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Ranking Regions, Edges and 
Classifying Tasks in Functional Brain 
Graphs by Sub-Graph Entropy
Bhaskar Sen, Shu-Hsien Chu    & Keshab K. Parhi   

This paper considers analysis of human brain networks or graphs constructed from time-series collected 
from functional magnetic resonance imaging (fMRI). In the network of time-series, the nodes describe 
the regions and the edge weights correspond to the absolute values of correlation coefficients of the 
time-series of the two nodes associated with the edges. The paper introduces a novel information-
theoretic metric, referred as sub-graph entropy, to measure uncertainty associated with a sub-graph. 
Nodes and edges constitute two special cases of sub-graph structures. Node and edge entropies are 
used in this paper to rank regions and edges in a functional brain network. The paper analyzes task-
fMRI data collected from 475 subjects in the Human Connectome Project (HCP) study for gambling and 
emotion tasks. The proposed approach is used to rank regions and edges associated with these tasks. 
The differential node (edge) entropy metric is defined as the difference of the node (edge) entropy 
corresponding to two different networks belonging to two different classes. Differential entropy of 
nodes and edges are used to rank top regions and edges associated with the two classes of data. Using 
top node and edge entropy features separately, two-class classifiers are designed using support vector 
machine (SVM) with radial basis function (RBF) kernel and leave-one-out method to classify time-series 
for emotion task vs. no-task, gambling task vs. no-task and emotion task vs. gambling task. Using node 
entropies, the SVM classifier achieves classification accuracies of 0.96, 0.97 and 0.98, respectively. Using 
edge entropies, the classifier achieves classification accuracies of 0.91, 0.96 and 0.94, respectively.

The state of the human brain network changes dynamically from task to task or from resting-state to a task, 
where each state represents a specific pattern in brain connectivity. Finding patterns in those connectivity states 
are of utmost importance1,2. Recently there has been a surge of interest in understanding brain connectivity pat-
terns while a person performs a task through the use of network theory3–5. Although complex network measures 
have been applied previously to analyze brain networks, several areas within this particular sub-field remain 
unexplored. This paper introduces the notions of graph entropy and sub-graph entropy and applications of these 
metrics to functional brain network analysis and classification. We propose the use of sub-graph entropy as an 
information-theoretic measure to compute complexity of brain networks. Special cases of sub-graph entropy 
include node entropy and edge entropy. It may be noted that, to the authors’ best knowledge, this is the first 
attempt to make use of sub-graph entropy to analyze brain networks. We also propose ranking of regions and 
edges of functional brain networks using these metrics. Node entropy and edge entropy are used as features for 
classifying functional connectivity patterns from task-fMRI (t-fMRI) corresponding to a number of unique states. 
The t-fMRI data is taken from emotion and gambling tasks from Human Connectome Project (HCP) dataset6. 
Although, emotion and gambling tasks are used in this paper for illustration, the proposed information-theoretic 
metric is generalizable to other tasks and potentially to two different groups, e.g., patients vs. controls, male vs. 
female etc.

There are multiple ways to define brain connectivity. Structural connectivity refers to a range of physical links 
that connect neuronal units. Functional connectivity captures patterns of deviations from statistical independence 
between distributed and possibly distant neuronal units7,8. Joint connectivity captures links that connect neuronal 
units both physically and functionally9. Among these, functional connectivity is highly time dependent, and it can 
be statistically nonstationary. It is modulated by external task demands and sensory stimulation, as well as the 
internal state of the organism. In this paper, we use functional connectivity extracted from t-fMRI as representative 
of brain states. In this representation, each region is a collection of neural elements, defined based on anatomy 
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of brain tissues10. The brain activities of each region are represented by different time-series corresponding to 
different voxels and their average value can represent the behavior of the region over time. The functional brain 
network (graph) is represented by nodes and edges, where each node is associated with the mean time-series of 
a brain region and each edge weight corresponds to the absolute value of the correlation coefficient of the two 
time-series of the two vertices of the edge. This view is popular in fMRI literature and finds evidence through the 
works of1,11.

Task-fMRI studies of human brain have previously focused on finding a representative network connectivity 
corresponding to a state2. The application of network theory for analyzing the states has revealed that individual 
human brain exhibits centrality property3, i.e., some human brain regions have higher importance in the whole 
network than others in terms of connections to other nodes. The centrality properties of a network are utilized to 
infer information about the state. For example, if a node has high centrality value in a network, the correspond-
ing state can be understood in terms of behavior of the node. Although, these network metrics are well suited 
to extract regions based on a particular definition of importance, how these measures can be applied to classify 
two states from brain connectivity networks remains unclear. We believe that information-theoretic approaches 
can be useful to address this challenge. We introduce information-theoretic entropy measures for analyzing and 
classifying brain networks in this paper.

During the emotion and gambling t-fMRI experiment, a subject performs the task in blocks. The time periods 
when a task is performed are interleaved by rest periods. Hence from each subject, two functional networks each 
corresponding to a particular state (e.g., task vs. no-task for emotion and gambling) of brain are extracted. For 
simplicity, we assume that the brain state remains similar for the whole duration of task or no-task. Hence each 
functional network can be seen as representative of that particular state.

Task State Network.  The network connectivity for a task is constructed, by taking the absolute Pearson 
correlation coefficient between anatomical regions from fMRI time points, when a subject is performing a task 
(e.g., emotion, gambling) during a t-fMRI experiment12–15. Note that each subject has one network corresponding 
to a task state. In this paper, t-fMRI time-series have been extracted from 475 subjects for emotion and gambling 
task from the Human Connectome Project16.

No-task State Network.  The network connectivity for a no-task is constructed from fMRI time points 
when a subject is not performing a task during a t-fMRI experiment. These time points contain baseline hemody-
namic signals during transition periods17. Note that each subject has one network corresponding to no-task state.

Hypothesis and Contributions
The main objective of the study is to understand whether brain states can be predicted using network measures 
from t-fMRI. First, we hypothesize that there are important nodes and edges in functional connectivity, that have 
significantly different network centrality measures for two different brain states. Our second hypothesis is that 
incorporating the important nodes, edges, and the corresponding centrality metrics to a classification model will 
lead to better prediction accuracy. Additionally, we hypothesize that the network metric, which is most predictive 
of two states, will also be group differentiating and biologically meaningful. How the hypotheses are analyzed is 
described next.

Analysis of Hypothesis 1: Importance of Nodes and Edges.  Using the information-theoretic net-
work measures, we provide a novel way to identify important regions and edges from a network. Here, important 
regions (respectively, edges) are defined as the ones containing maximum entropy in sub-graphs. Also, how the 
regional importance changes between task vs. no-task or two different task conditions (emotion and gambling) is 
demonstrated. The important regions and edges extracted by this process are shown to be meaningful for classi-
fying brain states.

Analysis of Hypothesis 2: Classifying Two Brain States.  We use sub-graph entropy to characterize 
each of the states in a quantitative way. After the functional network is extracted, the entropies between two dif-
ferent groups of networks are compared. Binary classifiers are designed using the proposed and state-of-the-art 
network metrics to classify two states. The analysis pipeline for this is showed in Fig. 1. Classification accuracy 
and group statistical test (t-test and effect size) are computed for the entropy values to demonstrate that they are 
statistically different for different task conditions. The classification performance is also compared with previously 
known state-of-the-art network centrality metrics.

Contributions.  Contributions of this paper are three-fold. First, we propose the use of node and edge entro-
pies as centrality metrics to compute the complexity of brain networks. Second, we propose ranking of nodes 
and edges of brain networks to extract important regions and edges between two states. We show that sub-graph 
entropy extracts some important regions, that the other network metrics can not identify. Third, using emotion 
and gambling t-fMRI data from the HCP dataset, we show that there is statistical difference of entropy measure 
between task state vs. no-task state and between two tasks. Node entropy and edge entropy are used as features 
to classify task vs. no-task or two different tasks with high accuracy. The proposed method outperforms other 
centrality measures for classifying two states. This validates the efficacy of sub-graph entropy as neural correlates 
of states.
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Previous Work
Several metrics have been proposed in the neuroimaging literature11,18,19 to compare different brain states. In this 
paper, we represent each brain state as a network corresponding to different induced conditions as described 
before12–15,20,21. This section describes previous works on analysing brain network (corresponding to states) based 
on regional and edge importance.

Node Importance.  In a complex network, different nodes may have different usages. Some may be used 
more than others, whereas some nodes might be controlling the dynamics of the whole network. These meas-
ures describe the centrality properties of the graph22. Statistical significance tests are commonly used to infer 
about the most important regions and links associated with an external stimulation. Here we describe a statisti-
cal way to infer about important regions during task states using generalized linear models (GLM). Among the 
network-theoretic measures commonly used to infer about important nodes, we illustrate four centrality meas-
ures, namely, degree centrality, eigenvector centrality, betweenness centrality and leverage centrality. Generalized 
linear models (GLM)23 use multiple regression with false discovery rate controls to infer the most important 
regions during a task. Degree centrality24 defines the central nodes to be the ones having the highest number of 
connections with other nodes. This centrality metric computes the importance of a node in the network by just the 
number of other nodes with which it directly interacts. Eigenvector centrality25 takes into account the centrality 
of immediate neighbors when computing the centrality of a particular node. In particular, eigenvector centrality 
is a positive multiple of the sum of nearest node centralities. They are computationally very intensive compared 
to the other centrality metrics. Betweenness centrality26 of a node represents the importance from the perspective 
of shortest paths in a graph. Particularly, this metric is calculated as the fraction of the shortest paths between all 
pairs of nodes (except the node in consideration) of a graph that contain the given node27. Joyece et al.22 intro-
duced a new measure of centrality called leverage centrality that finds out the influence of a node in a graph on 
other neighboring nodes based on their degree distribution. However, we note that the centrality measures may 
not only depend on degrees but also on the weight of the link between them. For example, if the weight of an edge 
is higher, it is more likely to be used. The information of the edge weights can be used to develop a new importance 
measure. In addition, all these centrality measures are only applicable when the topological structure of network 
is clearly known for every individual sample. In stochastic networks where the group behavior of a number of net-
works is of utmost importance, the extension of these measures is not straight-forward for differentiation between 
two groups. More details about these network measures can be found in3.

Edge Importance.  There have been a few previous works for understanding the importance of edges in brain 
states. Among them, Network Based Statistics (NBS)28 is a popular method for testing hypotheses about the edges 
in a network using t-test. It is used to identify connections and networks comprising the connectome associated 
with an experiment for a between-group difference.

Node and Edge Importance to Predict Brain States.  This paper introduces an information-theoretic 
approach to bridge the gap of understanding node and edge importance from brain networks (correspond-
ing to states) to classify states. Here we note that information-theoretic centrality metrics have been proposed 
before, although in a different setting. Information-theoretic approaches have been used in communication 
engineering since the seminal paper29 of Shannon in 1949. The information-theoretic concepts have been 
applied to understand different types of complex systems, e.g., in chemical graph theory30,31. From a structural 

Figure 1.  Pipeline for comparing group level entropy differences. After parcellating fMRI scans into regions, 
graph entropies are calculated for each subject’s functional network. These entropies are then used to compare 
two different states.
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complexity viewpoint, graph entropy was first introduced by Trucco32 and later formalized by Mowshowitz33. 
Structural graph entropy based on information-theoretic functional was introduced in34. The view of defining 
entropy based on intra-network communication between nodes was introduced in35. Mackenzie35 showed that 
information-theoretic importance can be used as centrality in a communication network. Shetty et al.36 defined 
an information-theoretic centrality measure37 to find out leaders and followers from a communication pattern 
between employees of an organization. This formulation considered the communication pattern over a number of 
days between agents to infer their importance. An integrated approach for understanding node, edge importance 
and using them for prediction have never been accomplished before.

Results
This section proposes the information-theoretic metrics for analysing networks in order to extract important 
nodes and edges. It also demonstrates the classification results of applying node entropy and edge entropy to two 
different conditions on human brain networks. First, graph entropy, sub-graph entropy, node entropy and edge 
entropy are illustrated using a simple example. Second, important regions and edges based on change in group 
(node and edge) entropy are ranked. Third, node and edge entropy values are used to design classifiers for clas-
sifying two connectivity states for emotion and gambling tasks. The classification performance is compared 
with the state-of-the-art network metrics for classification of states. The performance is also compared with a 
recently developed tensor based model for task prediction. Fourth, we compare graph entropy based centrality 
measure with commonly used centrality measures like degree, betweenness, eigenvector and leverage. A compar-
ison of graph entropy based centrality with structural centrality is also shown in Subsection S.7 and Fig. S13 in 
Supplementary Information. In addition, regions found through graph entropy are compared with the ones 
extracted by GLM and NBS. Lastly, the group-level differences of whole brain network between task vs. no-task 
(or task 1 vs. task 2) are investigated.

The brain region parcellation is based on38. In this paper, for all subsequent brain networks, we use the regions 
of interest (85 in total) as defined in38 viewed with BrainNet Viewer39.

Illustration on Graph Entropy.  For a graph G = (V, E), let two nodes be vi and vj. The weight of the edge 
between two nodes vi, vj is denoted by eij. We illustrate the approach to calculate graph entropy using an example 
graph shown in Fig. 2.

Figure 2.  (a) An example of calculating graph entropy. This graph consists of 7-nodes. The weighted edges 
between them are normalized, i.e., they sum up to 1. (b) An example of sub-graph from the example in (a). To 
calculate the sub-graph entropy, we normalize the edge connection. Left: sub-graph before normalization. Right: 
sub-graph after normalization. This sub-graph consists of 5-nodes. As the weighted edge between them are 
normalized, they sum up to 1. (c) Sub-graph associated with node 2 (left) and node 4 (right) from the example in 
(a). To calculate the sub-graph entropy, we normalize the edge connection. These sub-graphs consist of 4-nodes. 
As the weighted edge between them are normalized, they sum up to 1. (d) An example of sub-graph containing 
edge 1–2 from the example in (a). To calculate the sub-graph entropy, we normalize the edge weights. This sub-
graph consists of 5-nodes. As the weighted edges between them are normalized, they sum up to 1.

https://doi.org/10.1038/s41598-019-44103-8


5Scientific Reports |          (2019) 9:7628  | https://doi.org/10.1038/s41598-019-44103-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

The example graph depicted in Fig. 2(a) consists of 7-nodes and 10-edges. For simplicity assume that the 
edge weights are already normalized, i.e., they sum up to 1. In this scenario, we can calculate the graph entropy 
as follows.

•	 Identifying the normalized edges qi,j. Let us identify adjacency matrix Q such as Q(i, j) = qi,j

Q

0 0 05 0 0 0 3 0 0
0 05 0 0 05 0 0 0 1 0

0 0 05 0 0 1 0 0 0
0 0 0 1 0 0 05 0 0 1

0 3 0 0 0 05 0 0 1 0 1
0 0 1 0 0 0 1 0 0 05
0 0 0 0 1 0 1 0 05 0

=









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
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. .
. . .

. .
. . .

. . . .
. . .

. . .




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








•	 Calculating the entropy as = −∑ =H G q q( ) log ( )i j i j i j, , 2 ,  − × . × . + × . × . +[4 0 05 log (0 05) 5 0 1 log (0 1)2 2  
. × . = .0 3 log (0 3)] 3 04642  bits.

In this example, a sub-graph is shown in Fig. 2(b). The normalized incidence matrix of this sub-graph is given 
by

Q

0 0 09 0 0 0 55
0 09 0 0 09 0 0

0 0 09 0 0 18 0
0 0 0 18 0 0 09

0 55 0 0 0 09 0

s′ =












. .
. .

. .
. .

. .












The entropy can be calculated as H G q q( ) log ( )s k m k m k m, , 2 ,= −∑ ′ ′ = − × . × . + × . ×[2 0 09 log (0 09) 2 0 182  
. + . × . = .log (0 18) 0 55 log (0 55)] 1 85762 2  bits. Note that, this sub-graph entropy is less than actual graph 

entropy, indicating that it contains less randomness compared to the previous graph.
Importance of a graph node can be thought to be dependent on the entropy of sub-graphs in its immediate 

neighborhood. In order to calculate the entropy of sub-graphs surrounding a node, we need to extract the struc-
ture of sub-graphs containing that node. After that, based on sub-graph complexity, we can calculate the sub-graph 
entropy. In this example, sub-graphs containing nodes 2 and 4, respectively, are shown in Fig. 2(c). The normal-
ized incidence matrix of the sub-graph related to node 2 is given by

Q
0 0 25 0 0

0 25 0 0 25 0 5
0 0 25 0 0
0 0 5 0 0

v2
′ =










.
. . .

.
.










The entropy of node 2 is given by = − . × . + . × . + . × . = .[0 5 log (0 5) 0 25 log (0 25) 0 25 log (0 25)] 1 5002 2 2  
bits.

On the other hand, The normalized incidence matrix of the sub-graph related to node 4 is given by

′ =










.
. . .

.

.










Q
0 0 4 0 0

0 4 0 0 2 0 4
0 0 2 0 0
0 0 4 0 0

v4

The entropy of node is 4 given by = − . × . + . × . + . × . = .[0 4 log (0 4) 0 4 log (0 4) 0 2 log (0 2)] 1 52302 2 2  bits. 
Note that, although the degree of node 2 and 4 are the same, their entropy values are different. The node entropy 
proposed in this paper is different from vertex strength40 where the strength of vertex is calculated as sum of edge 
weights associated with the vertex.

In this example, a sub-graph containing edge 1 − 2 is shown in Fig. 2(d).
The normalized incidence matrix of this sub-graph is given by

′ =












. .
. . .

. .
.

.












Q

0 0 1 0 0 6 0
0 1 0 0 1 0 0 2
0 0 1 0 0 0 0

0 6 0 0 0 0
0 0 2 0 0 0

e12

The entropy can be calculated as =   [0 6 log (0 6) 0 2 log (0 2) 0 1 log (0 1) 0 12 2 2− . × . + . × . + . × . + . × 
. = .log (0 1)] 1 57102  bits. This entropy is more than the node entropy calculated before, implying the edge con-

tains more information.

Average Entropy from a Group of Graphs.  In order to infer entropy information from a group of graphs, their 
sample average can be calculated. In this case, entropy values for each node and edge for each graph are calculated 
and the average value across all graphs is computed. This average entropy acts as an unbiased estimator for the 
group. For proof, see Subsection S.10 in the Supplementary Information.
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Importance of Nodes and Edges.  Ranking of Regions.  The importance of nodes can be described by the 
complexity it contains. If the sub-graph entropy is able to explain most complexity of the network, then those 
sub-graphs are more important. In other words, if node entropy is higher, then that node is more important in the 
whole network. Hence, we rank the regions based on node entropy H G( )vi

. From a group of graphs, node entropy 
is calculated for each node for every graph in the group. Then we calculate the average of each node entropy for 
the whole group and rank the vertices based on the group averaged node entropy. The algorithm to rank the 
regions based on node entropy is given in Algorithm 1. The ranking pipeline is also illustrated in Fig. S1 in 
Supplementary Information.

This scheme can be seen as maximizing mutual information between sub-graph and the whole graph. We 
provide a proof in the Supplementary Information Subsection S.11.

We use the node entropy to rank the regions of brain which are most important for different conditions (emo-
tion task, gambling task, no-task) using Algorithm 1. The result of the ranking process for emotion task is shown 
in Table 1 and Fig. S2 in Supplementary Information. The regions of importance were consistent almost for every 
state, i.e., the regions that carried the most entropy did not change between task vs. no-task states.

Region Entropy Edge Entropy

Temporal Pole - R 5.9912 Parstriangularis - L Temporalpole - R 6.7815

Temporal Pole - L 5.8128 Insula - L Temporalpole - R 6.7339

Parstriangularis - L 5.6191 Temporalpole - L Temporalpole - R 6.7341

Insula - R 5.6073 Parstriangularis - L Insula - R 6.697

Parstriangularis - L 5.5606 Temporalpole - L Insula - R 6.6936

Entorhinal - R 5.332 Parsopercularis - L Temporalpole - R 6.6602

Insula - L 5.3212 Temporalpole - L Parstriangularis - R 6.6488

Amygdala - R 5.2477 Inferiortemporal - L Temporalpole - R 6.6433

Parsopercularis - R 5.2355 Temporalpole - L Parsopercularis - R 6.6427

Inferiortemporal - R 5.23 Parstriangularis - L Entorhinal - R 6.6381

Parsopercularis - L 5.0683 Entorhinal - L Temporalpole - R 6.6161

Inferiortemporal - L 5.067 Putamen - R Temporalpole - L 6.611

Putamen - R 5.0523 Temporalpole - L Entorhinal - R 6.6097

Parsorbitalis - R 5.0105 Superiortemporal - L Temporalpole - R 6.6034

Superiortemporal - R 4.9332 Insula - L Parstriangularis - R 6.6027

Rostralmiddlefrontal - R 4.924 Amygdala - R Parstriangularis - L 6.6012

Entorhinal - L 4.7726 Fusiform - L Temporalpole - R 6.5989

Frontalpole - R 4.7241 Temporalpole - L Inferiortemporal - R 6.5952

Medialorbitofrontal - R 4.7214 Parstriangularis - L Parstriangularis - R 6.5944

Fusiform - R 4.7196 Temporalpole - L Rostralmiddlefrontal - R 6.5925

Rostralanteriorcingulate - R 4.7017 Parstriangularis - L Parsopercularis - R 6.5889

Fusiform - L 4.6306 Parstriangularis - L Inferiortemporal - R 6.5767

Superiortemporal - L 4.5888 Temporalpole - L Parsorbitalis - R 6.5754

Caudalanteriorcingulate - L 4.4629 Putamen - R Parstriangularis - L 6.5752

Bankssts - L 4.3983 Bankssts - L Temporalpole - R 6.5649

Table 1.  Left: Top regions employed for emotion task according to Algorithm 1. Right: Top edges associated 
with the emotion task according to Algorithm 2.

Algorithm 1.  Ranking of Regions.

https://doi.org/10.1038/s41598-019-44103-8


7Scientific Reports |          (2019) 9:7628  | https://doi.org/10.1038/s41598-019-44103-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Ranking of Edges.  In this experiment, the edges are ranked based on edge entropy H G( )eij
. As before, the edge 

entropy of each edge for every graph is calculated from a group of graphs. Then we compute the average of each 
edge entropy for the whole group and rank the nodes based on the group averaged edge entropy. The algorithm to 
rank the edges based on edge entropy is given in Algorithm 2.

Edge entropy is then used to rank the functional edges of brain according to the importance of priority for dif-
ferent conditions (emotion task, gambling task, no-task) using Algorithm 2. The result of this ranking process for 
emotion task is shown in Table 1. The top-100 active edges are shown in Fig. S3 in Supplementary Information. 
The importance of priority edges was consistent for every state. In all the states, the most important edges are those 
criss-crossing two hemispheres. Also, the edges are mostly concentrated in the frontal regions of the brain. This is 
also consistent with the nodes found in regional ranking for each separate condition.

Emotion vs. No-task Gambling vs. No-task Emotion vs. Gambling

Regions
Diff. 
Entropy Regions

Diff. 
Entropy Regions

Diff. 
Entropy

Pericalcarine - L 0.1347 Accumbens - L 0.1355 Hippocampus - L 0.5736

Superiorparietal - L 0.1343 Pallidum - L 0.1209 Cuneus - L 0.5039

Fusiform - R 0.1212 Caudate - R 0.118 Pericalcarine - L 0.4924

Pallidum - R 0.1068 Lingual - L 0.1138 Pallidum - R 0.4222

Superiorparietal - R 0.1055 Accumbens - R 0.1055 Precuneus - L 0.4031

Amygdala - L 0.1008 Precentral - R 0.1028 Fusiform - R 0.3810

Caudate - R 0.0992 Pericalcarine - L 0.1005 Parahippocampal - R 0.3675

Pericalcarine - R 0.0981 Postcentral - L 0.0993 Putamen - L 0.3640

Hippocampus - L 0.0969 Superiorfrontal - R 0.0985 Caudalanteriorcingulate - L 0.3519

Accumbens - L 0.0964 Transversetemporal - R 0.0976 Brain Stem 0.3468

Transversetemporal - R 0.0961 Amygdala - R 0.0967 Bankssts - L 0.3370

Caudalanteriorcingulate - R 0.0912 Posteriorcingulate - R 0.0965 Supramarginal - R 0.3362

Parahippocampal - L 0.0880 Postcentral - R 0.0878 Superiorparietal - R 0.3255

Rostralanteriorcingulate - R 0.0784 Pericalcarine - R 0.0872 Pericalcarine - R 0.3080

Isthmuscingulate - L 0.0767 Brain Stem 0.0863 Left Pallidum 0.3069

Parahippocampal - R 0.0762 Precentral - L 0.0788 Putamen - R 0.3049

Pallidum - L 0.0757 Parahippocampal - L 0.0771 Lateraloccipital - R 0.2851

Lateraloccipital - R 0.0714 Lateralorbitofrontal - L 0.0739 Accumbens - R 0.2810

Posteriorcingulate - R 0.0708 Inferiorparietal - L 0.0734 Hippocampus - R 0.2783

Transversetemporal - L 0.0648 Parsopercularis - L 0.0720 Transversetemporal - L 0.2604

Posteriorcingulate - L 0.0635 Cerebellum Cortex - R 0.0700 Transversetemporal - R 0.2584

Lingual - R 0.0566 Caudate - L 0.0696 Parsorbitalis - R 0.2538

Caudalanteriorcingulate - L 0.0550 Frontalpole - L 0.0684 Cerebellum Cortex - L 0.2373

Accumbens - R 0.0521 Lateralorbitofrontal - R 0.0667 Superiorfrontal - L 0.2303

Isthmuscingulate - R 0.0519 Amygdala - L 0.0658 Rostralmiddlefrontal - R 0.2224

Table 2.  Ranking of important regions that have differences in entropy between two tasks. The regions with 
significant change in entropy values are ranked among top 15 regions.

Algorithm 2.  Ranking of Edges.
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Ranking based on Differential Entropy.  Between two groups of tasks (or task vs. no-task conditions), if the commu-
nication pattern among brain regions change, then the change in pattern can be captured using the above mentioned 
ranking procedure. In this scenario, the regions or links with the most change in entropies between two groups play a 
significant role in discriminating the two classes. Suppose, for region vi, the conditional entropy for subjects belonging 
to group G1 (where G1 ∈ {Emotion, Gambling}) is given by HG1(vi) and for group G2 (where G2 ∈ {No-task, Other 
Task}), HG2(vi). The difference between these two values would encompass the change in graph entropies between two 
groups of subjects for region i. We calculate the change in entropy (defined differential entropy) as |HG1(vi) − HG2(vi)| 
where |x| is the absolute value of x. Then we rank them based on decreasing value. The results from our experiment 
show empirically that this ranking can capture the significant distinguishing regions between two groups. The same 
argument and ranking procedure can be applied to edges as well. The algorithm is described in Algorithm 3.

There are regions that have maximum change of entropy between two states. Although, these regions may 
not be among the most complex regions, they provide the maximum change of entropy between two states. We 
extract the regions that are important from the perspective of change of information in Table 2 for different tasks. 

Figure 3.  Visualization of important regions that have highest differential entropy between two states for 
emotion task vs. no-task. Red: regions that have higher node entropy during emotion task, blue: regions that 
have higher node entropy during no-task.

Algorithm 3.  Ranking of Regions and Edges for Two Groups based on differential entropy.
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The corresponding regions of interest for emotion vs. no-task are shown in Fig. 3. In addition, the regions of inter-
est for gambling vs. no-task and emotion vs. gambling are shown in Figs. S4 and S5, respectively (Supplementary 
Information).

The change in ranking for emotion vs. no-task was the highest for fusiform cortex in the right hemisphere. For 
emotion vs. gambling task, the regions with maximum change in ranking for individual tasks are: left hemisphere 
banks of the superior temporal sulcus, left caudal anterior cingulate and right fusiform cortex. In order to facili-
tate the visualization of edge ranking procedure, the top ranked edges are overlaid on a brain template. Following 
group ranking procedure based on edge entropy, this process extracts top edges from (a) emotion vs. no-task 
(Fig. 4), (b) gambling vs. no-task (Fig. S6 in Supplementary Information) (c) emotion vs. gambling (Fig. S7 in 
Supplementary Information). These edges are also listed in Supplementary Information Tables S1 and S2. Here 

Figure 4.  Visualization of important edges that have highest differential entropy between two states for emotion 
task vs. no-task. Red: regions that have higher node entropy during emotion task, blue: regions that have higher 
node entropy during no-task, yellow: regions that are not significant based on node entropy.

Region 
Performance

Emotion vs. No-task Gambling vs. No-task Emotion vs. Gambling

# features Accuracy Specificity Sensitivity # features Accuracy Specificity Sensitivity # features Accuracy Specificity Sensitivity

Node Entropy 
(proposed) 25 0.96 0.94 0.98 25 0.97 0.96 0.97 25 0.94 0.97 0.91

Degree24 85 0.85 0.90 0.82 85 0.92 0.94 0.89 85 0.91 0.90 0.93

Eigenvector25 85 0.90 0.87 0.93 85 0.94 0.96 0.94 85 0.94 0.92 0.95

Betweenness26 85 0.82 0.87 0.80 85 0.89 0.91 0.89 85 0.86 0.88 0.84

Leverage22 85 0.83 0.85 0.81 85 0.87 0.83 0.91 85 0.83 0.87 0.80

Tensor based89 1280 0.91 0.93 0.89 1280 0.92 0.88 0.94 1280 0.90 0.85 0.95

Edge 
Performance # features Accuracy Specificity Sensitivity # features Accuracy Specificity Sensitivity # features Accuracy Specificity Sensitivity

Edge Entropy 
(proposed) 102 0.91 0.94 0.87 118 0.96 0.96 0.95 83 0.94 0.94 0.95

NBS28 536 0.86 0.81 0.90 1527 0.8 0.86 0.75 1496 0.88 0.92 0.85

Sub-graph 
Performance # features Accuracy Specificity Sensitivity # features Accuracy Specificity Sensitivity # features Accuracy Specificity Sensitivity

Sub-graph - 1 
(Intersection) 77 0.95 0.94 0.96 89 0.94 0.96 0.93 42 0.91 0.93 0.90

Sub-graph - 2 
(Union) 127 0.97 0.95 0.98 143 0.97 0.96 0.97 108 0.95 0.97 0.94

Table 3.  Classification performance for three classification tasks. Performance of node entropy is compared 
with other region based centrality measures. Performance of edge entropy is compared with NBS. In addition, 
classification performance for sub-graph containing intersection and union of top regions and edges are 
demonstrated. Sub-graph - 1 (intersection) contains top-25 regions and significant edges where nodes belong to 
top-25 regions. Sub-graph - 2 (union) contains top-25 regions and significant edges.
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the top 100 edges for each group are identified. A close inspection of the results reveals several observations. 
First, group ranking procedure reveals edges that are distributed throughout the whole brain and some of them 
criss-cross the hemispheres. Second, differential entropy elevates the edges that belong to frontal-parietal and 
frontal-subcortical areas, e.g., frontal lobe, parietal lobe, temporal lobe, cingulate gyrus, limbic system, striatum, 
thalamus, stem, and amygdala.

Performance of Classifying Two Brain States.  The leave-one-out classification performance using top-
25 region and significant edge entropies are shown in Table 3. The classification performance is compared with 
state-of-the-art network metrics for nodes. In addition, the classification performance for edges is also compared 
to NBS measures. A number of classifiers were tested, e.g., support vector machine (SVM), random forest, naive 
Bayes, and logistic regression. All the classifiers perform similarly with respect to the features. Therefore, the 
results from support vector machine with radial basis function are presented for illustration. The hyperparam-
eters for the classifiers were tuned using in-fold validation. The support vector machine classifier with a radial 
basis function kernel and node entropy features performs better for classifying two states with highest accuracy, 
specificity and sensitivity between node and edge based features separately.

Intersection and Union Sub-Graphs: Two sub-graphs are created from the intersection and union of top 
regions and edges to compute sub-graph entropies for different groups. The intersection sub-graph contains subset 
of edges associated with the nodes of the top-25 regions. The union sub-graph contains top-25 regions and sig-
nificant edges. The node and edge entropies associated with union and intersection sub-graphs are also used for 
classification. These results are summarized in Table 3.

When we utilize the regional centrality measures based on the regions of Table 2 to classify task vs. no-task 
states or emotion vs. gambling states, the classifier achieves very good area under the curve (AUC) values (shown 
in Fig. S8 in Supplementary Information). Compared to other centrality measurements, the proposed centrality 
achieves better prediction consistently for the whole range of receiver operating characteristics (ROC). Using 
edge entropies, the proposed classifier achieves very good mean AUC values as shown in Fig. S9 in Supplementary 
Information.

Statistical Analysis of Results.  Significance of Regions and Edges.  The statistical significance of the top 
ranked regions that have highest change in node entropy is investigated using nonparametric permutation t-test 
separately on each highly ranked regions. For emotion vs. no-task, out of the 25 regions shown in Table 2, top 
11 have significant change in node entropy. For gambling vs. no-task, top 15 regions have significant change 
in node entropy. The same procedure, using t-test, is also carried out using other four centrality measures, i.e., 
degree, betweenness, eigenvector and leverage centrality. The significant regions found using the other centrality 
measures are shown in Tables S3 and S4 in Supplementary Information. Node entropy measure is always able to 
extract the regions found to be significant by other measures. In addition, it finds some other important regions 
not found by the state-of-the-art centrality measures. For emotion task, the regions shown to be significant by 
node entropy, but not by other measures, include: left hippocampus, left amygdala, left accumbens, right caudate, 
right pallidum and right transversetemporal. Similarly, for gambling task, the regions shown to be significant by 
node entropy, but not by other measures, include: left pericalcarine, right pericalcarine, right postcentral and 
right transversetemporal.

For edges, nonparametric permutation t-test is carried out using edge entropy values on all edges, and the 
statistically significant edges are found using p = 0.05 with Bonferroni correction. The sub-network containing 
the significant edges are all top ranked edges from Algorithm 3. The number of edges, that had significant change 

Figure 5.  Comparing centrality measures for emotion task. Left to right: Information-theoretic centrality vs. 
degree, betweenness, leverage, eigenvector centrality. For each region the measures were plotted and overlaid for 
all subjects. Number of points for task and no-task are same.

Degree vs. Node 
Entropy

Betweenness vs. 
Node Entropy

Leverage vs. Node 
Entropy

Eigenvector vs. 
Node Entropy

Simulated 0.3899 ± 0.0928 0.6865 ± 0.0451 0.36450 ± 0.0883 0.9412 ± 0.0120

Emotion 0.2478 ± 0.1867 0.2672 ± 0.0689 0.0343 ± 0.0430 0.5912 ± 0.0499

Gambling 0.2475 ± 0.1782 0.2666 ± 0.0686 0.0346 ± 0.0410 0.5876 ± 0.0487

Table 4.  Comparison of correlation values between graph entropy and other centralities.
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in edge entropy values correspond to 102, 118 and 83, respectively, for emotion vs. no-task, gambling vs. no-task 
and emotion vs. gambling. The sub-networks containing the edges are shown in Fig. 4 for emotion vs. no-task.

Stability of Top Regions and Edges.  We use a rigorous leave-one-out technique to rank regions and edges in order 
to understand the stability of our method41–44. We run the proposed algorithm (Algorithm 3) 475 times, each time 
leaving one subject out and ranking the regions and edges based on Algorithm 3. We find that, the top regions and 
edges obtained from this leave-one-out method are very stable as shown by their histograms. For emotion task, 
top 21 regions (from Table 2) were ranked among top 25 regions 475 times, the rest four regions came up 474, 470, 
447 and 412 times, respectively. For gambling task, top 20 regions (from Table 2) came up 475 time, the rest five 
regions were ranked important 474, 470, 465, 445 and 438 times, respectively. For differentiating emotion vs. gam-
bling, top 21 regions (from Table 2) were ranked higher 475 time, the rest five regions came up 470, 375, 360, 325 
times, respectively. Out of the significant edges for three tasks, 75%, 85%, 80% edges, respectively, came up 475 
times. The number of occurrences of the regions (and edges) among top-25 (and significant edges, respectively) 
are illustrated in Figs S10 and S11 (Supplementary Information), respectively. The histogram for each case is quite 
flat signifying that important regions and edges were similar across most subjects. This indicates a consistent 
group-level behavior for classification, i.e., same features are being used for classifying two states.

Quantifying Classification Significance.  To further establish that the results are better than chance, we perform 
permutation tests. Performing permutation test involves computing a trivial baseline using permuted labels, i.e., 

Emotion vs. No-task Gambling vs. No-Task

Entropy Based GLM Based Entropy Based GLM Based

Regions Entropy Regions
Reg. 
Coeff Regions Entropy Regions

Reg. 
Coeff

Pericalcarine - L 0.1347 Lateraloccipital - R 1 Accumbens - L 0.1355 Caudalanteriorcingulate - R 1

Superiorparietal - L 0.1343 Lateraloccipital - L 0.9727 Cuneus - L 0.1209 Caudalanteriorcingulate - L 0.9749

Fusiform - R 0.1212 Fusiform - R 0.9492 Caudate - R 0.1180 Superiorfrontal - R 0.9568

Pallidum - R 0.1068 Amygdala - R 0.8540 Lingual - L 0.1138 Superiorfrontal - L 0.9359

Superiorparietal - R 0.1055 Fusiform - L 0.8443 Accumbens - R 0.1055 Rostralanteriorcingulate - R 0.9172

Amygdala - L 0.1008 Pericalcarine - R 0.7019 Precentral - R 0.1028 Caudate - L 0.8908

Caudate - R 0.0992 Amygdala - L 0.6902 Pericalcarine - L 0.1005 Rostralmiddlefrontal - L 0.8893

Pericalcarine - R 0.0981 Lingual - L 0.6223 Postcentral - L 0.0993 Rostralanteriorcingulate - L 0.8832

Hippocampus - L 0.0969 Caudalanteriorcingulate - L 0.6091 Superiorfrontal - R 0.0985 Thalamus - L 0.8789

Accumbens - L 0.0964 Temporalpole - L 0.5611 Transversetemporal - R 0.0976 Insula - L 0.8769

Transversetemporal - R 0.0961 Lingual - R 0.5485 Amygdala - R 0.0967 Amygdala - R 0.8719

Caudalanteriorcingulate - R 0.0912 Caudalanteriorcingulate - R 0.5450 Posteriorcingulate - R 0.0965 Insula - R 0.8708

Parahippocampal - L 0.0880 Superiorparietal - L 0.5385 Postcentral - R 0.0878 Thalamus - R 0.8689

Rostralanteriorcingulate - R 0.0784 Bankssts - R 0.5156 Pericalcarine - R 0.0872 Caudate - R 0.8624

Isthmuscingulate - L 0.0767 Rostralanteriorcingulate - L 0.5080 Brain Stem 0.0863 Hippocampus - L 0.8502

Parahippocampal - R 0.0762 Pericalcarine - L 0.4778 Precentral - L 0.0788 Rostralmiddlefrontal - R 0.8496

Pallidum - L 0.0757 Entorhinal - L 0.4725 Parahippocampal - L 0.0771 Parsopercularis - R 0.8494

Lateraloccipital - R 0.0714 Supramarginal - R 0.4621 Lateralorbitofrontal - L 0.0739 Parsopercularis - L 0.8460

Posteriorcingulate - R 0.0708 Superiorparietal - R 0.4389 Inferiorparietal - L 0.0734 Brain Stem 0.8387

Transversetemporal - L 0.0648 Rostralanteriorcingulate - R 0.4320 Parsopercularis - L 0.0720 Parstriangularis - L 0.8360

Posteriorcingulate - L 0.0635 Supramarginal - L 0.4300 Cerebellum Cortex - R 0.0700 Parstriangularis - R 0.8341

Lingual - R 0.0566 Posteriorcingulate - R 0.4274 Caudate - L 0.0696 Amygdala - L 0.8316

Caudalanteriorcingulate - L 0.0550 Precentral - L 0.4140 Frontalpole - L 0.0684 Hippocampus - R 0.8278

Accumbens - R 0.0521 Postcentral - L 0.4131 Lateralorbitofrontal - R 0.0667 Caudalmiddlefrontal - L 0.8276

Isthmuscingulate - R 0.0519 Brain Stem 0.4047 Amygdala - L 0.0658 Caudalmiddlefrontal - L 0.8244

Table 5.  Regions with high regression coefficients from generalized linear model analysis. The regression 
coefficients are divided by the highest coefficient. Ranked regions from entropy models are also shown for 
comparison. The common regions are in bold.

Emotion Task vs. 
No-task

Gambling Task vs. 
No-task

Gambling Task vs. 
Emotion Task

p-value (Effect Size) p-value (Effect Size) p-value (Effect Size)

Graph Entropy 2.1344e-31 (0.57) 1.8636e-21 (0.45) 1.0721e-09 (0.29)

Table 6.  Graph entropy difference between two conditions for brain network.
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the accuracy produced if there was “no signal” between the features and label. Then we determined if our learned 
model performed significantly better than the baseline. Here, for each dataset (emotion vs. no-task, gambling 
vs. no-task, emotion vs. gambling), we performed 1000 iterations: each time, we randomly permuted the subject 
labels to effectively remove any relationship between the input features and the label, then we trained a model 
on the training subset of this set and tested it on the remaining subset. Fig. S12 shows the distributions of accu-
racy scores for the three datasets. In each case, we see that there is a significant difference between the centers of 
the distributions and the accuracy obtained by node entropy (p = 4.8213 × 10−8, 7.7689 × 10−11, 9.8659 × 10−10, 
respectively, for three tasks). The same conclusion holds for edge entropy. In addition to the permutation tests, 
we use a binomial test to compare the leave-one-out classification accuracies (using node and edge entropy) to 
baseline accuracies, to determine if each learner is significantly better than previous state-of-the-art classifiers. 
Node entropy performs significantly better than the next best method (tensor based) for classifying emotion vs. 
no-task with p = 7.9637 × 10−7. In addition, it is significantly better than eigenvector centrality for classifying 
gambling vs. no-task (p = 7.3483 × 10−4). Edge entropy is also better than NBS based methods for classification 
with p = 4.0653 × 10−4, 1.5673 × 10−15, 5.8537 × 10−6, respectively, for three classification tasks. The highest clas-
sification performance is achieved using node and edge entropy features associated with the union sub-graph.

Comparison of Node Entropy based Importance with Other Measures.  To understand the relationship between 
the proposed measure and other well-known centrality measures in fMRI literature, we use a scatter plot of the 
node entropy values for both task and no-task conditions with other centrality measures in Fig. 5 for emotion 
task. The gambling task follows similar pattern and has not been shown here. In addition, we calculate mean 
correlation values of centrality measures for a group of graphs (both simulated and real world) in Table 4. The 
simulated graphs are first constructed using 85 nodes and edges following a uniform distribution (0–1). Next, 
the graphs are made sparse similar to the sparsity of real networks. For each graph, node entropies are measured 
and correlated with other centrality measures. Then the average and standard deviation values of correlation are 
calculated. Correlation values are similarly calculated for the data from emotion and gambling tasks. The scatter 
plot and the table indicate that our proposed centrality measure has very low correlation values with degree, 
betweenness and leverage centrality although it has a somewhat high correlation with eigenvector centrality. This 
implies that graph entropy provides a different dimension of importance in comparison with degree, betweenness 
and leverage, and provides somewhat similar information with eigenvector centrality.

We also performed GLM analysis of the two tasks. Based on the value of regression coefficients, we ranked the 
regions associated with each task separately. The ranked regions are shown in Table 5.

Comparison of Graph Entropies between Two States.  The total graph entropy values between states correspond-
ing to two conditions (task vs. no-task time points or task 1 vs. task 2) are also compared. After the calculation 
of two types of graph entropies for each subject, a one-sided t-test is carried out to understand if the two states 
were significantly different. Graph entropy based p-values for functional connectivity states are shown in Table 6. 
All the changes were statistically significant (p < 0.05). The corresponding group mean entropy values are also 
plotted and compared for two different states (task vs. no-task conditions or others) in Fig. S14 in Supplementary 
Information. We use standard box plot to visualize the span of entropy values for each group. For classifica-
tion between two states, this feature achieves greater than 0.7 area under curve (AUC) for classification for all 
cases. The sub-graph entropies between two sub-graphs are also compared across different tasks and illustrated as 
box-plots in Figs S15, S16, respectively, in Supplementary Information.

Discussion
The important regions and edges extracted using only one condition are similar across all subjects. They are 
concentrated mainly in the frontal part of the brain. There are no significant differences between important 
regions and edges for different conditions. These regions and their connectivities are commonly used in brain 
to transfer information during task. Many of the significant regions are in anterior cingulate gyrus, ventrome-
dial frontal cortex, and inferior parietal brain regions. These regions are consistent with the previous works by 
Cole et al.45, Tomasi et al.46, Zuo et al.18. We provide theoretical justifications in Supplementary Information 
Subsections S.10, S.11 and S.12 for using edge strength and average graph entropy as a measure of group-level 
behavior of states and show that maximizing sub-graph entropy leads to maximizing mutual information between 
a sub-structure and whole graph. Some of the regions extracted using one condition consist of some small and 
noisy regions like left temporal pole and right temporal pole. These regions are ranked lower when using differen-
tial entropy. Generally, smaller and noisier regions will not rank higher when differential entropy is used.

Emotion Task.  Our definition of important regions between two different conditions based on change of 
information flow could also extract regions most responsible for the tasks. We also identify a number of use-
ful brain functional areas that are activated mainly during emotion tasks as significant regions between task 
vs. no-task networks. These areas are amygdala, caudate region, fusiform, striatum, and basal ganglia. Fusiform 
gyrus has been identified as one of the main regions for face information processing in Mccarthy et al.47. This 
region is also identified as one of the main regions for face emotion processing48,49. We find this region among 
top-5 regions in our ranking. Pallidum, part of basal ganglia, is also a very important region in terms of emotion 
processing. Nucleus accumbens area (both right and left hemisphere) is also identified as a significant region. 
Neuclus accumbens has been shown to be an important area for emotional processing in50–52. Specially, Floresco 
et al.52 hypothesize it to be an intermediary region regulating cognition and action. Areas from anterior cingulate 
cortex have been related to cognition and emotion53. Moreover, regions from anterior cingulate cortex (ACC) 
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are related to intelligent behavior, i.e., emotional self-control, focused problem solving, error recognition, and 
adaptive response to changing conditions54. Also, Etkin et al.55 showed its involvement in negative emotional 
stimuli55. We find hippocampal areas to have significant changes during emotion both for emotion vs. no-task 
and emotion vs. gambling. Hippocampus has been correlated with emotional responses and acts in conjunction 
with amygdala for processing of emotional situations. The amygdala and hippocampal areas, two medial temporal 
lobe structures, are linked to two independent memory systems, each with their unique characteristic functions, 
respectively. The situation where a person faces emotional stimuli, the two regions interact to give rise to specific 
responses. Specifically, amygdala can have effect on both the formation and storing of memories that depend on 
hippocampal activation56. The hippocampus area is associated with the amygdala response by forming episodic 
representations of the emotional stimuli. Although these regions are independent with respect to memory organ-
ization, they act in concert when emotion stimuli meets memory representations56.

The emotion task based on visual face information has a great effect on the regions from visual cortex specifi-
cally V1 areas. Calcarine sulcus areas from both right and left hemispheres have the most change in information 
flow in case of regions and edges. Areas from parietal lobule are also identified as important regions to explain 
the functional network. These regions may have been prominent as they have been shown to be responsible for 
processing higher order facial features57. One of the surprising finding is the ranking of caudate neucleus as an 
important region during the task. Caudate has generally been correlated with emotional processing but not with 
respect to the reaction to the preference of face pictures58,59. It has also been identified as neural correlate for emo-
tion based heart rate variability60. Hence, apart from main hub locations for angry or fearful emotions, brains of 
the subjects may also try to process multiple dimensions of the visual stimuli. The edges extracted as important 
edges also support the regional involvement as most of the regions in the edges are similar as in Table 2. All the 
regions and edges have p-value < 0.05 indicating that they are statistically significant as well.

Gambling Task.  The regions that have significant change in information belong to the reward circuitry of 
brain. Specifically regions from orbitofrontal61, limbic system (amygdala, hippocampal) and basal ganglia neu-
cleus (pallidum and striatum area caudate) were seen to have most change in entropies between gambling vs. 
no-tasks. One other area that has been shown to be involved from the proposed ranking method is neucleus 
accumbens. Knutson et al. have showed that activation in nucleus accumbens is prominent in people performing 
a gambling task. However, it is conjectured that this activity is associated with anticipation of reward predic-
tion. This further reinforces the efficacy of differential entropy for ranking process using gambling task without 
the monetary reward62,63. Moreover, reward processing is also correlated with reward-related functional acti-
vation in the nucleus accumbens64. In case of reward prediction, a behavior employed by the gambling task, 
significant activity is seen in the lateral orbitofrontal cortex and the striatum65. Basal ganglia region striatum is 
seen to be related to differentiating rewards from non-rewards66. Human brain limbic system is associated with 
neural responses for reward prediction67. Especially the difference between the actual gain and expected gain 
are associated with a neural circuitry of the mesolimbic dopamine system68. Gambling task also invokes areas 
related to decision making, e.g., amygdala. Previous studies have shown that amygdala damage can interfere with 
decision-making69. Amygdala is critical in the neural system and it triggers somatic states from primary inducers 
that brings back emotions for a secondary event. Functional disconnectivity of the amygdala regions have been 
shown to impair acquisition of gambling tasks in rats. It also alters their decision making behavior70. Anterior 
cingulate cortex’s involvement in cognition and conflict monitoring is well documented. Specifically, findings 
have posed specific challenges, especially concerning the way it addresses the processing of errors71. Dorsal ACC 
in adults are also active making risky selections. Furthermore, reduced activity in these areas are correlated with 
greater risk-taking performance making risky economic choices72. Other studies also suggest anterior cingulate 
is significantly correlated with performance on the gambling task73 and risk anticipation74. In addition, we also 
extract significant regions from frontal lobe and parietal lobe whose entropy have changed significantly during 
the gambling task. As before, the top ranked edges extracted as important edges also supported the regional 
involvement as most of the regions in the edges are similar as shown in Table 2. All the regions and edges had 
p-value < 0.05 indicating that they are statistically significant as well.

Figure 6.  Emotion task pipeline. Each task block consists of 6 trials of emotion task paradigm following77 of 
duration 21 s. This follows by a no-task block of 21 s. There are 3 task blocks and 3 no-task blocks in total.
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Graph entropy values can be used as a representative metric for neural state. On the other hand, sub-graph 
entropy metric can be used to extract useful regions and edges that have significant differences between two states. 
Some of the regions found by sub-graph entropy are similar to traditional GLM (Table 5). Incorporating biologi-
cally meaningful regions, edges extracted through the differential entropy based ranking procedure also outper-
forms other centrality measures for classifying two states. In addition, the centrality information conveyed by 
graph entropy is different compared to degree, betweenness and leverage centrality. The scatter plots between node 
entropy and other centralities (Fig. 5) are flat and wide implying very little overlap in the information content. 
Many regions extracted through sub-graph entropy are different which indicates that sub-graph entropy conveys 
different information regarding functional connectivity compared to traditional methods.

Figure 7.  Gambling task pipeline. Each task block consists of 8 trials of gambling task paradigm following78 of 
duration 28 s. This follows by a no-task block of 15 s. There are 4 task blocks and 4 no-task blocks in total.

Figure 8.  Preprocessing pipeline for extraction of fMRI time-series corresponding to anatomical regions.

Figure 9.  Pipeline for associating node and time-series to states.
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Methods
Dataset.  Two different task-fMRI datasets collected from 475 subjects from the Human Connectome Project 
(HCP) Young Adult study6,16 were used in this paper. The tasks chosen were emotion and gambling. These data are 
publicly available from the ConnectomeDB database https://db.humanconnectome.org. All data were acquired 
on a customized Siemens 3 T Connectome Skyra scanner with the following parameters: task-fMRI was obtained 
with 2 mm isotropic voxels with TR = 720 ms, TE = 33.1 ms. Here emotion processing task was carried out with 
two runs of 2:16 min with 176 frames per each run. Gambling task was continued for 3:12 mins with 253 frames 
per run for two runs75,76.

Description of Task.  Emotion.  This task was adapted from the one developed by Hariri et al.77. Participants 
are presented with blocks of trials that either ask them to decide which of the two faces presented on the bottom 
of the screen match the face at the top of the screen, or which of two shapes presented at the bottom of the screen 
match the shape at the top of the screen. The faces have either an angry or fearful expression. The task format is 
illustrated in Fig. 6. Here 6 trials of the same task (face or shape) are repeated with the stimulus presented for 2000 
ms and a 1000 ms inter-task interval (ITI). Each block is preceded by a 3000 ms task cue (“shape” or “face”) so that 
each block is 21 seconds long including the cue. Each of the two runs includes 3 face blocks and 3 shape blocks 
with 8 seconds of fixation at the end of each run. The task is described based on WU-Minn HCP 500 Subjects Data 
Release Manual available from https://www.humanconnectome.org/.

Gambling.  This task was adapted from the one developed by Delgado et al.78. Participants play a card guess-
ing game where they are asked to guess the number on a mystery card (represented by a question mask “?”) in 
order to win or lose money. Participants are told that potential card numbers range from 1–9 and to indicate if 
they think the mystery card number is more or less than 5 by pressing one of two buttons on the response box. 
Feedback is the number on the card (generated by the program as a function of whether the trial was a reward, 
loss or neutral trial) and either: 1) a green up arrow with “$1” for reward trials, 2) a red down arrow next to -$0.50 
for loss trials; or 3) the number 5 and a gray double headed arrow for neutral trials. The “?” is presented for up to 
1500 ms (if the participant responds before 1500 ms, a fixation cross is displayed for the remaining time), followed 
by feedback for 1000 ms. There is a 1000 ms inter-task interval with a “+” presented on the screen. The task is pre-
sented in blocks of 8 trials that are either mostly reward (6 reward trials pseudo randomly interleaved with either 
1 neutral and 1 loss trial, 2 neutral trials, or 2 loss trials) or mostly loss (6 loss trials pseudo-randomly interleaved 
with either 1 neutral and 1 reward trial, 2 neutral trials, or 2 reward trials). In each of the two runs, there are 2 
mostly reward and 2 mostly loss blocks, interleaved with 4 fixation blocks (15 seconds each). The task format is 
shown in Fig. 7. The task is described based on WU-Minn HCP 500 Subjects Data Release Manual available from 
https://www.humanconnectome.org/.

Prepossessing.  The HCP task-fMRI data was first processed following the HCP “fMRIVolume” pipeline 
(v3.4)79, which includes gradient unwrapping, motion/distortion correction, registration to structural scan, non-
linear registration into MNI152 space, and intensity normalization as reported in9. Subsequently, spatial smooth-
ing and activation maps generation using the generalized linear model implemented in FSL’s FILM (FMRIB’s 
Improved Linear Model with autocorrelation)80 were performed. Additional details about the HCP “fMRIVol-
ume” pipeline can be found in Barch et al.76. Using Freesurfer cortical parcellation atlas38, 85 regions of interest 
were identified as shown in Table S5 in Supplementary Information. An illustration of this pipeline is shown in 
Fig. 8. Mean time-series value of voxels in every region for each subject were then extracted separately for task 
and no-task conditions. The task blocks (respectively no-task blocks) were concatenated for each subject and for 
each region corresponding to task (respectively no-task). Also, linear, square and cubic trends were removed from 
these time-series.

Modeling the Brain Graph from fMRI.  After mean time-series are extracted from predefined anatomical 
regions38 from fMRI, a matrix of R × T (note that R = |V|) is generated. Here R is the number of regions and T is 
the number of time points. A node in the brain graph corresponds to a region of interest and is associated with 
one mean time-series. Absolute value of Pearson correlation coefficient between two mean time-series represents 
the edge weight associated with two nodes. This makes sure that we only have positively correlated edges. 
Absolute value of Pearson correlation coefficients are computed separately for task states and no-task states as 
defined before. Specifically, the network connectivity for a task is constructed from fMRI time points when a 
subject is performing a task (e.g., emotion, gambling) during a t-fMRI experiment12–15. The network connectivity 
for a no-task is constructed from fMRI time points when a subject is not performing a task during a t-fMRI exper-
iment17. Hence we get two adjacency matrices for each subject. The mapping process is shown in Fig. 9. Each 
adjacency matrix is made sparse by keeping top correlating edges. The edges had the same sparsity for all subjects. 
This was done by choosing S 1 8

R

k

log ( )

log ( )
2

2
= = .  where k is average degree in the graph22.

Centrality Measures.  Throughout our analysis, we assume that an un-directed brain network is given by 
G = (V, E) where V contains vertices or nodes, E contains weighted edges. Number of nodes is given by |V| which 
is equal to number of regions or neuronal units (R). Number of edges is given by |E|. In this section, first we define 
graph entropy based on the edge weights of graph.

Edge Weight of Graph.  The edge weight eij between two nodes (vi, vj) is defined by the absolute value of Pearson 
correlation coefficient between their corresponding time-series. Thus the measure of edge weight eij is proportional 
to the magnitude of correlation between the two time-series (vi, vj) as defined by ρ(i, j) = E[vivj] − E[vi]E[vj], 
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where E[X] represents average value of random variable X. This implies that if eij is higher, the two nodes behave 
more similarly, i.e., their interaction is more. Hence, the probability of communication between vi, vj is propor-
tional to eij. We used 4 types of centrality measures for comparison namely degree, betweenness, eigenvector and 
leverage22.

Degree Centrality.  Degree24 of node i is determined by the number of neighbors connected to node i.

Eigenvector Centrality.  Eigenvector centrality25 ei is calculated by Equation 1.

∑λ
=

=
e a e1

(1)
i

j

R

ij j
1

Here ai,j is (i, j)th entry of adjacency matrix corresponding to the graph and λ is a constant.

Betweenness Centrality.  Betweenness Centrality25 of node i, bi, is defined by the Equation 2.
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Here gxy is the number of shortest paths between any two nodes x and y. Also gxiy is the number of paths among 
those passing through node i.

Leverage Centrality.  Leverage centrality li is a measure of the relationship between the degree of a given node 
(ki) and the degree of each of its neighbors (kj), averaged over all neighbors (Ni) as reported in22, and is defined in 
Equation 3.
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The following two metrics are used for statistical comparison with graph entropy metrics.

Generalized Linear Model.  Generalized linear model23 is multiple regression of event blocks onto fMRI 
time-series. If there are two conditions, e.g., task and no-task, the regression coefficients are estimated for each 
condition on each time-series. Their differences describe the activation map for each region. The regression coef-
ficients are computed based on ordinary least square technique81.

Structural Centrality.  Structural centrality82 of a network is defined as
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where R is the number of nodes. If C(G) is high, then the network is more central, i.e., they are influenced by 
a few leading nodes. A comparison of structural centrality and node entropy is shown in Subsection S.7 in 
Supplementary Information.

Proposed Metric: Graph Entropy.  Entropy of Graph.  For graph G = (V, E), let two nodes be vi and vj. The 
weight of the edge between two nodes vi, vj is denoted by eij. Here eij represents the absolute value of the correla-
tion coefficient of the two time-series associated with time-series of regions vi and vj and specifies the interaction 
between two nodes (vi, vj). Let

=
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where qi,j is probability of correlation between nodes (vi, vj). It is easy to see that ∑ =q 1i j i j, , . Note that qi,j’s can 
also be identified as entries in the normalized incidence matrix Q of graph G such that Q(i, j) = qi,j.

This definition allows us to define the graph entropy as

∑= − .
∈
≠

H G q q( ) log ( )

(6)
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q
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, 2 ,
ij

i j,

H(G) can be seen as total amount of uncertainty in the whole network and its unit is bits. This entropy measure 
was introduced in35. Graph entropy has an inverese relationship with respect to structural centrality82.

Some mathematical properties of graph entropy as in Eq. 6 that are of interest are listed below.

•	 If some qi,j = 1, then H(G) = 0. In that case, region i always communicates with region j. No other regions 
communicate with each other. Here i, j are leader nodes in the network.
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•	 H(G) takes its maximum value when all qi,j’s are equally distributed. Here all regions participate equally in the 
communication process and the system is a homogeneous system. Hence, ≈ −H G R R( ) log ( 1)2 . In this 
scenario, no node is leader.

•	 The more uniform the distribution of the values of qi,j, for any given number of communication channels, the 
larger the value of H(G). That is, H(G) is larger for those cases where there is no communication dominance 
or ranking of the participants. Communication dominance reduces the graph entropy in G.

Entropy of Sub-Graphs.  Sub-graphs can denote any portion or sub-structure of the main graph. For a sub-graph 
Gs = (Vs, Es), the modified incidence matrix Q′ can be computed using Eq. 7.
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The sub-graph entropy can be computed as follows,
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This measure is comparable among different sub-graphs of the same graph as the edges are normalized before 
computation of entropy.

Node Entropy.  Let vi be a node in graph G. Also, let sub-graph Gvi
 contain the node vi and its immediate 1-hop 

neighbors. Specifically, Gvi
 consists of node vi and the neighboring nodes that can be reached from vi through its 

edges by hopping only once. Now let the set of nodes in Gvi
 be Vvi

 and the edges be the 1-hop edges from vi denoted 
by Evi

. Then the entries in modified incidence matrix can be calculated as
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where q′k,m is the normalized correlation coefficient between nodes (vk, vm) within that sub-graph. We define node 
entropy as given by,
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Edge Entropy.  Let eij denote the edge between vertices (vi, vj). The sub-graph corresponding to this edge is 
defined by combining 1-hop sub-graphs of nodes vi and vj. Assuming, =G V E( , )v v vi i i

 and G V E( , )v v vj j j
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where q′k,m represents the normalized correlation coefficient between nodes (vk, vm) within that sub-graph. We 
define edge entropy as given by,
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Statistical Analysis.  The node entropy and edge entropy values are compared across different states for 
all subjects. Based on their differences in entropy, they are ranked in descending order. We also calculate their 
corresponding p-values using a permutation t-test. The regions with significant change in entropies (p ≤ 0.05) 
are illustrated in a table. The edges with significant change in entropies (p ≤ 0.05), are plotted as sub-network in 
a brain template. To understand if the chosen rankings were stable enough, a leave-one-out subject scheme was 
implemented to select top regions and edges. In particular, in each iteration one subject is left out and the regions, 
edges are ranked based on the other 474 subjects. The occurrence of the most important regions and edges were 
plotted in a histogram41–43. To quantify the significance of classification performance, permutation tests are per-
formed. This involves computing a trivial baseline–the accuracy produced by permuting the labels and then 
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determining if the learned model performed significantly better than that. Here, we perform 1000 iterations for 
each of the datset, then we train a model on the training data and test it on the remaining instances. The classi-
fication performance of the proposed model is also compared with baseline methods using binomial tests. This 
involves using the baseline accuracies as parameter of a binomial distribution and calculating the probability of 
achieving the accuracy achieved by the proposed models.

In addition, graph entropy values for regions were correlated with other four centrality measures. We create a 
scatter plot containing regional entropy values vs. each of degree, betweenness, eigenvector, leverage. The correla-
tion values between node entropy and other centralities for each subject are calculated. The total graph entropy 
measures were used to differentiate between task vs. no-task condition. We use t-test and effect size to differentiate 
these two states at a group-level. Furthermore, node and edge entropy values are compared using our algorithm 
and top-25 values are used to classify task vs. no-task states in fMRI scan in each case (region, edge).

Software.  MATLAB is used for running experiments and generating the results. Custom MATLAB code is 
created for extracting graph entropy measures. We used the brain connectivity toolbox (BCT)3 to calculate the 
centrality metrics. SVM classifiers are designed using LIBSVM toolbox83.

Conclusion
The main contribution of the study is to demonstrate that well defined brain states can be predicted using 
sub-graph entropy from t-fMRI data. We showed that there are important nodes and edges in functional connectiv-
ity that are sufficiently distinguishing between two different brain states. This paper has introduced the notion of 
sub-graph entropy in general and node and edge entropies in particular to rank regions and edges in brain graphs 
in a quantitative manner. Results obtained by the proposed method have been compared with that from the gen-
eralized linear model (GLM), degree centrality, eigenvector centrality, betweenness centrality and leverage central-
ity and network based statistics (NBS). In this paper, node and edge entropies have been defined based on 1-hop 
neighbors. Whether node and edge entropies defined using 2-hop neighbors provide more accurate prediction of 
brain network state needs further research. Future work will be directed towards applications of the technique in 
identifying dynamic states from fMRI tasks as well as from other temporally rich signals such as electroencepha-
logram (EEG)84,85 and magnetoencephalogram (MEG)86,87. While node and edge entropies have been used in this 
paper, identifying sub-graphs corresponding to certain tasks requires further research. Investigating applications 
of the technique to understand differences in brain networks of populations with various diseases and healthy 
control is also of interest. In many disease prediction applications, filtered versions of time-series have been found 
to be more discriminative of the disease state42–44,88. Thus, sub-graph entropy features should be extracted from 
filtered fMRI and then used for classification; this topic needs to be investigated further.

Data Availability
The datasets analyzed for this study are available to the public from the Human Connectome Project (Open Ac-
cess Data) ConnectomeDB database.
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