
RESEARCH ARTICLE Open Access

Knowledge-guided convolutional networks
for chemical-disease relation extraction
Huiwei Zhou1* , Chengkun Lang1, Zhuang Liu1, Shixian Ning1, Yingyu Lin2 and Lei Du3

Abstract

Background: Automatic extraction of chemical-disease relations (CDR) from unstructured text is of essential
importance for disease treatment and drug development. Meanwhile, biomedical experts have built many highly-
structured knowledge bases (KBs), which contain prior knowledge about chemicals and diseases. Prior knowledge
provides strong support for CDR extraction. How to make full use of it is worth studying.

Results: This paper proposes a novel model called “Knowledge-guided Convolutional Networks (KCN)” to leverage
prior knowledge for CDR extraction. The proposed model first learns knowledge representations including entity
embeddings and relation embeddings from KBs. Then, entity embeddings are used to control the propagation of
context features towards a chemical-disease pair with gated convolutions. After that, relation embeddings are
employed to further capture the weighted context features by a shared attention pooling. Finally, the weighted
context features containing additional knowledge information are used for CDR extraction. Experiments on the
BioCreative V CDR dataset show that the proposed KCN achieves 71.28% F1-score, which outperforms most of the
state-of-the-art systems.

Conclusions: This paper proposes a novel CDR extraction model KCN to make full use of prior knowledge.
Experimental results demonstrate that KCN could effectively integrate prior knowledge and contexts for the
performance improvement.
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Background
Chemicals, diseases and their relations play important
roles in many areas of biomedical research and health
care [1–3]. Because of their critical significance, these re-
lations are curated into knowledge bases (KBs) such as
the Comparative Toxicogenomic Database1 (CTD) [4] by
domain experts, continually. However, manual curation
of chemical-disease relation (CDR) from the literature is
costly and difficult to keep up-to-date. Automatic ex-
traction of CDR from texts has become increasingly
important.
To promote the research on CDR extraction, the

BioCreative-V community proposes a task of automatically
extracting CDR from biomedical literature [5], which con-
tains two specific subtasks: (1) disease named entity

recognition and normalization (DNER); (2) chemical-
induced diseases (CID) relation extraction. This paper fo-
cuses on the CID subtask at both intra- and
inter-sentence levels. The intra- and inter-sentence levels
refer to a chemical-disease pair in the same sentence and
in two different sentences, respectively.
Up to now, many methods have been proposed for the

automatic extraction of CDR. These methods could be
mainly divided into two categories: feature-based
methods [6–10] and neural network-based methods
[11–17]. Feature-based methods aim at extracting differ-
ent kinds of context features. Gu et al. [6] devise various
effective linguistic features for CDR extraction. Zhou et
al. [7] extract the shortest dependency path (SDP) be-
tween chemical entities and disease entities, which pro-
vide strong evidence for relation extraction. Although
complicated handcrafted features achieve good perform-
ance, they are time-consuming and difficult to extend to
a new dataset.
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In recent years, neural network-based relation extrac-
tion methods have achieved significant breakthrough: they
can model language more precisely with low-dimensional
feature vectors rather than one-hot handcrafted features.
Gu et al. [11] employ convolutional neural network
(CNN) [18] to learn the context and dependency repre-
sentations for CDR extraction. Zhou et al. [12] use long
short-term memory neural network (LSTM) [19] to gener-
ate representations of SDP sequences for CDR extraction.
Nguyen et al. [13] incorporate character-based word rep-
resentations into a standard CNN-based relation extrac-
tion model. Neural network-based methods could learn
semantic features from context sequences automatically
and show promising results for CDR extraction.
Besides the context features mentioned above, prior

knowledge on chemicals and diseases is also important
for relation extraction. Comparative Toxicogenomic
Database (CTD) [4] is a well-known biomedical know-
ledge base, which contains a large amount of structured
triples in the form of (head entity, relation, tail entity).
Feature-based methods use knowledge features (relations
of chemical-disease pairs in the KBs) to extract CID re-
lations [8–10]. They significantly improve the CDR ex-
traction performance. However, one-hot knowledge
features assume that all entities and relations are inde-
pendent from each other, which does not take the
semantic relevance into consideration.
To better model prior knowledge in KBs, some re-

searchers focus on knowledge representation learning,
which could learn low-dimensional embeddings for en-
tities and relations [20–22]. TransE [20] is a typical
translation-based method. It projects entities and rela-
tions into a common embedding space, and regards rela-
tions as translations from head entities to tail entities in
this space.
Neural network-based methods employ relation em-

beddings learned from CTD to select important context
words [17]. With the help of low-dimensional knowledge
representations, Zhou et al. [17] efficiently compute se-
mantic links between contexts and relations in a
low-dimensional space, which results in an increase in
the CDR extraction performance. However, only relation
embeddings are utilized as the guidance in their model.
Entity embeddings of chemical-disease pairs are com-
pletely ignored. Since humans would like to pay more at-
tention to the focused entities while extracting the
relation of the entity pair, entity embeddings are helpful
for relation extraction.
Recently, some neural network architectures, such as

attention-based memory network [23], attention-based LSTM
[24] and gated convolutional neural network (GCNN) [25–
27] are proposed to grasp important context information.
Among them, GCNN with gated convolution operations can
generate target-specific features accurately and efficiently [26].

To make full use of the knowledge representations,
this paper proposes a novel model called “Knowledge--
guided Convolutional Networks (KCN)” for CDR extrac-
tion. First, chemical and disease embeddings are used to
control the propagation of context features towards the
two focused entities through gated convolution opera-
tions, respectively. Then, relation embeddings are
employed to further capture the weighted context fea-
tures through a shared attention pooling. Finally, the
weighted context features containing additional know-
ledge information are used to extract CID relations.
The major contributions of this paper are summarized

as follows:
To make full use of both entity embeddings and relation

embeddings, we propose a novel model KCN, which intro-
duces gating operations into the convolutional layer and
the attention mechanism into the pooling layer. The ex-
perimental results show its effectiveness in capturing
knowledge-related context features for relation extraction.
Gated convolution networks with entity embeddings

could selectively output context features related to the
focused entity pairs.

Methods
This section introduces a CDR extraction approach in four
steps: (1) extract the candidate instances at both intra- and
inter-sentence levels from the CDR dataset; (2) learn know-
ledge representations from the CTD knowledge base with
TransE model; (3) train the knowledge-guided convolu-
tional networks (KCN) on the candidate instances with the
guidance of knowledge representations; (4) merge the ex-
traction results at intra- and inter-sentence levels as the
final document level results.

Instance construction
Intra- and inter-sentence level instance construction
The candidate chemical-disease instances are con-
structed at intra- and inter- sentence level separately. All
the chemical-disease pairs that exist in the same sen-
tence are extracted as the intra-sentence level instances
without any limitation. For the inter-sentence level in-
stances, we employ the following heuristic rules [11] to
remove some negative instances.
(1) In the same document, all the intra-level

chemical-disease instances will not be considered as
inter-sentence level instances.
(2) A chemical-disease pair will not be taken into con-

sideration if the sentence distance between the chemical
and disease is more than 3.
(3) If there are multiple mentions that refer to the

same entity, only the chemical-disease pairs existing in
the nearest distance are considered as the inter-sentence
level instances.
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Hypernym filtering
A concept of disease or chemical may be hypernym con-
cept to a more specific one. However, the goal of the
CID task is to extract the relations between the most
specific diseases and chemicals. Therefore, we remove
those instances including hyper-entities which are more
general than entities already participating in the in-
stances. Specially, the hypernym relationships between
entities are determined by indexing the Medical Subject
Headings (MeSH) [28].

Shortest dependency path sequence generation
This paper takes SDP sequences as the inputs for CDR
extraction. Take sentence 1 as an example of SDP se-
quence generation:
Sentence 1: Seizures were induced by pilocarpine injec-

tions in trained and non-trained control groups.
The chemical entity “pilocarpine” is denoted by wave

line and the disease entity “seizures” is denoted by
underline. The corresponding dependency tree is shown
in Fig. 1, with the SDP between this entity pair
highlighted in green (all the words are transformed to
lowercase and the punctuations are discarded). Intui-
tively, we directly take the SDP sequence {“pilocarpine”,
“↑”, “nmod”, “↑”, “injections”, “↑”, “pmod”, “↑”, “by”, “↑”,
“vmod”, “↑”, “induced”, “↓”, “vmod”, “↓”, “seizures”} as the
input of KCN. In this sequence, the symbols “↑” and “↓”
indicate the dependency directions, and the tokens like
“vmod” represent the dependency relation tags between
two words. We can find that the trigger word “induced”
is included in the SDP sequence, which could directly
indicate whether the chemical-disease pair has the CID
relation, while meaningless words are omitted.
The dependency tree is generated by Gdep Parser [29].

For an intra-sentence level instance, we directly extract
the SDP sequence from chemical to disease. For an
inter-sentence level instance, we first connect the roots

of the dependency trees of the two sentences by using
an artificially introduced root. Then, the SDP sequence
from the chemical entity to the disease entity is ex-
tracted from this new tree.

Knowledge representation learning
This section describes how to use the TransE model to
learn knowledge representations based on chemical-disease
triples in the form of (chemical, relation, disease) (also de-
noted as (c, r, d)).

Triples extraction
Following Zhou et al. [17], we extract triples from both
the CDR dataset and CTD knowledge base. Triples in
CTD are directly extracted. To generate triples of the
CDR dataset, we first extract chemical-disease entity pairs.
Then, the relations of these pairs are annotated based on
CTD. There are three kinds of relations in CTD: inferre-
d-association, therapeutic and marker/mechanism, among
which only marker/mechanism refers to the true CID rela-
tion. For the entity pairs in the CDR data set but not
found in CTD, we artificially annotate them with a special
relation null. Finally, 1,787,913 triples with four relations
are obtained for knowledge representation learning.

Knowledge representation learning with TransE
TransE [20] is employed to learn knowledge representa-
tions in this paper for its simplicity and good perform-
ance. All the triples extracted from the CDR dataset and
CTD knowledge base are used as correct triples to learn
chemical embeddings ec, disease embeddings ed and re-
lation embeddings r in the common space ℝk. TransE
models relations as translations from chemicals to dis-
eases, i.e. ec + r ≈ ed when (c, r, d) holds. The loss func-
tion of TransE is defined as follows:

Fig. 1 The dependency tree of sentence 1 with chemical “pilocarpine” and disease “seizures”
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L ¼
X

ec;r;edð Þ∈S

X
e0c; r; ed
� �

or
ec; r; e0d
� �

∈S0

max 0; γ þ ‖ec þ r−ed‖−‖e0c þ r−e0d‖
� �

ð1Þ

where S is the set of correct triples, S′ is the set of nega-
tive triples, and γ > 0 is a margin between correct triples
and negative triples. The set of correct triples S is ex-
tracted from the CDR dataset and CTD knowledge base.
The set of negative triples S′, according to Formula (1),
is constructed with either the chemical or disease in cor-
rect triples replaced by a random entity [19].

To get knowledge representations and word embed-
dings in the common space, we initialize entity embed-
dings with the average embeddings of entity mention
words. Relation embeddings are randomly initialized
with the uniform distribution in [−0.25, 0.25]. Word2-
Vec2 [30] is employed to pre-train word embeddings on
the PubMed articles provided by Wei et al. [31].

Relation extraction
Both entity embeddings and relation embeddings are
used to capture the important context features related to
the focused entity pairs. Figure 2 shows the framework

of KCN: two convolutional networks are adopted to cap-
ture the context information related to chemicals and
diseases, respectively. Each convolutional network is
composed of four layers: (1) the embedding layer; (2) the
entity-based gated convolutional layer; (3) the
relation-based attention pooling layer; (4) the softmax
layer.

Embedding layer
The input sequences of the two convolutional networks
are the same. Given an input SDP sequence w = {w1,w2,
… ,wn} of a candidate instance, we map each token wi to
a d-dimensional embedding xi ∈ ℝ

d to obtain a token
embedding sequence X = [x1, x2, … , xn] ∈ ℝ

d × n. Embed-
dings of dependency relation tags and directions in the
sequence are randomly initialized. Similarly, the chem-
ical c, disease d and relation r are also mapped to their
embeddings ec ∈ ℝ

k, ed ∈ ℝ
k and r ∈ ℝk, respectively.

Entity-based gated convolutional layer
Entity-based gated convolutions can selectively extract
entity-specific convolutional features with the given en-
tities. Entity-based gated convolutions in the two

Fig. 2 The framework of the knowledge-guided convolutional networks
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convolutional networks are performed based on chem-
ical entities and disease entities, respectively.
To help better understand gated convolutions, we first

provide a brief review of traditional convolutions. Trad-
itional convolutions apply multiple filters with different
widths to get n-gram features [32]. Formally, given the
input embedding sequence X, the convolution operation
at position i can be formed as follows:

ci ¼ f Xi:iþh‐1 �Wc þ bcð Þ ð2Þ
where Wc ∈ℝ

d × h is the filter matrix, f is a non-linear acti-
vation function, ∗ denotes the convolution operation and
Xi : i + h − 1 refers to the concatenation of h token embed-
dings. The convolution operation maps h tokens in the re-
ceptive field to a feature ci. Each filter is used for each
possible window of h tokens in the sequence X to produce
a feature map c = [c1, c2, … , cn − h + 1] ∈ℝ

n − h + 1. If there
are l filters of the same width h, the convolutional features
form a matrix C = [c1, c2, … , cl]

T ∈ℝl × (n − h + 1).
Our gated convolutions control the propagation of

convolutional features with additional gating units. In-
spired by Xue and Li [27], Gated Tanh-ReLU Units
(GTRU) are used to control the path through which in-
formation flows towards the subsequent pooling layer.
GTRU have two nonlinear gates, Tanh and ReLU, each
of which is connected to a convolution operation. With
entity embeddings, they can selectively output the
entity-specific convolutional features for CDR
extraction.
In the gated convolutional layer, two GTRUs of the

same structure are applied to the two entities, respect-
ively. Take the GTRU with chemical embeddings ec for
illustration. For a token embedding sequence X = [x1,
x2, … , xn], the convolutional features ci at position i are
calculated as follows:

sci ¼ tanh Xi:iþh‐1 �Wc
s þ bcs

� �
aci ¼ relu Xi:iþh‐1 �Wc

a þ Vc
aec þ bca

� �
cci ¼ sci � aci

ð3Þ

where Wc
a;W

c
s∈ℝ

d�h are the convolution filters of size h,
Vc

a∈ℝ
1�k is a transition matrix and bca; b

c
s∈ℝ

1 are the
biases. The convolution operations for generating convo-
lutional features aci and sci in Formula (3) are the same as
traditional convolutions. The convolutional feature sci is
only responsible for representing context features. But
the convolutional feature aci receives additional chemical
embeddings ec. aci is used to control context features sci
to obtain the features cci .
This paper uses l filters to obtain the

chemical-based context features Mc ¼ ½cc1; cc2;…; ccl �T∈
ℝl�n . Similar to Mc, the disease-based features Md are
generated through the same gated convolution opera-
tions with disease embeddings ed. The i-th column of

Mc (Md) is defined as a chemical-based (disease--
based) context feature vector Mc[:, i] (Md[:, i]) as
shown in the green boxes in Fig. 2. In fact, Mc[:, i]
(Md[:, i]) can be seen as the chemical-based (disease--
based) context features of the i-th token xi.

Relation-based attention pooling layer
In traditional CNN, the feature maps generated by
the convolutional layer are fed to a max pooling layer
to get the most salient features. However, the CDR
extraction model should pay more attention to the
important context clues of relations between entities.
Following this intuition, the attention mechanism is

employed to learn the importance of each entity-based
context feature with regard to relation embeddings. In
attention pooling layer, the two convolutional networks
share the same attention parameters to learn the weights
of chemical-based context vectors and disease-based
context vectors. Sharing parameters enables the two en-
tities to communicate with each other.
Take the chemical-based context features Mc as ex-

ample. For each context vector Mc[:, i], we use an atten-
tion mechanism to compute its semantic relevance with
relation embedding r of the focused entity pair as
follows:

gi ¼ tanh WgMc :; i½ � þ bg
� �

⊙r ð4Þ

where ⊙ denotes the dot product, Wg ∈ ℝ
k × l is the tran-

sition matrix and bg ∈ ℝ
k is the bias.

After obtaining {g1, g2, … , gn}, the attention weight of
each context vector can be defined with a softmax func-
tion as follows:

αi ¼
exp gi

� �
Xn
j¼1

exp g j

� � ð5Þ

Then the weighted sum feature mc ∈ ℝl is defined as
follows:

mc ¼
Xn
i¼1

αiMc :; i½ � ð6Þ

Finally, the two weighted sum entity-based features are
concatenated to form the weighted context feature m =
mc⊕md.

Softmax layer
For the relation classification, a softmax layer is
employed on the weighted context feature m. It takes
feature m as its input and outputs the probability distri-
bution of relation labels. Formally, the softmax layer is
defined as follows:
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o ¼ relu Whmþ bhð Þ
p y ¼ jjTð Þ ¼ softmax Wooþ boð Þ ð7Þ

where Wh∈ℝh0�2l and Wo∈ℝ2�h0 represent the transition
matrices, bh∈ℝh0 and bo ∈ ℝ

2 are their corresponding
biases and T denotes all the training instances.
The cross-entropy loss function is used as the training

objective. For each predicted instance T(t) and its golden
label y(t), the loss function is defined as follows:

loss ¼ −
1
N

XN
t¼1

logp y tð ÞjT tð Þ
� �

ð8Þ

where N is the number of all the training instances and
the superscript t indicates the t-th labeled instance.

Relation merging
After the relation extraction at intra- and inter-sentence
levels, two sets of prediction results are obtained. We
merge them together as the final document level results.
Since we extract all the possible candidate instances at
intra-sentence level, there might be multi-instances for
one entity pair but with inconsistent predictions. In this
case, we believe that an entity pair has a CID relation as
long as there is at least one instance predicted to be
positive.

Experiments and results
Experiment setup
Dataset
Experiments are conducted on the BioCreative V Track
3 CDR extraction dataset, which contains a total of 1500
PubMed articles: 500 each for the training, development
and test set. The chemicals, diseases and relations are
manually annotated with their MeSH IDs [28] and posi-
tions in documents. Table 1 describes the statistic of the
dataset.
Following Zhou et al. [17], we combine the original

training set and development set as the training set: 80%
is used for training and 20% for validation. The evalu-
ation is reported by the official evaluation toolkit,3 which
adopts Precision (P), Recall (R) and F1-score (F) as the
metrics.

Training details
This section describes the training details about the exper-
iments. For knowledge representation learning, we directly
run the TransE code4 released by Lin et al. [22] with 500
epochs. The dimensions of token, entity and relation em-
beddings are all set to 100. For KCN training, 100 filters
with window size h = 1, 2, 3, 4, 5 respectively are used in
the gated convolutional layer. We use a batch size of 20
and the Adam optimizer [33] with learning rate: λ1 =
0.0001 at intra-sentence level, λ2 = 0.0002 at
inter-sentence level. Table 2 lists the hyper-parameters of
KCN.
Our model is implemented with an open-source deep

learning framework PyTorch and is publicly available
online.

Results
Effects of prior knowledge
To investigate the effects of prior knowledge, we com-
pare our KCN with its three variants:
AE (Averaged Entity Embedding): This variant repre-

sents an entity embedding as the average of its constitut-
ing word embeddings. That is to say, only relation
embeddings learned from KBs are employed, while entity
embeddings learned from KBs are not used.
SA (Self-Attention): This variant replaces the

relation-based attention mechanism with a self-attention
mechanism, which can be represented as: gi ¼ tanhðwT

g M
c½

:; i� þ bgÞ . That is to say, only entity embeddings learned
from KBs are employed, while relation embeddings learned
from KBs are not used.
AE-SA (Averaged Entity Embedding and

Self-Attention): This variant represents an entity em-
bedding as the average of its constituting word embed-
dings, and replaces the relation-based attention
mechanism with a self-attention mechanism at the same
time. That is to say, neither entity embeddings nor rela-
tion embeddings learned from KBs are used.
Table 3 compares KCN with the three variants at both

intra- and inter-sentence levels. From the table, we can
see that:

Table 1 Statistics of the CDR dataset

Dataset Articles Chemical Disease CID

Men ID Men ID

Training 500 5203 1467 4182 1965 1038

Development 500 5347 1507 4244 1865 1012

Test 500 5385 1435 4424 1988 1066

Men, ID and CID denotes the number of Mentions, MeSH IDs and CID
relations, respectively

Table 2 Settings of hyper-parameters

Parameter Description Value

nk TransE epochs 500

d Word embedding dimension 100

k Entity/relation embedding dimension 100

l Filter number 100

Mini-batch Minimal batch size 20

λ1 Learning rate of intra-sentence instances 0.0001

λ2 Learning rate of inter-sentence instances 0.0002
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(1) Compared with KCN, AE replaces the entity em-
bedding with its corresponding word embeddings and
causes the document level F1-score to drop by 2.91%.
This indicates that prior knowledge encoded entity em-
beddings are more effective than entity embeddings
expressed by word embeddings.
(2) SA discards relation embeddings in KCN and

causes the F1-score significantly decreases by 12.03%.
This suggests that relation embeddings learned from
KBs are the direct evidence for CDR extraction.
(3) AE-SA achieves the worst results among the three

variants. It does not leverage any knowledge representa-
tions learned from KBs, resulting in a 13.21% decrease
of F1-score.
(4) With the help of the deep semantic relevance be-

tween entity embeddings and relation embeddings, KCN
achieves the highest document level F1-score of 71.28%.

Influences of curated CDR articles
CTD provides prior knowledge for relation extraction in
the CDR dataset. One may then wonder if there is any
relation between the curated data in CTD and the CDR
dataset. To clarify the doubt, we make a statistic on the
CDR dataset and find that all the 1500 articles in the
CDR dataset have been curated in CTD. We call these
articles as curated CDR articles.
To explore the influences of curated CDR articles, we

remove some triples in curated CDR articles (defined as
CDR triples) from CTD. Three new models are trained
based on KCN, namely -train&test, -train and -test.
(1) -train&test indicates all CDR triples in the whole

CDR dataset are removed from CTD.
(2) -train indicates CDR triples in the CDR training

and development set are removed from CTD.
(3) -test indicates CDR triples in the CDR test set are

removed from CTD.
From the results shown in Table 4, we can see that:
(1) Without the guidance of CDR triples in the CDR

dataset, the F1-score drops from 71.28% (KCN) to
61.35% (-train&test). Once CDR triples are removed
from CTD, entity pairs in the CDR dataset will be incor-
rectly annotated as the null relation. As a result, they
may be misclassified.

(2) Similar to -train&test, -train and -test also make
some declines in the document level F1-score.
Based on the experiments above, one may doubt if

KCN only relies on prior knowledge extracted from
CTD. To clarify this, we design an extra model called
Only KB. This model extracts CID relations by
matching the entity pairs in the CDR dataset with the
triples in CTD. The results are shown in the last row
of Table 4.
(1) Compared with KCN, Only KB gets a lower

F1-score of 63.90%, which demonstrates the importance
of the contexts.
(2) Only KB has a fairly low precision. CTD curates a

large number of CID triples, however, some of which are
not annotated as CID relations in the CDR test set. In
this case, many negative triples will be wrongly classified
as positives through matching.
(3) The recall of Only KB is not 100%, which is mainly

caused by two reasons. Firstly, our heuristic rules for
negative instance filtering (see subsection “Intra- and
inter-sentence level instance construction”) remove
some positive instances. Secondly, although CTD covers
all the articles in the CDR dataset, not all positive entity
pairs in the CDR dataset are included in it.
As illustrated above, curated CDR articles can be help-

ful for CDR extraction. And the key to achieving the
good performance is the combination of prior know-
ledge and context information.

Effects of architecture
To better understand the architecture of KCN, we com-
pare it with two variants:
w/o GTRU: This variant replaces GTRU with trad-

itional Tanh, i.e. entity-based gated convolutions degen-
erate to traditional convolutions. Without the control of
entity embeddings, the operations in the two convolu-
tional networks are the same. Therefore, only one con-
volutional network is enough.
w/o Att: This variant replaces the relation-based at-

tention pooling with a max pooling.
From the results shown in Table 5, we can observe

that:

Table 3 Effects of different prior knowledge on performance on the CDR dataset

Method Intra-sentence level Inter-sentence level Document level

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

KCN 70.61 60.41 65.12 65.37 12.57 21.09 69.65 72.98 71.28

AE 71.44 57.04 63.43 57.71 10.88 18.31†† 68.82 67.92 68.37†

SA 60.99 53.38 56.93†† 40.57 8.07 13.46†† 57.21 61.44 59.25††

AE-SA 58.03 53.56 55.71†† 47.69 5.82 10.37†† 56.82 59.38 58.07††

The descriptions and analysis for Table 3 could be found in subsection “Effects of prior knowledge”. The marker † and †† represent P-value < 0.05 and P-value < 0.01,
respectively, using pairwise t-test against KCN. The highest scores are highlighted in bold
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(1) Without entity-based gated convolutions, the
F1-score of w/o GTRU decreases from 71.28 to 68.43%.
It is probable that entity-based gated convolutions could
extract entity-specific contexts for CDR extraction.
(2) When we remove the attention pooling, the per-

formance of w/o Att significantly drops. The possible
reason is that the relation-based attention mechanism
could find important contexts related to relations.

Effects of sharing parameters
In KCN, the two convolutional networks use different
sets of parameters in the gated convolutions but share
the same parameters in the attention pooling. To ex-
plore the effects of sharing parameters, we compare
KCN with three variants:
SGate-SAtt: In this variant, the parameters in the

gated convolutions and the attention pooling are both
shared.
DGate-DAtt: In this variant, neither the parameters in

the gated convolutions nor the parameters in the atten-
tion pooling are shared.
SGate-DAtt: In this variant, the parameters in the

gated convolutions are shared, while the parameters in
the attention pooling are not.
From the results shown in Table 6, we can find that:
(1) Compared with KCN, SGate-SAtt ignores specific

information related to each entity, resulting in perform-
ance decline.
(2) DGate-DAtt focuses on more specific information

related to each entity but ignores the connection be-
tween the two entities, which leads to a slight drop in
the performance.

(3) SGate-DAtt captures specific information related
to each entity in the attention pooling. The F1-score of
SGate-DAtt is slightly better than that of SGate-SAtt.
This demonstrates that entity-specific information is
needed for CDR extraction, either in the gated convolu-
tions or in the attention pooling.

Effects of gating units
This subsection compares the effects of the different gat-
ing units used in the gated convolutions, including
GTRU [27] (namely KCN), Gated Tanh Units (GTU)
tanh(X ∗Ws + bs) × σ(X ∗Wa +Vae + ba) [26] and Gated
Linear Units (GLU) (X ∗Ws + bs) × σ(X ∗Wa +Vae + ba)
[25]. GTU and GLU have shown their effectiveness in
language modeling [25, 26].
Table 7 demonstrates that GTRU outperforms the

other two gating units. GTU and GLU use sigmoid
gates, whose upper bounds are + 1. However, ReLU gates
used in GTRU have no restrictions on the upper bound.
It can amplify knowledge-related context features ac-
cording to the relevance between context features and
entity embeddings.

Discussion
Visualizations
To illustrate the guidance capacity of prior knowledge in
KCN, we visualize the weights generated by attention
mechanisms and gates in the form of heat maps in Figs. 3
and 4 respectively.

Attention visualization
The attention weights in KCN and AE-SA are visualized
in Fig. 3a and b, respectively. Each subfigure has two

Table 4 Influences of curated CDR articles on the relation extraction results

Method Intra-sentence level Inter-sentence level Document level

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

KCN 70.61 60.41 65.12 65.37 12.57 21.09 69.65 72.98 71.28

-train&test 64.44 53.38 58.39 45.41 8.35 14.10 60.98 61.73 61.35

-train 64.07 60.23 62.09 54.63 11.07 18.41 62.40 71.29 66.55

-test 65.53 48.87 55.99 49.71 8.16 14.02 61.76 57.41 59.50

Only KB 59.44 65.85 62.48 31.34 21.49 26.36 50.41 87.24 63.90

The descriptions and analysis for Table 4 could be found in subsection “Influences of the curated articles in the CDR dataset”. The highest scores are highlighted
in bold

Table 5 Effects of each component of architecture on performance on the CDR dataset

Method Intra-sentence level Inter-sentence level Document level

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

KCN 70.61 60.41 65.12 65.37 12.57 21.09 69.65 72.98 71.28

w/o GTRU 67.71 60.60 63.96† 60.95 9.66 16.68†† 66.70 70.26 68.43††

w/o Att 63.37 52.25 57.28†† 42.55 9.38 15.37†† 58.98 61.63 60.28††

The descriptions and analysis for Table 5 could be found in subsection “Effects of architecture”. The marker † and †† represent P-value < 0.05 and P-value < 0.01,
respectively, using pairwise t-test against KCN. The highest scores are highlighted in bold
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rows, which correspond to the attention weight of the
chemical-based features Mc and the disease-based fea-
tures Md, respectively.
In Fig. 3, the sequence “fludrocortisone ↑ pmod ↑ by ↑

vmod ↑ reversed ↑ vmod ↑ induced ↑ nmod ↑ hyperkale-
mia” is a negative instance for the focused entity pair
“fludrocortisone” and “hyperkalemia”. It is correctly
classified by KCN but misclassified by AE-SA.
As can be seen from Fig. 3a, KCN pays more attention

to the negation word “reverse”, which helps classify the
negative instance correctly. Moreover, the two entities
pay attention to each other in Fig. 3a. The relation-based
attention could build the links between them.
However, in Fig. 3b, the weights of all the tokens in

AE-SA have no obvious difference. This may be caused
by the lack of prior knowledge. Without its guidance,
the attention in AE-SA fails to catch the crucial infor-
mation, resulting in misclassification.

Gating visualization
The weights generated by gates in KCN and AE-SA are
visualized in Fig. 4a and b, respectively. For a sequence,
there are ntoken × nfilter × ndimension outputs of the ReLU
gates. We average nfilter × ndimension gate outputs as the
weight of each token. We take a positive instance “atp ↑
pmod ↑ by ↑ vmod ↑ induced ↑ nmod ↑ hypotension” in
Fig. 4 as an example, which is also correctly classified by
KCN but misclassified by AE-SA.
As can be seen from Fig. 4a, with the guidance of prior

knowledge, the chemical “atp” controlled gates assign
more weights on the trigger word “induced”, which is an
important cue for positive instance classification.
However, in Fig. 4b, each token weight controlled by

disease “hypotension” drops dramatically. Due to the

loss of the crucial cue, the instance is misclassified as
negative by AE-SA.

Comparison with related works
Comparison with previous systems
We compare KCN with previous systems of the Bio-
Creative V CDR Task in Table 8. To make a fair com-
parison, all the systems are evaluated on the CDR test
set with the golden standard entity annotations. The sys-
tems can be divided into 2 groups: systems without KBs
and systems with KBs.
From Table 8, we can see that systems with KBs out-

perform systems without KBs. This indicates that prior
knowledge can be an effective promotion for CDR
extraction.
Among the systems without KBs, neural

network-based methods [13–15] perform better than
feature-based methods [6], which shows the strength of
low-dimensional feature vectors in context modeling.
Particularly, Le et al. [14] employ the SDP between
chemical and disease entities with a CNN-based model,
and achieve the highest F1-score of 65.88% among them.
However, their system lacks the guidance of prior know-
ledge. Only using the context information limits the per-
formance of their system.
As for the systems with KBs, Peng et al. [10] use sup-

port vector machines (SVM) with one-hot knowledge
features extracted from CTD and achieve an F1-score of
67.08%. Furthermore, ♠Peng et al. [10] introduce add-
itional weakly labeled data to improve the F1-score to
71.83% (4.75% increase). Inspired by ♠Peng et al. [10], we
also add the same weakly labeled data to train our KCN.
However, the document level F1-score slightly drops to

Table 6 Effects of different parameter sharing strategies on performance on the CDR dataset

Method Intra-sentence level Inter-sentence level Document level

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

KCN 70.61 60.41 65.12 65.37 12.57 21.09 69.65 72.98 71.28

SGate-SAtt 70.09 60.23 64.78 62.96 9.57 16.61†† 69.02 69.79 69.40†

DGate-DAtt 70.39 60.23 64.91† 68.13 10.23 17.78†† 70.06 70.45 70.25††

SGate-DAtt 69.15 60.98 64.81† 63.19 10.79 18.43†† 68.18 71.76 69.93††

The descriptions and analysis for Table 6 could be found in subsection “Effects of sharing parameters”. The marker † and †† represent P-value < 0.05 and P-value <
0.01, respectively, using pairwise t-test against KCN. The highest scores are highlighted in bold

Table 7 Effects of different gating mechanisms in the gated convolutional layer on performance on the CDR dataset

Method Intra-sentence level Inter-sentence level Document level

P (%) R (%) F (%) P (%) R (%) F (%) P (%) R (%) F (%)

GTRU (KCN) 70.61 60.41 65.12 65.37 12.57 21.09 69.65 72.98 71.28

GTU 71.74 59.29 64.92†† 62.05 11.35 19.19†† 69.98 70.64 70.31††

GLU 71.38 59.66 65.00†† 60.11 10.32 17.61†† 69.46 69.98 69.72††

The descriptions and analysis for Table 7 could be found in subsection “Effects of gating mechanisms”. The marker † and †† represent P-value < 0.05 and P-value
< 0.01, respectively, using pairwise t-test against KCN. The highest scores are highlighted in bold
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Fig. 3 The attention visualization of a negative instance

Fig. 4 The gating visualization of a positive instance
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70.35%, which could be found in the last row of Table 8
(♠Ours).
Weakly labeled data often contains some noise, which

may harm the system performance. Generally, an effect-
ive method of reducing noise is usually needed [34].
However, without any denoising mechanism, ♠Peng et al.
[10] still show strong performance boost from using this
data. The good anti-noise capacity may benefit from the
careful feature engineering and shallow learning
methods. Different from ♠Peng et al. [10], KCN uses
low-dimensional features with deep learning methods. If
an effective denoising mechanism is not applied, KCN
seems unable to deal with noise.
Pons et al. [9] leverage rich one-hot knowledge fea-

tures extracted from a commercial system Euretos

Knowledge Platform. Different from them, our system
represents knowledge with low-dimensional embeddings
rather than one-hot features. This could create the cor-
relations between features in a low-dimensional vector
space.
Li et al. [16] map knowledge features into

low-dimensional vectors to help CDR extraction. Zhou
et al. [17] use TransE to learn knowledge representations
and incorporate relation embeddings with contexts
through an attention mechanism. Different from them:
1) we introduce both entity and relation embeddings,
while Zhou et al. [17] only take relation embeddings into
consideration; 2) we use both the gating units and the
attention mechanism to select the important context
features, while Zhou et al. [17] only use the attention
mechanism. Therefore, we achieve a better performance
than Zhou et al. [17].

Influences of CDR triples on previous systems
To further explore the influences of CDR triples on pre-
vious systems, we reproduce two representative systems,
named Zhou-feature and Zhou-CAN, to represent
feature-based methods and neural network-based
methods, respectively. Zhou-feature is the polynomial
kernel-based system without using prior knowledge in
Zhou et al. [12]. Zhou-CAN is the CNN-based system
with prior knowledge in Zhou et al. [17].
Table 9 compares KCN with Zhou-feature and

Zhou-CAN under the following three conditions: (I)
without KBs, (II) with KBs, (III) with KBs but removing
CDR triples in the CDR test set. From the results, we
can see that:
(1) When CDR triples are removed, there is a sharp

drop of performance for all the systems, which demon-
strates that CDR triples play an important role in both
feature-based methods and neural network-based
methods.
(2) Comparing the condition (I) with the condition

(III), the performance of neural network-based methods
is improved, while the feature-based method perform-
ance is decreased. Once CDR triples are removed, rela-
tion features extracted from KBs are incorrect. Even
though, neural network-based methods could still cap-
ture the potential semantic information through context
features to remedy the incorrect relations, while
feature-based methods could not.
(3) For the two neural network-based methods, ♦KCN

performs better than ♦Zhou-CAN under the condition
(III). The reason is probable that both entity and relation
embeddings are used in ♦KCN, while only relation em-
beddings are employed in ♦Zhou-CAN. Entity embed-
dings could still give ♦KCN effective guidance for CDR
extraction.

Table 8 Comparison with previous systems of CDR extraction

Method System P (%) R (%) F (%)

without KBs Feature-based Gu et al. [6] 62.00 55.10 58.30

Neural network-
based

Nguyen et al. [13] 57.00 68.60 62.30

Le et al. [14] 58.02 76.20 65.88

Verga et al. [15] 55.60 70.80 62.10

with
KBs

Feature-based Pons et al. [9] 73.10 67.60 70.20

Peng et al. [10] 68.15 66.04 67.08
♠Peng et al. [10] 71.07 72.61 71.83

Neural network-
based

Li et al. [16] 59.97 81.49 69.09

Zhou et al. [17] 60.51 80.48 69.08

Ours 69.65 72.98 71.28
♠Ours 72.12 68.67 70.35

The descriptions and analysis for Table 8 could be found in subsection
“Comparison with previous works”. The marker ♠ indicates that the system
uses additional weakly labeled data for training. The highest F1-score of each
subgroup is highlighted in bold

Table 9 Comparison with previous systems under the three
conditions

Condition System P (%) R (%) F (%)

(I) ♣Zhou-feature 62.15 46.28 53.70
♣Zhou-CAN 48.24 66.89 56.05
♣KCN (AE-SA) 56.82 59.38 58.07

(II) ♥Zhou-feature 68.55 59.10 63.48
♥Zhou-CAN 60.51 80.48 69.08
♥KCN 69.65 72.98 71.28

(III) ♦Zhou-feature 59.95 45.78 51.91
♦Zhou-CAN 60.30 55.72 57.92
♦KCN 62.68 57.04 59.73

The descriptions and analysis for Table 9 could be found in subsection
“Influences of CDR triples on previous works”. The three different conditions
are (I) without KBs, marked as ♣; (II) with KBs, marked as ♥; (III) with KBs but
removing CDR triples in the CDR test set, marked as ♦. The highest F1-score is
highlighted in bold
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Error analysis
We perform an error analysis on the final results of
KCN to detect the origins of false positives (FPs) and
false negatives (FNs). Figure 5 depicts the distribution of
all the errors.
For FPs in Fig. 5, 339 negative chemical-disease entity

pairs are wrongly classified as positive by KCN, account-
ing for 54.07% of total. This may be caused by the fol-
lowing two reasons. First, CTD curates a large number
of entity pairs with CID relations. But some of them are
not annotated as CID relations in the CDR test set,
which will mislead their classification. Second, the com-
plex contexts would make it difficult for KCN to distin-
guish whether the entity pairs have CID relations. Take
sentence 2 as an example.
Sentence 2: The homozygous Gunn rats have unconju-

gated hyperbilirubinemia due to the absence of glucuro-
nyl transferase, leading to marked bilirubin deposition
in renal medulla and papilla.
In this sentence, chemical “bilirubin” and disease

“hyperbilirubinemia” have no CID relation. However,
the context surrounding this entity pair is quite confus-
ing, with the phrases “due to” and “leading to” express-
ing the meaning of “inducing”. This causes the wrong
classification.
For FNs, there are two main error types:
(1) FNs-Incorrect Classification (FNs-IC): The

FNs-IC type brings 167 errors with a proportion of
26.63%. Take sentence 3 as an example.
Sentence 3: BACKGROUND: Several studies have

demonstrated liposomal doxorubicin (Doxil) to be an
active antineoplastic agent in platinum-resistant ovarian
cancer, with dose limiting toxicity of the standard dosing
regimen (50 mg/m (2) q 4 weeks) being severe erythrody-
sesthesia (“hand-foot syndrome”) and stomatitis.

In Sentence 3, chemical “doxorubicin” and disease
“hand-foot syndrome” have a CID relation. However,
KCN misclassifies it as negative, which may be caused
by the complex contexts, obscure semantic expression
and lack of trigger words.
(2) FNs-Missing Classification (FNs-MC): Such error

type is due to some positive instances being removed by
the heuristic rules mentioned in subsection “Intra- and
inter-sentence level instance construction”. And it re-
sults in 121 errors with a proportion of 19.30%.

Conclusions
This paper proposes a novel CDR extraction model
KCN, which includes the entity-based gated convolu-
tions and relation-based attention pooling. The gating
units are employed to control the propagation of context
features toward a chemical-disease pair. The attention
mechanism is used to focus contexts on the CID rela-
tion. The experimental results on the BioCreative V
CDR dataset show that KCN could effectively integrate
prior knowledge and contexts for the performance
improvement.
As future work, we would like to introduce weakly la-

beled data and consider how to utilize effective denois-
ing mechanisms to purify them.

Endnotes
1http://ctdbase.org/
2http://code.google.com/p/word2vec/
3http://biocreative.org/tasks/biocreative-v/track-3-cdr/
4https://github.com/thunlp/KB2E/
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