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Abstract

Background: Circular RNAs (circRNAs) are implicated in various biological processes. As a layer of the gene
regulatory network, circRNA expression is also an intermediate phenotype bridging genetic variation and
phenotypic changes. Thus, analyzing circRNA expression variation will shed light on molecular fundamentals of
complex traits and diseases.

Results: We systematically characterize 10,559 high-quality circRNAs in 589 human dorsolateral prefrontal cortex
samples. We identify biological and technical factors contributing to expression heterogeneity associated with the
expression levels of many circRNAs, including the well-known circRNA CDR1as. Combining the expression levels of
circRNAs with genetic cis-acting SNPs, we detect 196,255 circRNA quantitative trait loci (circQTLs). By characterizing
circQTL SNPs, we find that partial circQTL SNPs might influence circRNA formation by altering the canonical splicing
site or the reverse complementary sequence match. Additionally, we find that a subset of these circQTL SNPs is
highly linked to genome-wide association study signals of complex diseases, especially schizophrenia, inflammatory
bowel disease, and type II diabetes mellitus.

Conclusions: Our results reveal technical, biological, and genetic factors affecting circRNA expression variation
among individuals, which lead to further understanding of circRNA regulation and thus of the genetic architecture
of complex traits or diseases.
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Background
Circular RNAs (circRNAs) are a class of recently identified
long noncoding RNAs with a covalently closed continuous
loop structure formed via back-splicing that have neither a
5′ cap nor a 3′ polyadenylated tail [1]. Thousands of cir-
cRNAs have been identified in humans and other species
[2]. A handful of circRNAs have been functionally eluci-
dated, and these functions include acting as sponges for
microRNAs [3, 4], competing for RNA-binding protein [5],
and even translating into protein [6, 7]. circRNAs are
thought to play crucial roles in multiple cellular processes

and disease pathogenesis based on their tissue- and
development-specific manner of expression [3, 4, 8]. As a
layer of the gene regulatory network, circRNA expression
is also an intermediate phenotype bridging genetic variants
and phenotypic changes. Thus, understanding circRNA ex-
pression variation will shed light on the molecular funda-
mentals of complex traits and diseases.
However, due to the intrinsic circRNA characteristic

of lacking a polyadenylated tail, circRNA expression has
been underestimated by RNA-seq using the polyadeny-
lated selection method. Several studies have identified
circRNAs and quantified their abundance at the tran-
script level [9, 10], but small sample sizes limited their
efforts to systemically dissect changes in circRNA ex-
pression. Data from the CommonMind Consortium
(CMC) provide an opportunity to decipher circRNA
expression variation. The CMC comprises nearly 600
brain samples obtained from the autopsies of individuals
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with and without severe psychiatric disorders [11]. Data
generated from the CMC include SNP genotypes and
gene expression (RNA-seq) as well as other functional
genomic data. More importantly, CMC RNA sequencing
libraries were prepared by ribosomal RNA depletion,
which facilitated the analysis of circRNA expression.
In the current study, we utilized genotype and dorsolat-

eral prefrontal cortex (DLPFC) expression data provided
by the CMC to exploit circRNA expression variation
arising from genetic, biological, and technical factors. We
detected more than 10,000 high-quality circRNAs in
the samples using stringent methodologies. We then
highlighted the effects of covariates on circRNA ex-
pression variation. By circQTL analysis, we character-
ized the cis-regulation of circRNA and found that
circQTL SNPs were enriched among disease risk loci.
Our findings will further our understanding of the
genetic architectures of complex traits or diseases.

Results
Identification of circRNAs in the human brain
We systemically identified circRNAs by analyzing
Ribo-Zero RNA-seq data from postmortem DLPFC sam-
ples collected from 258 schizophrenia (SCZ) patients, 54
affective/mood disorder (AFF) patients, and 277 controls
(Table 1) downloaded from the CMC database [11]. We
first de novo identified circRNAs originating from canon-
ical GT-AG splicing using CIRI [12, 13] (Fig. 1a), which
achieved better balanced performance between precision
and sensitivity [14] and reported both circular junction
counts and the circular ratio (Fig. 1b). By using a loose
criterion (circular junction counts ≥ 1), we detected 9776 to
63,781 (median 31,286) potential back-splicing sites and
30,188 to 577,672 (median 143,573) potential circular junc-
tion counts (Fig. 1c) for each sample. These junction counts
account for average about 0.8% of the total gene counts,

which are higher than most of other tissues and cell lines
(Additional file 1: Table S1; Additional file 2: Figure S1).
Then, we screened out circRNAs expressed in the human
brain (circular junction counts ≥ 1 in more than half of in-
dividuals) with a potential function instead of byproducts of
linear splicing (average circular ratio ≥ 0.05). Finally, we
identified 10,559 high-quality circRNAs (Additional file 3:
Table S2), half of which were detected in 495 samples at
least (Fig. 1d), and 781 (7.4%) of which expressed higher
than their linear counterparts (circRNA ratio > 0.5).About
99.7% (10,526 of 10,559) predicted high-quality circRNAs
could also be detected by find_circ [4] and/or CIRCexplorer
[15] (Additional file 3: Table S2). Approximately 11.6%
(1229 of 10,559) of the high-quality circRNAs were not
mentioned in previous studies [2, 9]. Among them, 13
highly expressed circRNAs were detected in two human
glioma stem cell lines (GSC11 and G118, details in the
“Materials and methods” section) [16]. And 11 of 13 (85%)
back-splicing events were experimentally validated by two
rounds RT-PCR with divergent primers (Fig. 1e; Add-
itional file 4: Table S3). Then, we further confirmed our
analysis with five randomly selected products by Sanger
sequencing (Fig. 1f; Additional file 2: Figure S2). Together,
these results supported the existence of 1229 novel
circRNAs in CMC dataset.
Consistent with a previous study on circRNAs in

HEK293 cells [4], 87.1% of the circRNAs (9198 of 10,559)
were located in exonic regions, followed by intronic (7.0%)
and intergenic (5.9%) regions in the human brain. Most
(96.7%) exonic circRNAs overlapped with the coding se-
quence region (Fig. 1g) according to the GENCODE an-
notation. The median number of exons and median
length of exonic circRNAs were determined to be five
and 780 bp, respectively (Additional file 2: Figure S3).
The 9935 exonic and intronic circRNAs were derived

from 3916 genes, 45.9% of which generated only one cir-
cRNA (Additional file 2: Figure S4). To analyze the func-
tions of circRNA host genes, the 3916 host genes were
uploaded to DAVID tools [17] (https://david.ncifcrf.gov/)
as a test gene list, and 16,423 expressed genes from the
same CMC sample set [11] served as the background. Al-
ternative splicing (Benjamini-corrected P = 4.99 × 10−78,
Fisher’s exact test (FET)) and splice variants (Benjamini--
corrected P = 3.65 × 10−65, FET) were the most signifi-
cantly enriched among the host genes (Additional file 5:
Table S4), consistent with the existing knowledge that
back-splicing is correlated with linear splicing [18]. A pre-
vious study observed that circRNAs are enriched in synap-
ses in the mouse brain [19]. Interestingly, postsynaptic
membrane (Benjamini-corrected P = 0.0083, FET) and
postsynaptic density (Benjamini-corrected P = 0.039,
FET) were enriched in our detected host genes, which
also suggests that circRNAs play important roles in
synaptic function.

Table 1 Sample description

Variables Controls SCZ AFF

Subjects 277 258 54

Male sex, N (%) 158 (57.0) 164 (63.6) 27 (50.0)

Caucasian ethnicitya, N (%) 205 (74.0) 209 (81.0) 51 (94.4)

Age of deathb (years), mean (SD) 65.1 (18.9) 68.7 (16.5) 51.5 (16.1)

Postmortem interval (h), mean (SD) 13.6 (7.9) 20.8 (13.5) 19.3 (7.1)

RNA integrity number, mean (SD) 7.8 (0.8) 7.4 (0.9) 7.9 (0.7)

Gene aligned reads (106), mean (SD) 20.1 (6.5) 17.7 (5.7) 21.0 (4.5)

Linear junction aligned reads (105),
mean (SD)

57.2 (32.6) 47.7 (26.7) 56.4 (24.0)

Circular junction aligned reads (104),
mean (SD)

16.9 (7.3) 15.0 (6.7) 15.3 (5.9)

aGenetic inferred Caucasian ethnicity
bAge of death ≥ 90 was considered 90 due to the limited information in the
original data source
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Fig. 1 (See legend on next page.)
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Normalization of circRNA expression and evaluation of
covariate effects
Considering the stability differences between circular and
linear RNAs, we measured the circRNA expression levels
with voom [20] by circular junction counts per million
circular junction reads (circCPM), which normalized the

sequencing depths among samples (Fig. 2a). Similar to a
previous study [11], both the technical (institution, library
preparation batch (LIB), postmortem interval (PMI), RNA
integrity number (RIN)) and the biological (age of death
(AOD), ethnicity, gender, SCZ) effects were considered as
covariates. We applied the linear regression utilities in the

(See figure on previous page.)
Fig. 1 Profiling of circRNAs in the DLPFCs of 589 individuals. a The analysis pipeline to identify and quantify high-quality circRNAs. b A schematic
diagram for calculating the circular ratio. c The stack diagram showing distributions of total gene counts and potential circular junction counts.
The counts are log base 10 transformed on the y-axis. d The sample distribution for existing circRNAs in exonic, intronic, and intergenic regions.
The black dashed line indicates the cumulative data fraction. e Gel analysis shows the target RT-PCR product bands. Red star points indicate the
target band. f Two Sanger sequencing examples showed that RT-PCR products spanned the circular junction. Dashed line indicates the circular
junction site. g Annotations of genomic regions mapping to inferred exonic circRNAs. CDS: coding sequence; lincRNA: long intergenic noncoding
RNA; UTR: untranslated region
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Fig. 2 Effects of covariates on circRNA expression. a Distribution of the mean expression of each circRNA in exonic, intronic, and intergenic
regions. The black dashed line indicates the cumulative data fraction. b Differential circRNA expression detected as a function of age of death.
The dots in red indicate significantly differentially expressed circRNAs (FDR≤ 0.05). c CDR1as expression with age of death is plotted. d Boxplot
for the expression of gender-related circRNA (chr9:44106654|44114921) from a pseudogene, ANKRD20A7P. The center line denotes the median,
the limits are the interquartile range (IQR), the whiskers are 1.5× the IQR, and outliers are shown as black dots
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limma [21] package to evaluate the effects of these factors
on each circRNA. In contrast, we used the same method
to analyze the effects of covariates on gene expression
normalized by gene counts per million gene reads (gCPM;
see the “Materials and methods” section). Compared to
linear RNAs, the expression of circRNAs is less affected
by all the covariates than linear RNAs (Table 2).
The library batch is the most significant factor impact-

ing both circRNA expression and gene expression. Com-
pared to random sampling, LIB-associated circRNAs
have higher expression levels (P < 1 × 10−4, bootstrap-
ping) and shorter median lengths (P < 1 × 10−4, boot-
strapping; Additional file 2: Figure S5), suggesting that
the length of a circRNA may be related to circRNA
stabilization. A tiny fraction of circRNAs was expressed
in association with institution (2.8%), PMI (0.02%), and
RIN (0.27%), consistent with circRNAs being more
stable than linear RNAs.
For age of death, 49 circRNAs exhibited increased ex-

pression and 126 circRNAs showed decreased expression
with age (Fig. 2b; Additional file 6: Table S5). Among 123
circRNAs originating from an explicit host gene, 32 are
AOD-related, while their host genes are not, suggesting that
the roles of these circRNAs in aging are independent of
their counterparts. Interestingly, a famous brain-enriched
circRNA, CDR1as, which is known as a sponge for miR-7
regulating various diseases, such as cancer [22] and neuro-
degenerative diseases [23], showed increased expression
with age (Fig. 2c), implying that CDR1as may be involved
in aging of the brain.
For gender, 21 of 35 differential circRNAs were located

on sex chromosomes. After removing circRNAs from
the sex chromosomes and readjusting the P values of the
remaining circRNAs, we found only one circRNA that
was differentially expressed (DE). This circRNA was
highly expressed in males and originated from the
pseudogene ANKRD20A7P (Fig. 2d), which is especially
highly expressed in testes [24].
For schizophrenia, we did not detect any DE circRNAs

after false discovery rate (FDR) correction (top FDR = 0.53,
P = 1.1 × 10−4) between cases and controls, or randomly
selected samples (100 vs. 100, 50 vs. 50) for 1000 times (see
details in the “Materials and methods” section). Although
gender differences exist in susceptibility of SCZ [25], nei-
ther male-specific nor female-specific DE circRNAs were
detected. In the previous analysis, we filtered out cir-
cRNAs in a sample set including both SCZ and control
populations. To further mine disease-specific expressed

circRNAs, we reanalyzed 303 circRNAs that were
expressed in either SCZ or control populations. With the
same procedure, we still failed to detect any DE circRNAs
(see details in the “Materials and methods” section). Con-
sidering that there are hundreds of DE genes but no DE
circRNAs, we compared the distributions of effect size be-
tween genes and circRNAs and found that the effect size
of circRNAs is smaller than genes (Additional file 2: Fig-
ure S6). Thus, it requires 275 cases vs. 275 controls to de-
tect DE genes, but 435 cases vs. 435 controls to detect DE
circRNAs, at the significance level of 80% power (Bonfer-
roni-corrected P < 0.05, Student’s t test; see details in the
“Materials and methods” section). As there are only 258
SCZ and 277 control samples in CMC dataset, a larger
sample size or more sensitive statistical methods may be
required to detect DE circRNAs between SCZ and
control.

Effects of genetic variation on circRNA expression
To measure how circRNA expression is regulated by gen-
etic variations, we analyzed the association of covariate-
adjusted circRNA expression with genetic variants, i.e.,
circRNA quantitative trait loci (circQTLs). Similar to
cis-sQTLs for alternative splicing [26, 27], we selected
circRNAs in combination with high-quality (imputation
quality score ≥ 0.8) and common SNPs (minor allele
frequency (MAF) ≥ 0.05) in the ± 100-kb region of
back-splicing sites to identify cis-circQTLs by using
Matrix eQTL [28]. After permutation and q value
[29] correction to control the FDR, we identified
251,374 circQTLs associated with 2790 circRNAs.
A weak correlation has been reported between cir-

cRNAs and linear RNA expression [30, 31]. To exclude
circQTL SNPs that regulate host gene expression rather
than circRNA expression, we further refined the circQTL
SNPs regulating exonic and intronic circRNAs by reana-
lyzing cis-circQTLs with a circular ratio instead of
circCPM. Following the same pipeline, we detected
228,578 circQTLs, 166,975 (73.05%) of which were identi-
fied in both (Fig. 3a, b) and with concordant effects
(Fig. 3c). In addition to the intergenic circQTLs, which
lack host genes, we finally identified a total of 196,255
circQTLs associated with 2086 circRNAs involving 1269
genes (Additional file 7: Table S6).
To estimate the proportion of significant circQTLs

that are also eQTLs, we selected the most significant
circQTL SNP for each circRNA (max-circQTL) to
characterize circQTLs. Compared with eQTLs identified

Table 2 The numbers of circRNAs and genes affected by technical and biological factors at an FDR < 0.05

Type Institution LIB PMI RIN AOD Ethnicity Gender SCZ

circRNA (N = 10,559) 300 (2.8%) 4143 (39%) 2 (0.02%) 28 (0.27%) 175 (1.7%) 249 (2.4%) 35 (0.33%) 0 (0%)

Gene (N = 16,422) 13,291 (81%) 14,759 (90%) 4033 (24%) 11,121 (68%) 9668 (59%) 1097 (6.7%) 226 (1.4%) 926 (5.6%)
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Fig. 3 Identification of cis-circQTLs. a, b circQTLs detected by circCPM and the circular ratio for exonic (a) and intronic (b) circRNAs. c The
concordant effects of circQTLs detected by the circCPM and circular ratio methods. d The effects of circQTLs vs. eQTLs. e, f One example of a
discordant QTL between a circRNA and its host gene. The center line denotes the median, the limits are the interquartile range (IQR), the
whiskers are 1.5× the IQR, and outliers are shown as black dots. f The expression level of the circRNA and the gene in each sample. The red,
yellow, and blue lines fit the expression between the gene and circRNA according to the CC, TC, and TT genotypes, respectively
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in the same dataset [11], approximately 48.6% (851 of
1750) of max-circQTLs of circRNAs with an explicit host
gene were also eQTLs. For SNPs that were both circQTLs
and eQTLs, 77.9% (663 of 851) exhibited concordant ef-
fects (Fig. 3d), while the others were discordant. For the
SNPs that are both eQTLs and circQTLs, we observed
that there may be an interactive expression relationship
between the circRNA and the host gene (Fig. 3e, f ).

Potential mechanisms of circQTL
To study the potential mechanisms of circQTLs, we first
analyzed the distance distribution of max-circQTL SNPs
to the back-splicing site. We found that the max-circQTLs
were preferentially located in proximity to the back-

splicing acceptor or donor sites. About 22.1% (462 of
2086) max-circQTL SNPs were located in flanking in-
tron of junction sites and 20.5% (427 of 2086) were
located in circRNA region. These results suggested
that SNPs located in flanking sequences more likely
contribute to circRNA regulation (Fig. 4a).
We tested the enrichment of 1721 linkage disequilib-

rium (LD)-based pruning max-circQTL SNPs against
sequence-defined elements by using the two-tailed FET;
the MAF and distance-matched non-circQTL SNPs
served as controls (see the “Materials and methods” sec-
tion). We found that intron was the most enriched
(Fig. 4b, c; FDR = 4.31 × 10−3, OR = 3.59, two-tailed FET)
among 11 sequence-defined elements, which suggested

A

B C

Fig. 4 Distribution of the identified circQTL SNPs. a Distance distribution of the most strongly associated circQTL SNPs for each circRNA (max-
circQTL) to their nearest back-spliced site. For internal max-circQTL SNPs, the distance was calculated by the ratio of the distance between the
SNP and the 3′ to 5′ back-splicing site. b Comparison of the distributions of sequence-defined elements between pruning max-circQTL SNPs and
non-circQTL SNPs. c Enrichment of max-circQTL SNPs among sequence-defined elements. The dashed horizontal line indicates an FDR = 0.01, and
the dashed vertical line indicates an odds ratio (OR) = 1, two-tailed FET
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that introns are implicated in circRNA circularization, as
noted in previous studies [32]. A previous study reported
that reverse complementary sequences (RCSs) in in-
trons promote circRNA formation [33]. We also found
that 1229 pruning max-circQTL SNPs located in in-
trons were enriched in RCSs (11.5%, P = 1.26 × 10−4,
OR = 1.45, two-tailed FET), with non-circQTL SNPs in
introns serving as controls.
Canonical back-splicing signals are required for

circularization [18]. Thus, we manually inspected SNPs
located in back-splicing sites from all 1,611,445 SNPs for
circQTL identification. We detected seven canonical
back-splicing SNPs (Additional file 8: Table S7), all of
which were identified as circQTL SNPs. The circRNA
expression of individuals with the canonical splice geno-
type was higher than that with the non-canonical splice
genotype (Fig. 5a) in all seven SNPs. Four of the seven
back-splicing SNPs were also significantly related to
their host gene expression with three concordant and
one discordant effects [11]. Our results supported that
circQTL SNPs located in canonical back-splicing sites
may influence circRNA expression by disrupting cir-
cRNA formation.
Among the 11 sequence-defined elements, the canonical

splice site had the highest OR (Fig. 4c; FDR = 9.73 × 10−3,
OR = 10.3, two-tailed FET). We manually detected 17
SNPs (Additional file 8: Table S7) at the canonical splicing
site but not at the back-splicing site that were located in
the host genes of regulated circRNAs. All the SNPs
effected on the expression and/or splicing of their host
genes. For the three circRNA with internal splice site
(Fig. 5b), the expression levels were higher in the individ-
uals with canonical splice genotype, implying that internal
splicing of circRNA may promote circRNA formation or
that circRNAs with retained introns are more likely to be
degraded. While for the circRNAs with external splice site
(Fig. 5c), the 14 circRNAs were not strictly associated with
the canonical splice site, which indicated the complex
effects of distant splicing on circRNA formation.

Colocalization between circQTL SNPs and disease risk loci
Thousands of genetic loci harboring disease- and
trait-associated variants have been identified by GWAS
[34]. However, it is often unclear how the genotype is re-
lated to the phenotype. Similar to other QTL analyses, i.e.,
eQTL [11] and sQTL [26], circQTL may also be helpful
for understanding the mechanisms underlying the risk of
genetic variants identified by GWAS. Thus, we performed
enrichment analysis for pruning max-circQTLs using data
from the GWAS Catalog [34], a collection of data from
GWAS for various human diseases and traits.
We found that pruning max-circQTL SNPs were signifi-

cantly enriched among loci associated with diseases com-
pared with non-circQTL SNPs (P = 3.92 × 10−17, OR = 3.53,

one-tailed FET). We further analyzed the enrichment using
the data of 21 individual diseases with risk loci > 90 in the
catalog (see “Materials and methods” section) and found
significant enrichment of circQTL SNPs among loci as-
sociated with 11 diseases (Fig. 5a). Because the CMC
dataset derives from the DLPFC of SCZ patients and
controls, SCZ-associated loci were the most enriched
(Fig. 6a; FDR = 2.00 × 10−5, OR = 5.28, one-tailed FET),
as expected.
By testing all circQTL SNPs in high linkage disequilib-

rium (r2 > 0.8) with GWAS SNPs (Additional file 9:
Table S8), we further identified 157 circRNAs associated
with 122 diseases (one circRNA can be involved in multiple
diseases). For example, we observed 40, 35, and 21 cir-
cRNAs associated with SCZ, inflammatory bowel disease,
and type II diabetes mellitus, respectively (Fig. 6b–d). Inter-
estingly, an SCZ-related linear isoform AS3MTd2d3 [39] was
also regulated by the SCZ risk loci (Fig. 6b), implying a po-
tential mechanism between the linear and circular isoform
regulated by SCZ risk loci. Notably, 72.6% (114 of 157) cir-
cRNAs could be regulated by GWAS-linked circQTL SNPs
located in flanking introns and circRNA regions, which also
suggested the important roles of flanking introns and cir-
cRNA regions in pathogenesis. The colocalization between
circQTL and GWAS loci provides novel insights into the
pathogenesis of complex diseases.

Discussion
Thousands of genetic variants have been associated with
diseases by GWAS. However, how these variants exert
their effects on diseases remains largely unknown. QTL
analysis is a powerful tool for understanding the mecha-
nisms underlying these genetic variants because the tar-
get gene (or DNA functional element) via which a
genetic variant leads to disease can be identified by de-
termining whether a risk variant also regulates a tran-
scriptomic quantitative trait, such as the eQTL and
sQTL [40, 41]. As a layer of the gene regulatory net-
work, circRNA expression variation may underlie the
mechanisms of risk loci. Thus, we introduced circQTLs,
which represent the expression levels of circRNAs regu-
lated by genetic variants, to unravel the mechanism of
GWAS SNPs. We found that circQTL SNPs were sig-
nificantly enriched for the GWAS variants associated
with various diseases, such as schizophrenia, inflamma-
tory bowel disease, and type II diabetes mellitus. With
our systematic analysis of genetically mediated circRNA
expression, we show that circQTLs could be used to re-
fine the functional consequences of GWAS loci as an-
other QTL approach. We also tried to identify potential
mechanisms of circQTLs and found variants at canon-
ical back-splicing sites in response to lower circRNA ex-
pression, implying that canonical splicing signals are
required for circularization. In addition to back-splicing
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sites, the internal and external splicing sites of a cir-
cRNA may contribute to its expression. In addition, we
showed that circQTLs were enriched in RCSs, which
play important roles in exon circularization [33]. Al-
though we proposed several potential mechanisms, they

may explain less than 10% of circQTLs. Further studies
are needed to unravel the mechanisms underlying these
circQTLs.
One challenge in analyzing circQTL is to partition cir-

cRNA expression from that of its host gene. Here, we

A

B

C

Fig. 5 Impacts of the canonical splice site on circRNA expression. Violin plots of covariate-adjusted circRNA and gene expression within each
genotype are shown in the left panels. The overlaid boxplots indicate the median (horizontal black lines) and interquartile range (IQR, white
boxes). Outliers are shown as black dots. Schematic of transcript isoforms at each locus (Ensembl Gene Predictions tracks from the UCSC Genome
Browser) are shown in the right panels. The back-splicing region is highlighted in purple. Arrowheads indicate the splice sites. a circQTL SNP at
the canonical back-splicing site in TBC1D31. b circQTL SNP at the circRNA internal canonical splice site in NEK10. c circQTL SNP at the circRNA
external canonical splice site in SPATA7
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identified circQTLs by integrating two methods, the cir-
cular junction and circular ratio, to filter out false posi-
tives, which are actually eQTLs of the counterpart. Each
approach has strengths and weaknesses that comple-
ment each other. The advantage of the circular junction
approach over the ratio approach is that it detects real
circRNA expression levels that play functional roles,
while the ratio approach detects only circRNA expres-
sion relative to its linear expression. However, the circu-
lar junction approach cannot distinguish whether an
SNP influences the expression of the host gene or the
circRNA itself, while the advantage of the ratio is that
the relative value can represent the splicing condition,

which directly reflects circRNA formation. Although
these two approaches use different quantization strat-
egies, more than 70% of circQTLs were detected in both
approaches with concordant effects.
In addition to genetic factors, i.e., circQTLs, biological

and technical factors may also contribute to circRNA ex-
pression variation. However, circRNAs are less affected by
these factors, mainly because circRNAs are more stable
than linear RNAs. The library batch influenced 39% of cir-
cRNAs, indicating that it is a key factor that should be
considered in circRNA studies, especially for differential
expression analysis. We identified a few circRNAs associ-
ated with SCZ (0), PMI (2), and gender (39), but 175

A B

C D

Fig. 6 circQTL SNPs enriched in GWAS loci. a Enrichment of pruning max-circQTL SNPs among the GWAS Catalog. The circle size is proportional
to the number of overlapping SNPs between GWAS loci and pruning max-circQTLs. The dashed horizontal line indicates an FDR = 0.01, the solid
horizontal line indicates an FDR = 0.05, and the dashed vertical line indicates an OR = 1, one-tailed FET. AGA: androgenetic alopecia; BC: breast
carcinoma; BP: bipolar disorder; CAD: coronary artery disease; IBD: inflammatory bowel disease; T2DM: type II diabetes mellitus. b–d Local plots of
circQTL SNPs with high linkage disequilibrium (r2 > 0.8) with GWAS results of b schizophrenia [35], c inflammatory bowel disease [36], and d type
II diabetes mellitus [37] were generated by LocusZoom [38]. The most significant GWAS SNPs are colored purple. Nearby SNPs are color-coded
according to their LD (r2). The back-splicing region is highlighted in purple. The statistical strength of the association (− log10 P values) and
recombination rate are double-plotted on the y-axis. Genes in the UCSC Genome Browser are shown in the panels below the local plots
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AOD-related circRNAs were identified, among which 44
circRNAs were shown to be AOD-related independent of
their host gene or located in the intergenic region.
These circRNAs include CDR1as, which is highly expressed
in the human brain [42], chr1:66378928|66384518 from
PDE4B, which interacts with DISC1 to regulate cAMP sig-
naling in schizophrenia [43], and chr2:160193973:160252345
from BAZ2B, which belongs to the bromodomain gene fam-
ily associated with transcriptional activation [44]. Consider-
ing that circRNAs accumulate in the brain with increasing
age [45], these age-related circRNAs may provide new
insights into understanding the aging of the human brain or
aging diseases.
Dozens of SCZ GWAS risk loci, identified from a large

cohort (36,989 cases vs. 113,075 controls) [35], are found
to be implicated in circRNA expression, but none of
these SCZ GWAS risk circRNAs (circRNA regulated by
SCZ GWAS risk loci in circQTL relation) were DE be-
tween SCZ and controls in the CMC dataset. Previous
study [11] has also encountered this “contradict” in lin-
ear gene expression, i.e., no DE evidence was found for
SCZ GWAS risk genes (genes regulated by SCZ GWAS
risk loci in eQTL relation). For detecting differential ex-
pression of SCZ GWAS risk genes at the power of 80%,
the median number of subjects with SCZ and con-
trols was estimated to be 28,500 [11]. Similarly, tens
of thousands of samples are also needed for detecting
differential expression of SCZ GWAS risk circRNAs,
considering the small difference of risk allele frequen-
cies in CMC dataset.

Conclusions
In summary, our work identified and quantified thou-
sands of circRNAs across hundreds of individuals and
focused on the variation of circRNA expression. Unlike
linear RNA, circRNA is impacted less by technical and
biological effects. Although we detected some circRNAs
related to age, mechanistic studies driven by the pro-
posed circRNA candidates will be informative for aging.
By performing circQTL analysis, we extended the gen-
etic architecture of disease to circular RNAs. How cir-
cRNAs impact the pathogenesis of disease remains to be
answered, but our results strongly suggest that circRNAs
contribute to disease risk.

Materials and methods
Dataset description
In total, 589 individuals from the CMC database, including
258 SCZ patients, 54 affective/mood disorder patients, and
277 controls, were utilized in this study. Imputation geno-
typing data (imputed with IMPUTE2 [46]) of autosomes
(Synapse: syn3275221) and RNA-seq data (BAM files), in-
cluding mapped and unmapped reads, were downloaded
(Synapse: syn4923029) using the Synapse command line

client. Details regarding the RNA-seq analysis and data
processing are available at the CMC wiki page (https://
www.synapse.org/#!Synapse:syn2759792/wiki/69613). The
mapped and unmapped reads of each sample were merged
and converted into FASTQ format using SAMtools [47]
(version 1.3.1).

Detection of circRNA
The reads in the FASTQ files generated above were
mapped onto the reference human genome (hg19) using
the BWA [48] memory module with the parameter –T
19. CIRI [12, 13] (version 2.0.6) was used to detect puta-
tive circRNAs with the parameter −0 –A using the gene
annotation file (GENCODE v19, http://www.gencode-
genes.org) from each mapped file. CIRI calculates the
number of circular junction counts and the circular ratio
using the following formula:

Circular ratio ¼ C
C þ L

where C represents the number of circular junction
counts of a predicted circRNA and L represents the
mean number of reads mapped across the two back-
splicing sites but is consistent with linear RNA. cir-
cRNAs with circular junction counts ≥ 1 in more than
half of the individuals were considered expressed. In
addition, a candidate was eliminated if the average circu-
lar ratio < 0.05, which may be a result of linear splicing
byproducts [10].
Besides CIRI, find_circ [4] and CIRCexplorer [15] were

also used to identify back-splicing sites. For find_circ, raw
reads of RNA-seq were mapped to the reference human
genome and unmapped reads were used to detect circular
junctions with default parameters [4]. For CIRCexplorer,
raw reads of RNA-seq were mapped to the reference hu-
man genome by STAR [49] (detailed parameters can be
accessed from Additional file 10) and chimeric junction
file were parsed with default parameters [15].

Human glioma stem cell culture
Human glioma stem cell line GSC11 [16] was a gift from
Dr. Xing Su and human glioma stem cell G118 was de-
rived from a grade IV glioma on the right temporal lobe
in the first affiliated hospital of Soochow University.
These cell lines are not listed in the database of commonly
misidentified cell lines maintained by ICLAC. GSC11 was
authenticated by carrying unique mutations in ATR and
ATX genes, and G118 was carrying frameshift in NF1
gene. All the cell cultures performed in this study have
been tested as negative for mycoplasma contamination.
Both cell lines were cultured under DMEM-F12 medium
with N2 and B27. Twenty nanograms/milligram of EGF
and bFGF (Sigma) was supplemented to keep the cell
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from differentiation. The culture medium was replaced
every other day. All the cell culture-related reagents were
from Gibco unless otherwise indicated.

Experimental validation of circRNA
Thirteen highly expressed circRNAs with annotated ad-
jacent exons (length > 40) of back-splicing were selected
for validation (Additional file 4: Table S3). The total
RNA of glioma stem cells were extracted by TRIzol
(Invitrogen) and reverse transcribed by PrimeScript RT
Reagent Kit (Takara). With divergent primers (Add-
itional file 4: Table S3) designed in the two adjacent
exons, 50 ng of cDNA template was used for the first
round of PCR and 1/50 of the product from the first
round of PCR was used as template for the second
round of PCR. The final products were analyzed using
2% agarose gel. The PCR products were further cloned
to pUcm-T vector (Sangon) if the bands were clearly vis-
ible and the clones with inserts were sequenced by
Sanger sequencing (Genewiz).

Evaluate relative circRNA expression level in human cell
lines and tissues
Human Ribo-Zero RNA-seq data of 14 cell lines and 29
tissues were collected from ENCODE Project Consortium
[50] (Additional file 1: Table S1). Gene counts were quan-
tified by STAR with annotation file GENCODE v19. cir-
cRNAs were detected by CIRI with the same parameters
as described in method of detection of circRNA. For each
sample, total circular junction counts were calculated by
summing circular junction counts of all circRNAs with
circular junction counts ≥ 1, 2, …,6. The relative circRNA
expression levels were evaluated by the ratio of total circu-
lar junction counts to total gene counts.

Characteristics of the circRNAs
The identified circRNAs were classified into three types,
namely, exonic, intronic, and intergenic, according to
their predefined type in CIRI. Notably, a circRNA with
one end located in an intergenic or intronic region was
categorized as “intergenic” or “intronic” regardless of
where the other end was located.
The putative circRNA primary structures were pre-

dicted based on human gene annotations (GENCODE
v19). Although exons can be removed and introns can
be retained during circRNA formation, we considered
only exons enclosed by splice sites. The lengths of the
circRNAs were calculated by the sum of the exons, and
the intron length was added only if it was enclosed by
the back-spliced sites.

Normalization and evaluation of covariates
The voom [20] normalization scales read each circular
junction by total read counts across all circular junction

sites in the SCZ and control samples and transforms it
to the logarithm (base 2). We considered technical (in-
stitution, library preparation batch, postmortem interval
(PMI), RNA integrity number (RIN), and RIN2) and
biological (age of death (AOD), ethnicity, gender, SCZ)
factors as covariates in voom normalization. We used
the limma [21] package (version 3.34.5) to detect DE
circRNAs among these covariates. The RIN- and RIN2--
related circRNAs were merged.
Random sampling analysis was also employed to detect

SCZ-associated DE circRNAs. Briefly, 50 or 100 SCZ cases
were selected from all cases by stochastic, as well as the
equivalent number for controls. SCZ-associated DE cir-
cRNAs were detected as described above. The procedure
was repeated for 1000 times, and circRNAs reported to be
DE in more than 50 random sampling were identified as
SCZ-associated DE circRNAs.
For disease-specific expressed circRNA analysis, cir-

cRNAs expressed (circular junction counts ≥ 1 in more
than half of individuals and average ratio ≥ 0.05) in ei-
ther SCZ or control subjects were selected, and the same
method described above was used to detect differentially
expressed circRNAs in SCZ.
Raw gene counts were downloaded from the CMC

database. We filtered out all genes with low expression
in SCZ and control samples, leading to 16,422 genes
remaining with at least 1 gCPM (gene counts per million
total gene reads) in at least 50% of the individuals. Then,
we used the same method to normalize gene expression
and detect covariate-associated genes.

Needed sample size to detect DE circRNAs or genes
Effect size of each circRNA or gene was estimated by
|log2(fold change)|/sd, whereas fold change is calculated
by the ratio of average expression level in SCZ to con-
trol, and sd is the standard deviation of all samples ex-
pression quantified by log2(circCPM) for circRNAs or
log2(gCPM) for genes. Cutoff for significance level was
estimated by 0.05/#(circRNAs or genes tested). The needed
sample size was estimated by using pwr.t.test function of
package pwr in R with the following parameters: d =max-
imal effect size, sig.level = cutoff, power = 0.8, type = “two.-
sample”, and alternative = “two.sided”.

circQTL analysis
We first used voom to normalize all 589 samples using
the above method but considered all disease stages as
covariates, including SCZ, control, and AFF. Next, 465
genetically inferred Caucasians [11] remained, and the
covariate effects were regressed out based on the weight
of voom in a weighted linear regression.
The correlations between genotypes and covariate-ad-

justed circRNA expression, i.e., circRNA expression
quantitative loci (circQTLs), were tested using Matrix
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eQTL [28] with the additive linear model on the im-
puted genotype dosages (only SNPs in autosomal regions
were included in this study). SNPs between the 100-kb
region upstream of the 5′ back-spliced site and the
100-kb region downstream of the 3′ back-spliced site
were included for cis-regulation. Similar to a previous
study [41], circQTL-containing circRNAs were identified
by a permutation procedure that corrects for the mul-
tiple hypothesis effect of many variants in LD. Briefly, a
total of 10,000 permutations were performed by ran-
domizing sample labels for the circRNA expression
matrix. The minimal P value (minP) for each circRNA
in every permutation was collected to derive empirical P
values (empP) of uncorrected circQTLs for each cir-
cRNA. For each uncorrected circQTL P value (PcircQTL),
the empP can be estimated by the following formula:

empP ¼ 1þP10000
n¼1 # minPn < PcircQTL

� �

10001

minPn represents the minP in the 10,000 permutations
for the circRNA. Q values were calculated using Storey’s
approach [29] based on the distribution of minimal
empP of all circRNAs. circRNAs with q values less than
0.05 were identified as circQTL-containing circRNAs.
For each circQTL-containing circRNA, a empP equiva-
lent to a q value of 0.05 was deemed the permutation
threshold to identify circQTL SNPs.
When measuring the circRNA expression level by

the circular ratio, we performed multiple linear re-
gression to regress out covariates and detect correla-
tions between genotypes and the normalized circular
ratio.

Analysis of the characteristics of circQTL SNPs
The most significant SNP for each circQTL-containing
circRNA was selected to study the circRNA characteris-
tics. Linked SNPs were pruned with the reference from
the 1000 Genomes Phase 1 genotype data [51] using the
PLINK [52] -indep-pairwise module with the following pa-
rameters: --indep-pairwise 50 5 0.5. SNPs with
minimal uncorrected P values larger than 0.05 were se-
lected as negative controls, i.e., non-circQTL SNPs, after
LD-based pruning and MAF distribution correction.
The max-circQTL and non-circQTL SNPs were classi-

fied into the following categories: splice acceptor, splice
donor, start lost, stop gained, stop lost, missense, splice
region, synonymous, untranslated region 5′ (5′-UTR),
3′-UTR, noncoding transcript exon, intron, upstream
gene, downstream gene, and intergenic variant, using
Variant Effect Predictor (VEP) [53] with the -most_se-
vere parameter. The categories start lost, stop gained,
and stop lost were removed due to low counts. In
addition, the splice acceptor and splice donor categories

were combined into one splicing category, i.e., canonical
splice site. Finally, 11 types were retained for enrichment
analysis by a two-tailed Fisher’s exact test.

Detecting reverse complementary sequences (RCSs)
We detected RCSs according to a previous study [54].
Briefly, flanking introns of an exonic circRNA were
aligned to each other using BLAST [55] (version 2.8.0+)
with the parameters –task blastn –word_size 11
–strand minus. Potential RCSs were identified if the
bitscores of alignments exceeded 100.

Datasets of disease-related GWAS SNPs
The list of SNPs associated with various human traits was
downloaded from the GWAS Catalog [34] (http://www.ebi.
ac.uk/gwas, the gwas_catalog_v1.0.1 file, accessed Feb 2018).
Significant disease-related GWAS SNPs (P ≤ 5 × 10−8) were
extracted using the ontoCAT [56] package of R if they were
associated with the child terms of “EFO_0000408: disease.”
We performed a one-tailed Fisher’s exact test for the follow-
ing diseases: (1) all human diseases (EFO_0000408: disease);
and (2) 21 individual diseases with GWAS SNPs larger than
90, including age-related macular degeneration, allergy,
Alzheimer’s disease, androgenetic alopecia, asthma, atrial
fibrillation, autism, bipolar disorder, breast carcinoma, cor-
onary artery disease, coronary heart disease, inflammatory
bowel disease, lung carcinoma, Parkinson’s disease, prostate
carcinoma, psoriasis, rheumatoid arthritis, schizophrenia,
systemic lupus erythematosus, type I diabetes mellitus, and
type II diabetes mellitus. SNPs linked (r2 > 0.6 calculated by
PLINK) to these GWAS SNPs were also included in the
enrichment analysis.

Additional files

Additional file 1: Table S1. List of Ribo-zero RNA-seq data from
ENCODE Project Consortium used in this study. (XLSX 16 kb)

Additional file 2: Figure S1. Relative circRNA expression level in 14 cell
lines, 29 tissues, and DLPFC. Figure S2. The Sanger sequencing results
for circRNAs from AKT3, HOOK3, and MDGA2. Figure S3. Distributions of
the exon numbers (A) and lengths (B) of exonic circRNAs. Figure S4. Pie
charts indicated the fraction of circRNAs produced from one host gene.
Figure S5. LIB-associated circRNAs show higher expression levels and
shorter median lengths. Figure S6. Comparison of distributions of effect
size of circRNAs (red line) and genes (blue line) in detecting SCZ-control
differential expression in CMC dataset. (DOCX 1163 kb)

Additional file 3: Table S2. List of 10,559 circRNAs. (XLSX 1499 kb)

Additional file 4: Table S3. Details of RT-PCR primers for validation of
13 selected circRNAs. (XLSX 10 kb)

Additional file 5: Table S4. Results of the gene-set enrichment analysis
of host genes. (XLSX 18 kb)

Additional file 6: Table S5. List of circRNAs associated with age of
death at an FDR < 0.05. (XLSX 30 kb)

Additional file 7: Table S6. List of 196,255 circQTLs. (XLSX 14566 kb)
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Liu et al. Genome Biology           (2019) 20:99 Page 13 of 16

http://www.ebi.ac.uk/gwas
http://www.ebi.ac.uk/gwas
https://doi.org/10.1186/s13059-019-1701-8
https://doi.org/10.1186/s13059-019-1701-8
https://doi.org/10.1186/s13059-019-1701-8
https://doi.org/10.1186/s13059-019-1701-8
https://doi.org/10.1186/s13059-019-1701-8
https://doi.org/10.1186/s13059-019-1701-8
https://doi.org/10.1186/s13059-019-1701-8
https://doi.org/10.1186/s13059-019-1701-8


Additional file 9: Table S8. List of circQTL SNPs linked to GWAS signals
in the NHGRI GWAS Catalog. Each index SNP is significantly associated
with disease (P ≤ 5 × 10−8) in GWAS. circQTL SNPs in high linkage
disequilibrium (r2 > 0.8) with index SNPs were extracted. (XLSX 290 kb)

Additional file 10: In-house scripts for circRNA analysis. Scripts of RNA-
seq, circQTL, and statistical analysis in this study. (ZIP 56 kb)
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