data 6).

We also analysed BMI using NEU25,26 as the covariate in
the various models, observing evidence for interaction with RR-
GREML (p-value= 6.82E-04) but not GCI-GREML(M1 and M2
in Table 1). We found strong G–C and R–C interactions
when using either RNM (M3-M5) or MRNM (M8-M10).
Evidence for interaction remained when the G–C interaction
effects were adjusted for R–C interaction effects (p-value= 3.77E-
04 for M7 and 1.08E-03 for M12) or vice versa (7.73E-06 for M6
and 2.36E-05 for M11). This shows that G–C and R–C
interactions are both important and contribute to the shared
aetiology between BMI and NEU. As shown in Fig. 7, both
genetic and residual effects on BMI are significantly modulated by
individual NEU while there also is a strong genetic association
between them. It was noted that in contrast to BMI-SMK analysis,
the results between RNM and MRNM were similar, possibly
reflecting different shared genetic and environmental architecture
between BMI and NEU, compared to BMI and SMK. The
estimated genetic architecture from BMI-NEU analyses is
depicted in Fig. 7, Supplementary Data 6 and Supplementary
Fig. 13.
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Fig. 3 RNM has more statistical power than RR-GREML and GCI-GREML.
One hundred replicates of data were simulated under a model that assumed
the presence of a genotype–covariate interaction. Simulation was based
QCed ARIC data consisting 7,263 individuals and 583,058 SNPs. The model
is specified as y=α0+α1 × c+ e with c= β+ ε, all effects drawn from a
multivariate normal distribution, where the variance–covariance structure

between α0, β, and α1 (in this order) is
1 0 0:05
0 1 0

0:05 0 0:25
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5 and that

between e and ε is
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0 1
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. For every replicate, each of the three models

was fitted to obtain a p-value for the G–C interaction via a comparison
between the null (H0) and alternative hypothesis (H1) models using a
likelihood ratio test. For RNM, the H0 and H1 models were y=α0+ e and
y=α0 + α1 × c+ e. For RR-GREML and GCI-GREML, the H0 and H1 models
were y=α0+ e and y=α0 + α1 × c+ e. In RR-GREML and GCI-GREML,
samples were arbitrarily stratified into four different groups according to the
covariate levels. RR-GREML explicitly estimate residual variance for each of
the four groups whereas GCI-GREML assumes homogeneous residual
variance across the four groups and estimates a single residual variance.
This figure shows the proportions of significant p-values, i.e., statistical
power, for RNM, RR-GREML and GCI-GREML, which are 1, 0.9 and 0.69,
respectively. Note that p-values are inverse normal transformed, such that
the statistical significance level, i.e., 1.65, shown as dashed lines, is
equivalent to the 0.05 level before the transformation
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Lastly, we used PC1 as the covariate in the same analyses
(Table 1) and as expected, found no significant interaction effects.
Compared to SMK or NEU, the R–C interaction was dramatically
less (Table 1 and Supplementary Data 6), probably because PC1
was calculated from genotype data for which the residual
component was relatively small. We also found no evidence of
G–C interaction, which was probably due to the fact that the
sample was so homogeneous such that there was little power to
detect interaction effects modulated by population difference.

The phenotypes of BMI showed some deviation from a normal
distribution (kurtosis= 5.65 and skewness= 1.08). We explicitly
tested the normality assumption using simulations, and found
that rank-based inverse normal transformed (RINT) phenotypes
could remedy type I error inflation due to non-normality
(Supplementary Note 2). However, the conclusions drawn
from our analyses were the same when either raw or RINT
phenotypes are used (Table 1 vs. and Supplementary Table 8).
Therefore, we report significances and estimations based on raw
phenotypes here.

Inflated residual variance using GREML with real data. We
observed in simulation data that residual variances for a trait
estimated from LDSC or GREML were inflated when there were
G–C or R–C interactions (Fig. 5 and Supplementary Table 7), and

this led to underestimates of SNP heritability. Hence, with real
data, we tested the differences in the estimates of residual var-
iances for BMI estimated from GREML and RNM (Table 2). For
this real data analysis, we could not assess LDSC performance
because it did not provide the standard error of estimated residual
variance that was required for testing a statistical difference
(Supplementary Note 3). For SMK and NEU that had significant
interaction effects, the estimated residual variances from GREML
were significantly higher than those from RNM (1.89% difference
with p-value= 5.99E-04 and 2.04% difference with p-value=
7.12E-03, using a Wald test) (Table 2). As expected, there was no
significant difference between the models when PC1 was con-
sidered as the covariate, because it had no interaction effects. We
also fitted both SMK and NEU simultaneously and found that the
difference between estimated residual variances from GREML
and RNM was increased (3.28% with p-value 1.57E-04 using a
Wald test) (Table 2). The estimated variance components for the
interaction effects from the joint model (Supplementary Table 9)
and the separate models (M4 in Supplementary Data 6) did not
differ. We also observed that the estimated genetic variance varied
little between using GREML or RNM (Fig. 5 and M3 in Sup-
plementary Data 1 and 2), hence biased residual variance directly
caused biased SNP-based heritability estimates. Inflated residual
variance therefore underestimated SNP-based heritability, as
also observed from an extensive meta-analysis across diverse
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univariate RNM and a multivariate RNM were fitted separately to obtain a p-value for the G–C interaction by comparing the null (H0) and alternative
hypothesis (H1) model using a likelihood ratio test. For the univariate RNM, the H0 and H1 models were y= α0+ e and y= α0+ α1 × c+ e. For the
multivariate RNM, the H0 and H1 models were y= α0+ e with c= β+ ε and y= α0+α1 × c+ e with c= β+ ε. The left panel shows the proportions of
significant p-values, i.e., type I error rate, for both models, which are 0.998 (univariate RNM) and 0.046 (multivariate RNM). Note that p-values are inverse
normal transformed, such that the statistical significance level, i.e., 1.65, shown as dashed lines, is equivalent to the 0.05 level before the transformation.
The right panel is quantile-quantile (Q-Q) plots of −log10(p-values) from univariate RNM and multivariate RNM. λ is the ratio of observed to expected
median test statistic, which is inflated when using an inappropriate model
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study-cohorts23,29,30 that possibly increased the heterogeneity of
covariates shared by the study-samples, hence increased the
variance due to G–C and/or R–C interactions (Fig. 8). When
comparing MRNM and MVGREML, the results did not differ
much (Supplementary Table 10) although there were additional
parameters such as cov(α1, β) and cov(τ1, ε) that were not
explicitly parameterised in GREML. We did not fit multiple
covariates jointly in MRNM because of our focus on SNP-based
heritability comparisons based on univariate models (i.e., GREML
vs. RNM) and due to the need to control computational demands.

Meta-analysis approach and validation using UK Biobank data.
For very large data sets, our proposed approach may become
computationally infeasible (see Supplementary Table 11 for
computational requirements). A solution could be to divide the
data in various subsets and undertake a meta-analysis. We show
that a meta-analysis31 of GCCI and RCCI results across different
data subsets is useful and reliable (Supplementary Note 4).

Discussion
Complex traits are determined by both genetic and environ-
mental effects. Some environmental covariates of complex traits
may themselves be determined by genetic and non-genetic fac-
tors. Genotype–covariate correlation and interactions (GCCI) and
residual–covariate correlation and interaction effects (RCCI) may
be important underlying factors shaping complex trait pheno-
types32, yet not many studies have conducted analyses to detect
these effects jointly in one model because of a lack of proper
analysis models. In this study, we propose a flexible (multivariate)
RNM to estimate genotype–covariate correlation and interactions
and residual–covariate correlation and interaction effects for
complex traits, which is powerful and reliable. The key findings
are summarised as follows:

1. For continuous covariates, the proposed MRNM is a more
appropriate model, compared to RR-GREML and GCI-
GREML.
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2. Covariates can be regulated by genetic and environmental
factors that are possibly shared with the main response
(GCCI and RCCI effects), which is the most plausible
mechanism for many complex traits. It is desirable to
model GCCI and RCCI effects appropriately (using
multivariate RNM).

3. SNP-based heritability estimates from standard additive
models should be carefully interpreted or revisited if
covariate information is available.

4. The proposed models can be applied to large-scale biobank
data by meta-analysis of results from sub-samples, for which
the analyses are computationally feasible.

The existing methods for estimation of G–C interactions, i.e.,
RR-GREML and GCI-GREML, require that the outcome of
interest (e.g., BMI) should be stratified into multiple discrete
groups. The discrete grouping ignores the difference of covariate
values for the individuals within each group, and results in some
loss of information. In contrast, RNM and MRNM use a flexible
model to fit a continuous covariate. Based on the analysis method
that we believe to be the most appropriate for the data (MRNM)
the G–C interaction estimate was much reduced and only bor-
derline significant while R–C interaction was much more
significant.

In the presence of G–C or R–C interactions, estimated SNP-
based heritability of the main response variable by GREML or
LDSC could be biased. The biased estimates reflect that the
interaction effects are absorbed by residual variance and the
overall estimated residual variance was inflated. The residual
variance estimated from GREML was significantly higher than
that from RNM for the BMI-SMK, BMI-NEU or BMI-SMK/NEU
analysis using the real data. Currently reported SNP-based her-
itabilites estimated based on meta analysis of GWAS summary
statistics from diverse study-cohorts tend to be lower when the
number of study-cohorts is larger (as a proxy of heterogeneity)
(Fig. 8), which can be partly explained by not properly modelling
G–C and R–C interactions. This observation has an important
implication because estimates from such meta-analyses (using
LDSC) should be carefully interpreted when known key covari-
ates were not included in the GWAS analysis model that gener-
ated the input for the LDSC analysis.

In this study, we found a strong negative R–C correlation and
weak positive G–C correlation between BMI and smoking, which
may support the phenomenon observed in several studies that
heavier smokers tend to have lower BMI. The R–C interaction
was shown to be highly significant. This suggests that the infor-
mation about R–C interaction component is crucial such that that

Table 1 P-values of likelihood ratio tests for model comparisons in UK Biobank analyses of BMI

Index Model comparison Model equation SMKa NEUb PC1c

Univariate models
M1 H0: RR-GREML k= 0d T1= α0+e 1.00E-03 6.28E-04 7.00E-01

H1: RR-GREML k= 1d T1= α0+ α1 · c+e
M2 H0: Uni-GREML T1= α0+e 1.99E-07 6.18E-01 1.00E-00

H1: GCI-GRMEL T1= α0+ α1 · c+ e
M3 H0: Uni-GREML T1= α0+ e 1.89E-49 1.05E-49 8.39E-01

H1: RNM Full T1= α0+ α1 · c+ τ0+ τ1 · c
M4 H0: Uni-GREML T1= α0+ e 8.76E-48 2.36E-48 5.63E-01

H1: RNM R–C T1= α0+ τ0+ τ1 · c
M5 H0: Uni-GREML T1= α0+ e 1.19E-44 1.15E-46 5.02E-01

H1: RNM G–C T1= α0+ α1 · c+ e
M6 H0: RNM G–C T1= α0+ α1 · c+ e 1.35E-07 7.73E-06 9.74E-01

H1: RNM Full T1= α0+ α1 · c+ τ0+ τ1 · c
M7 H0: RNM R–C T1= α0+ τ0+ τ1 · c 1.83E-04 3.77E-04 8.69E-01

H1: RNM Full T1= α0+ α1 · c+ τ0+ τ1 · c
Multivariate models
M8 H0: MVGREML T1= α0+ e

T2= β+ ε
1.97E-135 4.12E-48 8.98E-01

H1: MRNM Full T1= α0+ α1 · c+ τ0+ τ1 · c
T2= β+ ε

M9 H0: MVGREML T1= α0+ e
T2= β+ ε

6.10E-137 2.18E-47 7.09E-01

H1: MRNM R–C T1= α0+ τ0+ τ1 · c
T2= β+ ε

M10 H0: MVGREML T1= α0+ e
T2= β+ ε

2.93E-101 1.17E-45 7.09E-01

H1: MRNM G–C T1= α0+ α1 · c+ e
T2= β+ ε

M11 H0: MRNM G–C T1= α0+ α1 · c+ e
T2= β+ ε

2.37E-37 2.36E-05 8.39E-01

H1: MRNM Full T1= α0+ α1 · c+ τ0+ τ1 · c
T2= β+ ε

M12 H0: MRNM R–C T1= α0+ τ0+ τ1 · c
T2= β+ ε

3.26E-02 1.08E-03 8.40E-01

H1: MRNM Full T1= α0+ α1 ·+τ0+τ1 · c
T2= β+ ε

Note: T1 is the residual of main trait adjusted for confounders. T2 is the residual of c adjusted for confounders
aSMK: Pack years of smoking used in BMI-SMK interaction analysis
bNEU: Neuroticism score treated as continuous variable used in BMI–NEU interaction analysis
cThe first principal component provided by UK Biobank used in BMI–PC interaction analysis
dSamples used in the respective model were arbitrarily stratified into four different levels according to covariates, SMK, NEU and PC1. Residual variance was estimated in each level for RR-GREML
whereas GCI-GREML assumes homogeneous residual variance across the four groups and estimates a single residual variance
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the main phenotypes (BMI) can be possibly controlled by chan-
ging the covariate (SMK), provided that the covariate is modifi-
able. In this example, the implication is that the intervention of
increasing smoking could be used to control BMI33. While in this
example the advice may not be practical for other health reasons,
the principle can be used to other traits and diseases with mod-
ifiable covariates. The information from the G–C correlation and
interaction can be useful for an early intervention (e.g., genomic
medicine) although the magnitude of the effects is relatively
small, compared to R–C components. We also investigated NEU
and found strong G–C and R–C interactions, indicating the
personality trait NEU is a major covariate influencing the
environmental factor for BMI as well as revealing a novel genetic
architecture of BMI to interact with different levels of NEU
(Fig. 7). Both genetic and residual variances of BMI are sig-
nificantly modulated by NEU, as well as there is significant
genetic correlation between BMI and NEU. We included analyses
using PC1 as the covariate in the model. Because of little variance
among the homogenous sample, there were no significant inter-
actions (Table 1 and Supplementary Table 8). In other circum-
stances, for example when using diverse samples from the
population or even across different ethnic populations, then

analyses that fit PC1 as a covariate might generate significant
interaction estimates.

Our analytical framework could be extended to consider
genotype-by-genotype interactions, i.e., epistasis, such that an
interaction between the genetic component of a trait and a cov-
ariate might be partitioned as interaction variances in the pro-
posed model. However, for the sorts of phenotypes considered
here there is no power to disentangle epistasis from other inter-
actions with the data available to us. However, the proposed
approach may have important utility in the context of gene-
expression, transcriptome and methylation data as novel covari-
ates, for which the specific genetic architecture may be powered
to detect epistatic interactions and correlations, and may merit
future study. It is possible to use models that fit multiple cov-
ariates simultaneously as we did for fitting both SMK and NEU
jointly (Table 2), which increase the proportion of the total phe-
notypic variance explained by the interaction components.
Genomic partitioning analyses to describe GCCI and RCCI
effects across the genome will be also useful to shed light on
the latent genetic architecture of complex traits and
diseases, which is possible by using the proposed approaches in
this study.
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entries of the first column are all 1s and the second column is the standardised covariates of respective individuals. My is the variance–covariance matrix of

estimated random regression coefficients from MRNM as My ¼ varðτ0Þ covðτ0; τ1Þ
covðτ0; τ1Þ varðτ1Þ

� �
¼ 16:81ðSE0:18Þ 0:41ðSE0:12Þ

0:41ðSE0:12Þ 0:42ðSE0:16Þ
� �

. Vg matrix in is the genetic

(co)variance structure between different covariate levels (see Eq. 2), which is derived based on the estimated random regression coefficients and polynomial
matrix as Vg=ΦKyΦ′.Φ is the matrix of polynomials evaluated at given covariate values, where entries of the first column are all 1s and the second column
is the standardised covariates of respective individuals. Ky is the variance–covariance matrix of random regression coefficients estimated from MRNM as

Ky ¼ varðα0Þ covðα0; α1Þ
covðα0; α1Þ varðα1Þ

� �
¼ 4:66ðSE0:15Þ 0:07ðSE0:10Þ
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An alternative approach to disentangle interaction from asso-
ciation is through the classical structural equation models11

applied to twin- or pedigree-based data. However, availability of
such data is limited, restricting our ability to study GCCI effects
for a wide range of complex traits and covariates. For example,
phenotypes moderated by ancestry components (e.g., ethnic
composition in humans or breed composition in animals) cannot
be studied by an approach that is based on twins or relatives. It is

also difficult to disentangle the genetic and shared environmental
effects when using a pedigree-based approach. Standard REML
packages (e.g., ASReml34) can be used to test the GCCI effects
although it is questionable that the classical REML algorithm,
which has been optimised for pedigree-based studies, can be
computationally tractable when fitting genetic covariance struc-
tures based on genomic information17. Therefore, it may be
infeasible investigate the GCCI effects using the classical REML
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matrix of random regression coefficients estimated from MRNM as My ¼ varðτ0Þ covðτ0; τ1Þ
covðτ0; τ1Þ varðτ1Þ
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¼ 16:45ðSE0:21Þ 0:54ðSE0:11Þ
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. Vg matrix in is

the genetic (co)variance structure between different covariate levels (see Eq. 2), which is derived based on the estimated random regression coefficients and
polynomial matrix as Vg=ΦKyΦ′. Φ is the matrix of polynomials evaluated at given covariate values, where entries of the first column are all 1s and the
second column is the standardised covariates of respective individuals. Ky is the variance–covariance matrix of random regression coefficients estimated

from MRNM as Ky ¼ varðα0Þ covðα0; α1Þ
covðα0; α1Þ varðα1Þ

� �
¼ 4:94ðSE0:17Þ 0:38ðSE0:11Þ

0:38ðSE0:11Þ 0:28ðSE0:13Þ
� �

Table 2 The difference between residual variances of BMI estimated from RNMa and GREMLb

Differencec SEd Difference in % SE of Difference in % h2 (GREML) h2 (RNM) Pe

SMK −0.316 0.092 1.887 0.549 0.221 0.224 5.99E-04
NEU −0.336 0.125 2.044 0.760 0.227 0.231 7.12E-03
PC1 0.016 0.088 −0.095 0.523 0.227 0.227 8.56E-01
SMK-NEUf −0.588 0.156 3.279 0.870 0.227 0.233 1.57E-04

aAlternative model (H1) of M3 in Table 1
bNull model (H0) of M3 in Table 1
cDifference= the residual variance estimated from RNM − the residual variance estimated from univariate GREML
dStandard error of the difference was calculated based on the theory in Supplementary Note 3
eP-value was obtained based a two-tailed Wald test using the difference of residual variances and its SE
fThe model jointly fitted both SMK and NEU as multiple covariates (see Methods)
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packages although they have been applied widely in livestock35,36

and ecological genetics13,37,38 to explore the phenotype-genotype
relationship across environmental gradients. When extending
analyses to cover large-scale data such as the UK Biobank24, it is
essential to develop computationally efficient methods that also
correctly capture the GCCI effects, based on genomic
information.

There are a number of limitations and caveats in this study.
First, we only considered interaction of order k= 1 for both G–C
and R–C interactions. Further study is required to validate per-
formance with higher order interactions to generalise the pro-
posed approach. Second, our approaches are flexible, but
computationally demanding. For a large data set or when con-
ducting randomisation tests, e.g., permutation or bootstrapping, it
may not be computationally feasible to conduct an analysis within
a reasonable time. Subsampling and meta-analysis approaches
can reduce analysis time, however, the power is notably reduced,
compared to when using the whole data (Supplementary Figs. 14
and 15). Third, the proposed methods do not estimate the
direction of causality that can be determined by existing methods,
e.g., Mendelian randomisation. Fourth, in application to real data
we do not take account of ascertainment biases that may generate
interactions and correlations in the sample of data which means
that our results may not be representative of the populations from
which the samples are drawn39,40. Lastly, when there are
assumption violations, such as non-normality, correlation
between random effects or wrong estimation models due to
missing or misspecified information, one needs to carefully check
model performance (as in the Supplementary Notes 2 and 5). For
non-normally distributed traits, we recommend using RINT
phenotypes to check the robustness of estimated interaction
effects. Interaction effects will require careful interpretation,
particularly for R–C effects which can be caused by residual
heteroscedasticity by covariates41.

In conclusion, we showed that the multivariate RNM is able to
effectively disentangle interaction from correlation and to gen-
erate unbiased estimates for G–C and R–C components. The
concept of GCCI and RCCI is more plausible in explaining the
genetic architecture of complex traits associated/interacted with
covariates, which will shift the paradigm from a univariate to
multivariate framework and from linear to non-linear models in
complex trait analyses.

Methods
UK Biobank’s scientific protocol and operational procedures were reviewed and
approved by the North West Multi-centre Research Ethics Committee (MREC),
National Information Governance Board for Health & Social Care (NIGB), and
Community Health Index Advisory Group (CHIAG). The protocol of Athero-
sclerosis Risk in Communities Study (ARIC) study has been reviewed and
approved by the Institutional Review Boards (IRB) of each participating institution,
including the IRBs of the University of Minnesota, Johns Hopkins University,
University of North Carolina, University of Mississippi Medical Center, and Wake
Forest University. Research Ethics approval was obtained from University of South
Australia Human Research Ethics Committee (HREC).

Reaction norm model (RNM). We only consider interaction of order k= 1 in the
following equations. More general equations with a higher order can be found in
Supplementary Note 1.

To account for phenotypic plasticity and norms of reaction in response to
different covariate or environmental conditions among samples35,36, the dependent
variable for individual i can be modelled as

yi ¼ bi þ gi þ ei ¼ bi þ αi0 þ αi1 � ci þ ei ð1Þ
where yi is the phenotypic observation, bi represents fixed effects, gi is the random
genetic effect, αi0 and αi1 are the zero and first order of random regression
coefficients, ci is the covariate value, and ei is the residual effect for the ith
individual. Assuming that each individual has unique covariate value, the
variance–covariance matrix of observed phenotypes (yi) is

varðyÞ ¼
Z1Aσ
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1 þ Z1Iσ

2
e1
Z′
1 � � � Z1Aσg1;NZ

′
N þ Z1Iσe1;NZ

′
N

..

. . .
. ..

.

ZNAσg1;NZ
′
1 þ ZNIσe1;NZ

′
1 � � � ZNAσ

2
gN
Z′
N þ ZN Iσ

2
eN
Z′
N

2
6664

3
7775;

where A is the N × N genomic relationship matrix based on genome-wide SNP
information, Zi is an incidence matrix for gi, and I is an N × N identity matrix. The
terms σ2gi and σ2ei denote the genetic and residual variances at the covariate level for
individual i. The terms σgi;j and σei;j indicate the genetic and residual covariance

between the covariate levels for individual i and j (i= 1, …, N, and j= 1, …, N),
respectively17. The random genetic and residual effect are assumed following a
normal distribution with mean as zero and variance as Aσ2g and Iσ2e . The random
genetic effect, gi, can be regressed on the covariate gradient (reaction norm), which
can be efficiently modelled with random regression coefficients. The
variance–covariance matrix of random regression coefficients (K) is

K ¼ cov α0; α1ð Þ ¼ varðα0Þ covðα0; α1Þ
covðα0; α1Þ varðα1Þ

� �

where α0 and α1 are the zero and first order random regression coefficients. The
genetic (co)variance matrix of genetic effects between N individuals or N covariate
values (because each individual has unique covariate value) is a function of random
regression coefficients and polynomials, which can be expressed as

Vg ¼ ΦKΦ′ ¼
σ2g1 � � � σg1;N

..

. . .
. ..

.

σgN;1
� � � σ2gN

2
6664

3
7775

where Φ is the N × 2 matrix of the zero and first order polynomials of N covariate
values, that is Φi ¼ ½c0i ; c1i �.

Given that this model does not explicitly parameterise the correlation between
yi and ci, it naively assumes that yi and ci are uncorrelated. For this reason, this
model is also referred to as a genotype–covariate interaction (G–C interaction)
model.

Multivariate reaction norm model (MRNM). The naïve assumption of the uni-
variate RNM (or G–C interaction model) that yi and ci are uncorrelated is often
violated. In a more proper model, the covariate value for individual i is decom-
posed as ci= μi+ βi+ εi, where μi is fixed effects, βi is the random genetic effect,
and εi is the residual effect. When considering the main response (y) and covariate
(c) jointly in a multivariate model, the variance–covariance matrix of observed
phenotypes yi and ci is

cov y; cð Þ ¼

Z1Aσ
2
g1
Z′
1 þ Z1Iσ

2
e1
Z′
1 � � � Z1Aσg1;NZ

′
N þ Z1Iσe1;NZ

′
N Z1Aσg1 ;βZ

′
c þ Z1Iσe1 ;εZ

′
c

..

. . .
. ..

. ..
.

ZNAσg1;NZ
′
1 þ ZNIσe1;NZ

′
1 � � � ZNAσ

2
gN
Z′
N þ ZN Iσ

2
eN
Z′
N ZNAσgN ;βZ

′
c þ ZNIσeN ;εZ

′
c

ZcAσg1 ;βZ
′
1 þ ZcIσe1 ;εZ

′
1 � � � ZcAσgN ;βZ

′
N þ ZcIσeN ;εZ

′
N ZcAσ

2
βZ

′
c þ ZcIσ

2
εZ

′
c

2
6666664

3
7777775

where Zc is an incidence matrix for the vector of the random genetic and residual
effects, β and ε, underlying c. The genetic and residual variances of covariate c are
denoted as σ2β and σ2ε , respectively. The terms σgi ;β and σei ;ε indicate the genetic and
residual covariance between main trait and covariate at the ith covariate levels (i=
1, …, N), respectively. The random genetic and residual effects of y are the same as
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Fig. 8 Estimated SNP-based heritability of BMI decreases with increasing
numbers of cohorts. The UKBB1 estimate was reported by Ge et al.23, which
used GWAS summary statistics based on the samples from the first release
of UK Biobank. The GIANT2010 and GIANT 2015 estimates were reported
by Duncan et al.29, which used GWAS summary statistics based on the
GIANT consortium samples from ~80 to 125 cohorts, respectively. The
UKBB1+GIANT2015 estimate was reported by Ni et al.30. Bars are 95%
confidence interval
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defined above. The random genetic and residual effect of c are assumed following a
normal distribution with mean as zero and variance as Aσ2β and Iσ2ε . The genetic
(co)variance matrix of individual genetic effects in the multivariate model can be
written as

Vg;β ¼
ΦKyΦ′ ΦKy;c

K′
y;cΦ′ varðβÞ

" #
¼

σ2g1 � � � σg1;N σg1 ;β

..

. . .
. ..

. ..
.

σgN;1
� � � σ2gN σgN ;β

σg1 ;β � � � σgN ;β σ2β

2
666664

3
777775 ð2Þ

where Ky is the same as K defined above, and Ky,c consists of the covariance
between β and the random regression coefficients, that is

Ky;c ¼
covðα0; βÞ
covðα1; βÞ

� �
:

The multivariate residual covariance structure is

Re;ε ¼
varðeÞ covðe; εÞ
covðe; εÞ varðεÞ

� �
;

where e is the vector of residual effects for the main phenotypes, assuming that var
(e) is homogenous across different levels of covariate values, i.e.,
σ2e1 ¼ σ2e2 ¼; ¼ ;¼ σ2eN , which can be relaxed for the case of heterogeneous
residual variances (see the next section), and ε is the vector of residual effects for
the covariate, defined as above, and var(ε) is the residual variance of the covariate.

This model explicitly parameterises covariance between the random regression
coefficients for the main phenotypes and the genetic effects underlying the
covariate (i.e., Ky,c), therefore, is referred to as a genotype–covariate correlation and
interaction (GCCI) model. Importantly, values for cov(α0, β) or cov(e, ε) are often
non-negligible. Neglecting these terms can cause confounding between G–C
correlation and interaction, thereby generating spurious signals and biased
estimates for the interaction. Yet many studies do not account for G–C correlations
when estimating and testing G–C interaction16.

MRNM accounting for heterogeneous residual variance (RCCI). The models we
described so far assume that the residual variance for the main phenotypes, var(e),
is homogeneous across different values of the covariate. However, it is often pos-
sible that residual–covariate (R–C) correlation and interaction exist, resulting in
heterogeneous residual variances across different covariate values. To account for
this possibility, MRNM can be further generalised as

yi ¼ bi þ gi þ ei ¼ bi þ αi0 þ αi1 � ci þ τi0 þ τi1 � ci ð3Þ
where the residual term, ei, can be also regressed on the covariate gradient,
modelled with the zero and first order of random regression coefficients (τi0 and
τi1) and polynomial of the covariate.

The variance–covariance structure of the genetic effect for this model is the
same as for the multivariate reaction norm model described in Eq. (2) in the
previous section. The multivariate residual covariance structure in this generalised
MRNM becomes

Re;ε ¼
ΦMyΦ′ ΦMy;c

M′
y;cΦ′ varðεÞ

" #
¼

σ2e1 � � � σe1;N σe1 ;ε

..

. . .
. ..

. ..
.

σeN;1
� � � σ2eN σeN ;ε

σe1 ;ε � � � σeN ;ε σ2ε

2
666664

3
777775 ð4Þ

where My is the variance and covariance matrix of random regression coefficients
for the residual components and can be written as

My ¼ cov τ0; τ1ð Þ ¼ var τ0ð Þ cov τ0; τ1ð Þ
cov τ0; τ1ð Þ var τ1ð Þ

� �
;

where τ0 and τ1 are the zero and first order random regression coefficients for the
residual effects. My,c is a vector with the covariance between ε and the random
regression coefficients for the residual effects, and can be expressed as

My;c ¼
covðτ0; εÞ
cov τ1; εð Þ

� �
:

RNM with multiple covariates. RNM can be further extended to include multiple
covariates. A model fitting with multiple covariates can be expressed as

yi ¼ bi þ
Xx
j¼1

gij þ ei ¼ bi þ
Xx
j¼1

αij0 þ αij1 � cij
� �

þ ei;

where x is the number of random effects, each of which is associated with a unique
combination of a relationship matrix and covariate (see below), αij0 and αij1 are the
zero and first order random regression coefficient for the jth random effect and cij
is the covariate value for the jth random effect. Therefore, this model is a multiple
random effects model fitting multiple components22, but it allows the inclusion of

interaction effects for each random effect. As in the original multiple random
effects model, it is assumed that there is no correlation between the random
effects42.

The variance–covariance matrix of observed phenotypes (yi) for this multiple
random effects model is

var yð Þ ¼

Px
j¼1

Z1Ajσ
2
ðg1ÞjZ

′
1 þ Z1Iσ

2
e1
Z′
1 � � � Px

j¼1
Z1Ajσðg1;N ÞjZ

′
N þ Z1Iσe1;NZ

′
N

..

. . .
. ..

.

Px
j¼1

ZNAjσðg1;N ÞjZ
′
1 þ ZNIσe1;NZ

′
1 � � � Px

j¼1
ZNAjσ

2
ðgN ÞjZ

′
N þ ZN Iσ

2
eN
Z′
N

2
6666664

3
7777775
;

where Aj is the genomic relationship matrix for the jth random effect, σ2ðgiÞj is the

genetic variance at the ith covariate level for the jth random effect, σðg1;N Þj is, for
example, the genetic covariance between the first and the last covariate levels, and
other terms are defined as above. As in the RNM fitting with a single covariate, gij
in each random effect (j = 1 ~ x) can be regressed on the covariate gradient in the
same manner. The variance–covariance matrix of random regression coefficients
for each random effect (Kj) can be written as

Kj ¼ cov αj0; αj1

� �
¼ varðαj0Þ covðαj0; αj1Þ

covðαj0; αj1Þ varðαj1Þ

" #
:

Similarly, the genetic (co)variance matrix of individual genetic effects between
N individuals can be obtained as

Vgj
¼ ΦjKjΦ

′
j ¼

σ2ðg1Þj � � � σðg1;N Þj

..

. . .
. ..

.

σðg1;N Þj � � � σ2ðgN Þj

2
6664

3
7775;

where Φj is the N × 2 matrix of covariate polynomials for the jth random effect, and
the variance–covariance components were defined as above. This multiple random
effects model fitting with multiple covariates can be feasibly extended to MRNM
with GCCI and RCCI although the number of parameters increases exponentially.

All models described above can be fitted using MTG217.

Simulated data. Phenotypic simulation was based on individual genotypes from
the GWAS data of the Atherosclerosis Risk in Communities Study (ARIC) cohort.
We used autosomes only and applied the standard quality control (QC) to geno-
types, which included MAF > 0.01, SNP call rate > 0.95, sample call rate > 0.95 and
Hardy–Weinberg Equilibrium p-value > 0.001, keeping qualified genotyped SNPs.
After the standard QC, 583,058 SNPs and 8,291 individuals remained. In addition,
we estimated pair-wise relatedness from the remaining SNPs and randomly
excluded one individual from each pair with an estimated relatedness greater than
0.05. This relatedness cut-off QC reduced the sample to 7263 individuals.

Simulation under GCCI model (MRNM G–C model): We simulated phenotypes
for the main response (y) and covariate (c) under the GCCI model with the first
order interaction effect, i.e., k= 1. In the simulation, we used the following
covariance structure for the Ky matrix in Eq. (2) as

Ky ¼
varðα0Þ covðα0; α1Þ

covðα0; α1Þ varðα1Þ
� �

¼ 1 0:05

0:05 varðα1Þ

� �
:

We used a wide range of the G–C interaction with var(α1) set at 0, 0.25, 0.5, 0.75
or 1. For the covariate, ci= μi+ βi+ εi, var(β) and var(ε) were set at 1.

The values for the Ky,c matrix (Eq. 2) were used in the simulation as

Ky;c ¼
covðα0; βÞ
covðα1; βÞ

� �
¼ 0:5

0

� �
;

and

Re;ε ¼
varðeÞ covðe; εÞ
covðe; εÞ varðεÞ

� �
¼ 1 0:3

03 1

� �
:

Simulation under RCCI model (MRNM R–C model): In this simulation, we used
the following covariance structure for the Ky matrix in Eq. (2) as

Ky ¼
varðα0Þ covðα0; α1Þ

covðα0; α1Þ varðα1Þ
� �

¼ 1 0

0 0

� �
:

For the covariate, ci= μi+ βi+ εi, var(β) and var(ε) were set at 1.
The values for the Ky,c matrix (Eq. 2) were used in the simulation as

Ky;c ¼
covðα0; βÞ
covðα1; βÞ

� �
¼ 0:5

0

� �
:

The My and My,c matrices (Eqs 3 and 4) were specified in the simulation as
follows:

My ¼
var τ0ð Þ cov τ0; τ1ð Þ

cov τ0; τ1ð Þ var τ1ð Þ
� �

¼ 1 0:05

0:05 var τ1ð Þ
� �

with varðτ1Þ ¼ 0; 0:25 or 1
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and

My;c ¼
covðτ0; εÞ
cov τ1; εð Þ

� �
¼ covðτ0; εÞ

0

� �
with covðτ0; εÞ ¼ 0 or 0:3:

Simulation under GCCI and RCCI model (MRNM Full model): Similar to the
GCCI simulations above, we used values for the Ky matrix in Eq. (2) as

Ky ¼
varðα0Þ covðα0; α1Þ

covðα0; α1Þ varðα1Þ
� �

¼ 1 0:05

0:05 varðα1Þ
� �

:

We performed simulations with var(α1) set at 0, 0.25 or 1, and for the covariate,
both var(β) and var(ε) were set at 1.

The Ky,c, My and My,c matrices (Eqs. 3 and 4) were specified in the simulation
as follows:

Ky;c ¼
covðα0; βÞ
covðα1; βÞ

� �
¼ cov α0; βð Þ

0

� �
with covðα0; βÞ ¼ 0 or 0:5;

My ¼
var τ0ð Þ cov τ0; τ1ð Þ

cov τ0; τ1ð Þ var τ1ð Þ
� �

¼ 1 0:05

0:05 var τ1ð Þ
� �

with varðτ1Þ ¼ 0:25 or 1

and

My;c ¼ covðτ0; εÞ
cov τ1; εð Þ

� �
¼ covðτ0; εÞ

0

� �
with covðτ0; εÞ ¼ 0 or 0:3:

According to the normal distribution assumption in the models, all genetic
and residual values were drawn from normal distributions with mean zero
and variance–covariance structures specified as above. In the presence or
absence of interactions with simulated data under these various models, we
assessed bias, type I error rate and power for LDSC19,20, GREML18, MVGREML17,
RR-GREML16, GCI-GREML18, RNM, and MRNM. We used likelihood ratio
tests to get p-values to detect interaction effects and also estimated variance
components in the models. We used inverse normal p-values transformed from the
raw p-values using qnorm function in R43 for a clearer comparison across the
methods.

Real data. Data and Quality control: We used the UK Biobank data24, which
initially contained 488,377 individuals and 92,693,895 imputed SNPs across
autosomes. Stringent quality control was applied to the genotype data at both
individual and SNP levels. Specifically, we excluded individuals who met one of
the following criteria: (1) does not have white British ancestry, (2) has a
genotype missing rate > 0.05, (3) whose reported gender does not match with
the gender inferred using genotype data, and (4) has a putative sex chromosome
aneuploidy. At the SNP level, we excluded SNPs with an INFO score < 0.6, with a
MAF < 0.01, with a Hardy–Weinberg equilibrium p-value < 1E-4, or with a
call rate < 0.95. We excluded ambiguous or duplicated SNPs. We only used the
HapMap 3 SNPs in the main analyses because they are reliable and robust to bias in
estimating SNP-based heritability and genetic correlation44–46. In addition, we
excluded individual population outliers with the first or second PC outside six
standard deviations of the population mean. For individuals who were in the
first and second releases of UK biobank genotype data, we calculated the dis-
cordance rate between imputed genotype of the two versions for each individual
and for each SNP, and excluded individuals and SNPs with a discordance rate lager
than 0.05. We also excluded one individual randomly from any pair with a genomic
relationship larger than 0.05. After the QC above, 288,866 individuals and
1,130,918 SNPs remained. Of these remaining individuals 91,472 were from the
first release of UK Biobank (denoted as UKBB1) and 66,281 individuals with
complete records of covariates were used in the main analyses. The rest of 197,394
individuals were from the second release of UK Biobank (denoted as UKBB2) and
115,053 with complete records of covariates were used in the validation and meta-
analyses.

Main response variable and covariates: We applied the novel (M)RNM model
using BMI as the main response variable to estimate the GCCI/RCCI components
with each of several covariates, including pack years of smoking (SMK), neuroticism
score (NEU) or the first principal component (PC1) provided by the UK Biobank.
We also fitted the model that includes multiple covariates (e.g., SMK and NEU)
jointly, i.e., RNM with multiple covariates. For all analyses, covariates were
standardised as mean zero and variance 1. Prior to model fitting, we adjusted the
main response variable (BMI) for confounders including genotype batch,
assessment centre at which participant consented, year of birth, sex, age, diet
variation, diet change, the first 15 PCs, SMK, weekly alcohol consumption (ALC)
and Townsend deprivation index at recruitment (TDI). In the analyses using NEU
and PC1 as the covariates, we further adjusted BMI for NEU to correct the mean
difference. The distribution of each covariate is in Supplementary Fig. 16.

When including the covariate (i.e., SMK, NEU, or PC1) as the second trait in a
MRNM, it was also pre-adjusted for the confounders in a similar way as for the
main trait (i.e., BMI). For instance, as the second trait in a MRNM, SMK was pre-
adjusted for BMI, genotype batch, assessment centre at which participant
consented, year of birth, sex, age, diet variation, diet change, the first 15 PCs, ALC,
and TDI. NEU was pre-adjusted for BMI, genotype batch, assessment centre at
which participant consented, year of birth, sex, age, diet variation, diet change, the
first 15 PCs, ALC, TDI and SMK. PC1 was pre-adjusted for BMI, genotype batch,

assessment centre at which participant consented, year of birth, sex, age, diet
variation, diet change, the first 15 PCs except the first one (PC1), ALC, TDI, SMK
and NEU.

Detailed information regarding covariates used in the interaction models is
described below and that for other confounders used to adjust the main phenotypes
is in Supplementary Note 6.

Pack years of smoking (SMK): We combined pack years adult smoking as
proportion of life span exposed to smoking (UK Biobank data field: 20162) and
ever smoked (UK Biobank data field 20160) as SMK. The distribution of SMK is in
Supplementary Fig. 16. For RR-GREML and GCI-GREML, following Robinson
et al.16, we stratified SMK into four levels: 8,773 individuals with SMK > 0.8, 9,192
individuals with 0.5 ≤ SMK ≤ 0.8, 11,741 individuals with 0 < SMK < 0.5, and
36,575 individuals with SMK= 0 (i.e., never smoked).

Neuroticism score (NEU): The neuroticism score (data field 20127) of a given
individual was indexed by the number of ‘yes’s to 12 touchscreen questions that
evaluate neurotic behaviours. The distribution of NEU is in Supplementary Fig. 16.
For RR-GREML and GCI-GREML, we stratified the data into four groups
according to NEU level: 20,901 individuals with NEU ≤ 2, 16,161 individuals with
2 < NEU ≤ 5, 10,895 individuals with 5 < NEU ≤ 8, and 6,417 individuals with 8 <
NEU ≤ 12.

The fist principal components of genotype (PC1): PCs were pre-calculated by the
UK Biobank. Detailed information regarding the calculation is described
elsewhere47. Briefly, PCs-loadings were estimated using fastPCA48 based on
407,219 unrelated individuals and 147,604 markers that were pruned to minimise
linkage disequilibrium, onto where all samples were projected, to generate a set of
PC scores. For RR-GREML and GCI-GREML, we stratified the sample into four
groups based on quartiles of PC1.

Meta analyses of real data: The proposed MRNM requires individual-level
genotype data, which makes it computationally demanding. As sample size increases
(e.g., the second release of UK Biobank), the computing time increases substantially.
To complete the analyses within a reasonable timeframe, we used a meta-analysis
approach. We performed two sets of meta-analyses, one across two groups within
UKBB1 to assess the performance of the meta-analysis, compared to that of the
whole UKBB1 data analysis, and the other across UKBB1 and UKBB2.

Meta-analyses within UKBB1. We randomly divided the UKBB1 into two
groups of equal size (denoted as g1 and g2), and fitted all models mentioned above
for each group. P-values from each group were meta-analysed using the Fisher’s
method31. We then compared these p-values with those based on the whole
UKBB1 data set.

Meta-analyses across UKBB1 and UKBB2. In UKBB2, 197,394 individuals with
genotype data passed the QC, of which 94 K have no missing covariates and main
response. Similar to meta-analyses within UKBB1, we randomly divided the
UKBB2 into two groups of equal size (denoted as G1 and G2), and fitted all models
mentioned above for each group. We then meta-analysed the results from G1, G2,
and UKBB1 (denoted as G0) using the Fisher’s method31. For UKBB2, the same
pre-adjustment as for UKBB1 was applied to the main response and covariates as
the second trait in MRNM.

URLs. UK Biobank, http://www.ukbiobank.ac.uk/
LDSC, https://github.com/bulik/ldsc
GCTA, http://cnsgenomics.com/software/gcta/
Plink1.9, https://www.cog-genomics.org/plink2
MTG2, https://sites.google.com/site/honglee0707/mtg2

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data Availability
The simulated data can be obtained from the authors on request. We also used the
genotype data of ARIC study under accession code phs000090 in the database of
Genotypes and Phenotypes. All other relevant data is available upon request. The source
data underlying Figs. 1–8 and Supplementary Figs. 1–23 are provided as a Source
Data file.

Code availability
The RNM and MRNM for GCCI and RCCI analyses are fully implemented in MTG2
version 2.14.
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