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Abstract 

Generating low-energy molecular conformers is a key task for many areas of computational chemistry, molecular 
modeling and cheminformatics. Most current conformer generation methods primarily focus on generating geo-
metrically diverse conformers rather than finding the most probable or energetically lowest minima. Here, we present 
a new stochastic search method called the Bayesian optimization algorithm (BOA) for finding the lowest energy con-
formation of a given molecule. We compare BOA with uniform random search, and systematic search as implemented 
in Confab, to determine which method finds the lowest energy. Energetic difference, root-mean-square deviation, 
and torsion fingerprint deviation are used to quantify the performance of the conformer search algorithms. In general, 
we find BOA requires far fewer evaluations than systematic or uniform random search to find low-energy minima. For 
molecules with four or more rotatable bonds, Confab typically evaluates 104 (median) conformers in its search, while 
BOA only requires 102 energy evaluations to find top candidates. Despite using evaluating fewer conformers, 20–40% 
of the time BOA finds lower-energy conformations than a systematic Confab search for molecules with four or more 
rotatable bonds.
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Background
Most small molecules are flexible and can adopt multiple 
energetically-accessible conformations. Even in medium-
sized molecules, e.g. molecules with six or more rotatable 
bonds, there may be thousands or millions of possibili-
ties. The multi-dimensional energy landscape and pres-
ence of huge numbers of local minima make finding 
low-energy conformations to be one of the key challenges 
in molecular modeling and cheminformatics [1–3].

A variety of tools have been developed to generate 
conformers, including BALLOON  [4, 5], Confab  [6], 
FROG2 [7], MOE [8], OMEGA [9] and RDKit  [10]. The 
search algorithms implemented in these tools can be 
broadly classified as either systematic or stochastic. A 
systematic method deterministically enumerates all of 
the allowed torsion angles for each rotatable bond in the 

molecule, and always outputs the same conformer with 
the lowest energy. This approach is restricted to mol-
ecules with a small number of rotatable bonds because 
of the combinatorial explosion of states as more search 
dimensions are added. Stochastic methods such as Monte 
Carlo simulated annealing  [11, 12], distance geom-
etry  [13] and genetic algorithms  [14, 15], sample ran-
dom values for the torsion angles, sometimes restricted 
to predefined ranges. Since the method is dependent on 
random numbers, the output conformation may vary, 
but they permit problems with higher dimensions to be 
handled.

Knowledge-based methods (e.g.  [16, 17]) use prede-
fined libraries (e.g. [18]) for torsion angles and ring con-
formations, and these libraries are typically created from 
experimentally determined structures in databases such 
as the Cambridge Structural Database (CSD) [19] or the 
Protein Data Bank (PDB) [20].

Knowledge-based methods are usually combined with 
different search algorithms mentioned before. For exam-
ple, Experimental-Torsion Distance Geometry with basic 
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Knowledge (ETKDG) [21] is a relatively recent algorithm 
implemented in RDKit that combines knowledge about 
preferred torsion angles with distance geometry to pro-
duce more realistic conformations.

These algorithms primarily focus on generating geo-
metrically diverse, low-energy conformers, which are 
important to many applications including structure-
based virtual screening, pharmacophore modeling, and 
generating 3D quantitative structure-activity relation-
ships (QSAR). In this paper, we mainly focus on finding 
the lowest-energy conformation of a molecule instead 
of achieving geometric diversity. The energy landscape 
is effectively unknown a priori, without exhaustive—
and sometimes expensive—energy evaluation. There-
fore, intelligent search strategies are needed to find the 

algorithm has been applied successfully in different areas 
in chemistry, for instance material design  [25–27] and 
high-throughput virtual screening [28].

The general idea of BOA is to construct an approxi-
mate surrogate model of the objective function, f(x), and 
then exploit the model to make decisions about the next 
points for evaluation. Different acquisition strategies can 
favor exploration of the parameter space (i.e. to find more 
diverse conformers) or exploitation (i.e. to find local 
optima). BOA uses all of the information available from 
previous evaluations of f(x) and hence results in a pro-
cedure that can find the optimum value of a non-convex 
function with a relatively small number of evaluations. 
The general procedure of BOA is shown in Algorithm 1.

lowest energy state, and its associated conformation, in 
the shortest time possible. Most methods perform well if 
the number of rotatable bonds is small, typically four or 
fewer. The combinatorial explosion that arises with more 
flexible molecules, however, makes finding this global 
optimum increasingly more challenging.

We present a new approach to solve this difficult search 
problem, namely the Bayesian optimization algorithm, 
or BOA. This technique learns the most likely dihedral 
angles for an arbitrary molecule by ‘intelligently’ sampling 
new conformers from the multi-dimensional potential 
energy surface, regardless of the energy function used.

Bayesian optimization
The Bayesian optimization algorithm (BOA) is a particu-
larly effective strategy to find the optimum value of objec-
tive functions that are expensive to evaluate, for instance 
tuning hyperparameters in machine learning models [22] 
and combinatorial optimization  [23, 24]. BOA is appli-
cable in  situations where we do not have a closed-form 
expression of the objective function, but we are able to 
obtain observations (possibly noisy) of this function at 
specifically sampled values. It is particularly useful when 
the objective is non-convex or derivatives are not avail-
able. Moreover, BOA allows one to incorporate prior 
beliefs about solutions to the problem (e.g. expected dihe-
dral angles). Accurate priors can speed a search by direct-
ing to most likely configurations. Bayesian optimization 

There are two major choices that must be made in the 
optimization procedure, namely the prior over the func-
tions, and the acquisition function. The prior expresses 
assumptions or gives information about the function 
being optimized, while the acquisition function is used 
to determine the next most favorable point for evalua-
tion, most likely to reduce uncertainty in the function’s 
possible values. In this section, we briefly review the gen-
eral Bayesian optimization algorithm, before discussing 
our application to optimize conformer geometry. For an 
overview of the Bayesian optimization formalism and a 
review of previous work, see Brochu et al. [29] and Shah-
riari et al. [23].

Bayesian optimization with Gaussian process priors
Different probabilistic models can be used in Bayes-
ian optimization algorithm, for instance Gaussian 
process (GP) [30], random forests [24], or Student-t pro-
cesses  [31]. Gaussian processes are the default choice 
because of their flexibility and tractability. A GP is a sto-
chastic process for which any finite combination of ran-
dom variables follow a multivariate Gaussian distribution 
and its properties are determined by a mean function and 
a positive definite covariance function. The properties of 
the Gaussian distribution allow us to compute marginals 
and conditionals in a closed form [32].
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Covariance function
The choice of covariance function for the Gaussian pro-
cess is crucial as it determines the smoothness proper-
ties of the samples. Commonly used kernels include the 
squared-exponential, also known as the radial basis func-
tion or RBF kernel, kSE ; and the periodic kernel, kPER , as 
shown in Eqs. 2 and 3:

where l, p, and σ 2 are the length scale, period, and vari-
ance respectively.

Acquisition function
Acquisition functions help determine which points in the 
search space should be evaluated, ideally providing infor-
mation on the optimum value of f. A good acquisition 
function has to balance exploration against exploitation, 
with the trade-off based on the estimated uncertainty 
from a GP model. Exploration in this context involves 
seeking locations with high posterior variance (i.e., sam-
pling uncertain areas), while exploitation focuses on 
seeking locations with low posterior mean (i.e., finding 
a local optimum). Three acquisition functions are com-
monly used, namely: probability of improvement (PI), 
expected improvement (EI), and GP lower confidence 
bound (GP-LCB), as shown in Eqs. 4, 5, and 6. The GP-
LCB is also sometimes referred as upper confidence 
bound (UCB), when the optimization involves function 
maximization rather than minimization [29].

Here, z(x) = f (xbest )−µ(x)
σ (x)  , where xbest , µ(x) and σ 2(x) 

are the best current value (i.e. arg min xf (x) ), predictive 
mean and predictive variance respectively; while �(·) , 
φ(·) are the cumulative distribution function, probability 
density function respectively. κ is a parameter that bal-
ances exploration against exploitation.

Methods
Implementation
We compared four conformational search algorithms: 
one systematic method as implemented by Confab [6] in 
Open Babel  [33] (“Confab”); and three stochastic search 
methods: uniform random search (“Uniform”), plus two 

(2)kSE(x, y) = σ 2 exp

(

−|x − y|2

2l2

)

(3)kPER(x, y) = σ 2 exp

(

−2 sin2(π |x − y|/p)

l2

)

(4)PI(x) = �(z(x))

(5)EI(x) = σ(x)(z(x)�(z(x))+ φ(z(x))

(6)GP-LCB(x) = µ(x)− κσ(x)

variants of Bayesian optimization algorithm (“BOA”) 
each with different acquisition functions: BOA with 
expected improvement (“EI”), and BOA with Gaussian 
process lower confidence bound (“LCB”). We used the 
Python package, GPyOpt,  [34] for the Bayesian opti-
mization algorithm variants and numpy  [35] to gener-
ate random numbers between 0 and 2π for the uniform 
search. Pybel [36] was used to drive the torsion angles of 
the molecules for both uniform random search and BOA. 
We should note  that the molecule’s bond lengths, bond 
angles, and ring systems remain unchanged through-
out the search. Moreover, it is possible to sample tor-
sion angles that generate steric clashes in the stochastic 
search, and it will return high energies.

All methods explored the same search space for each 
molecule, as determined by the set of freely-rotatable 
bonds in each. The search space of the algorithms was 
thus defined by a hypercube [0, 2π ]d , where d is the num-
ber of rotatable bonds in the molecule.

In order to compare all of the search algorithms fairly, 
we used the same number of iterations, K (i.e. number 
of conformers explored), for all of the stochastic search 
methods, i.e. uniform random search and BOA. We 
used K = 50 for molecules with three or fewer rotatable 
bonds, and K = 100 otherwise. Note that by the nature 
of the algorithm, BOA needs initial observations of the 
energy landscape in order to fit a Gaussian process. For 
each molecule, five observations were obtained by ran-
domly sampling the conformational space at the begin-
ning of the search. Hence only ( K − 5 ) conformers were 
evaluated after initial random sampling in BOA.

An energy cutoff of 500  kcal/mol was used in Con-
fab, with up to one million conformers and a root mean 
square deviation clustering threshold of 0.05 Å ; all other 
Confab parameters were left as their default values. The 
RMSD cutoff of 0.05 Å was used so as to eliminate dupli-
cate conformers with identical geometry to existing con-
formers. Note that only one compound (cochliodinol, a 
molecule with six rotatable bonds) would have generated 
more than one million conformers (1,327,104).

Search duration
In order to understand how many energy evaluations are 
required to recover a better conformation or achieve high 
recovery rate, we investigated the effect of doubling the 
maximum number of energy evaluations, i.e. K = 200 , in 
BOA search for the set of molecules with five rotatable 
bonds, and repeated the experiment four times for each 
molecule in the set.

Torsion angle potentials and kernel
For each method, the torsion angles of all possible rotat-
able bonds in the molecule were used as model input 



Page 4 of 11Chan et al. J Cheminform           (2019) 11:32 

variables and ranged from 0 to 2π . Torsion angle prefer-
ences have previously been derived by Guba et  al. [18] 
from commonly-occurring types of rotatable bonds 
observed in small molecule and protein-ligand X-ray 
crystal structures. We incorporated this prior knowledge 
into our Bayesian optimization algorithm using appropri-
ately chosen kernels.

Specifically, we used a locally periodic kernel, i.e. a 
product of a periodic kernel and a squared exponential 
kernel. This allowed us to model torsional potentials with 
varying amplitudes as well as different local minima and 
maxima [37]. We derived the periodicity parameters for 
our kernels from the torsion potentials corresponding to 
364 rotatable bond SMARTS patterns [18]. The periodic-
ity for each pattern is given in Additional file 1. Note that 
when the list of patterns did not cover a specific type of 
rotatable bond, we assigned general values for the perio-
dicity parameter based on the atomic hybridization of the 
two atoms in the rotatable bond, i.e. sp2 − sp2 , sp2 − sp3 , 
and sp3 − sp3.

We illustrate the idea with a simple molecule, biphenyl 
(Fig. 1), which has one rotatable bond. Here we set a peri-
odicity of two for the locally periodic kernel and chose 
expected improvement (EI) as the acquisition function; 
15 iterations of BOA were used.

Energy evaluation
The Merck Molecular Force Field, MMFF94  [38] was 
used to evaluate the energy of a given molecule as imple-
mented in Open Babel 2.4.1  [33]. This is an approxima-
tion of the molecule’s actual energy landscape; ideally, we 
would use quantum chemical methods to compute the 
molecule’s energy as accurately as possible [39].

Datasets
To benchmark the optimization performance of the 
search algorithms, we used the dataset assembled by 
Ebejer et  al.  [40], which consists of 708 distinct small 
molecules and includes ligands from the Astex diverse 
set  [41]. We filtered this set for molecules with six or 
fewer rotatable bonds, giving a subset of 576 molecules, 
including four with no rotatable bonds. For each mol-
ecule, we generated conformers using Confab as imple-
mented in Open Babel. The conformer with the lowest 
MMFF94 energy across all search methods was used as 
the reference conformation for that molecule. This cri-
terion differs from that usually used to assess conformer 
generation algorithms, namely the X-ray crystallographic 
structure(s) of the small molecule. This is because the 
conformations observed in crystal structures are not nec-
essarily the lowest energy conformation in the force field 
used for the search. Our task when evaluating search 

methods is to find the geometry that gives the lowest 
energy in the function we are exploring.

Analysis
Three different measures were used to evaluate the per-
formance of each search method, namely: (i) heavy atom 
root mean square deviation (RMSD); (ii) torsion fin-
gerprint deviation (TFD)  [42]; and (iii) the difference in 
MMFF94 energy ( �EMMFF94).

Root-mean-square deviation
The atom-positional RMSD between the conformation 

of the reference molecule and the generated conformer 
was calculated as follows:

where Natoms is the number of non-hydrogen atoms 
considered, ri is the position of atom i in the query con-
former, and ri,ref  is the corresponding position in the 
reference structure. The lowest MMFF94 energy confor-
mation was used as the reference structure. Moreover, 
symmetry was taken into account when comparing mol-
ecules. For instance, both orientations of a benzene ring 
flipped by 180◦ along its twofold symmetry axis would 
give an RMSD of 0 Å . We used the RMSD calculation as 
implemented in Open Babel, Version 2.4.1.

Torsion fingerprint deviation (TFD)
Another way of comparing conformations is the tor-

sion fingerprint deviation (TFD) and it is a non-superpo-
sitional method. The torsion angles of the non-terminal 
acyclic bonds and ring systems are extracted from two 
conformations and weighted according to their distance 
from the center of the molecule, and the difference is 
recorded. TFD values range from zero to one, with zero 
representing a perfect alignment of identical confor-
mations. The topological weighting step ensures that 
changes of the torsional angle in the core of the molecule 
have more influence on TFD than changes toward the 
edges. Similarly, we used the lowest energy conformation 
as the reference conformation. We used the implementa-
tion of TFD in RDKit (2018.03.1) [10].

Energy difference
For each conformer, we computed the energy differ-

ence between the lowest energy conformation found by 
the search algorithm and that found by Confab. Negative 
values indicate a better conformation was found by the 
search than by Confab.

Statistical tests
The Wilcoxon signed-rank test was used to test 

whether the distributions of the lowest energy confor-
mations found by each pair of search algorithms was 

(7)RMSD =

√

√

√

√

1

Natoms

Natoms
∑

i=1

(ri − ri,ref )2
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statistically significantly different from one another, i.e. 
two-sided test. Here, the null hypothesis was that two 
related, paired samples (x, y), come from the same distri-
bution. In particular, we compared three pairs of meth-
ods, namely (EI, Uniform), (LCB, Uniform), and (EI, 
LCB), and used a significance level of 5%.

Results and discussion
We repeated each run of the stochastic search algorithms 
(Uniform, EI, and LCB) five times for each of 572 mol-
ecules. Four rigid molecules were ignored, and the results 
are summarized below. Note that due to occasional 
numerical instabilities, GPyOpt terminated early before 

 a Biphenyl b Energy landscape

c Second iteration d Third iteration

e Fourth iteration f Final iteration
Fig. 1  Example: a Biphenyl in 2D. b Simulated energy landscape under MMFF94. The blue line and the shaded blue region in c–f represent the 
mean function of the Gaussian process and express the uncertainty of the function respectively. The red points are the evaluated points. The 
red curve at the bottom of the graph shows the acquisition function, in particular expected improvement (EI) is used in this example. The red 
vertical line indicates the highest value of the EI, i.e. the point to be evaluated next. Note that the we normalized the output (energy) in Bayesian 
optimization algorithm, hence the normalized energy landscape is shown in c–f. c Second iteration, d third iteration, e fourth iteration, f final 
iteration
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reaching the maximum number of iterations requested. 
This was manifested by a non-positive definite kernel 
error. We separated out these molecules with “early stop-
ping”, and are listed in Additional file 2. We also discuss 
possible solutions to address this issue “Gaussian process 
initialization in BOA” in section.

We first analyzed the number of conformers sampled 
by systematic search (Confab). Figure  2 shows that up 
to 106 conformers were explored for molecules with six 
rotatable bonds. For molecules with four or more rotat-
able bonds, the median number of conformers generated 
was approximately 103 to 104 . Cochliodinol has six rotat-
able bonds and had generated over one million conform-
ers, with 750,402 conformers retained, and the lowest 
energy of 146.04 kcal/mol. Bayesian optimization algo-
rithm, on the other hand, required only 102 evaluations 
to obtain low energy conformations, and the best confor-
mation out of five trials had an almost identical energy 
of 146.13 kcal/mol. This highlights the power of BOA, 
and we will show that BOA gives good performance in 
general despite using orders of magnitude fewer energy 
evaluations.

Search performance
Uniform random search performed the worst of all 
search methods. It gave higher median energy differ-
ences and larger ranges in energy difference than BOA 
search across all sets of rotatable bonds (Fig.  3). The 
distributions of the energy differences are very simi-
lar for BOA search, with both acquisition functions, EI 
and LCB. When constrained by a maximum number of 
energy evaluations, uniform random search suffers more 
in higher dimensions than BOA, and the median of the 
energy differences increases rapidly. On the other hand, 
the median of the energy differences in BOA search 

increases slowly and reaches approximately 9 kcal/mol 
for molecules with six rotatable bonds.

Confab was used to enumerate systematically all con-
formers for each molecule using the ‘torsion driving 
approach’. Confab iterates systematically through a set 
of allowed torsion angles for each rotatable bond in the 
molecule. Being a systematic search, Confab was thus 
expected to identify all the low energy conformations 
for each molecule. However, the best torsion angles may 
not be covered by the set of the torsion angles used in 
Confab. On the other hand, BOA samples torsion angles 
freely in the space and learns from the observed confor-
mations, which enables it to recover conformations with 
lower energies using orders of magnitude fewer evalua-
tions than Confab.

We define the lowest energy conformer (LEC) for a 
given molecule as the lowest energy conformation found 
by any search method in our experiments. We computed 
the frequency that each method (Confab, BOA, and Uni-
form) was able to find each molecule’s LEC. Figure  4 
shows that BOA recovers the most LECs for molecules 
with three or fewer rotatable bonds. This suggests that 
the geometries of the LECs deviate slightly from those 
with ideal torsion angles. It should be noted that these 
non-ideal conformers cannot be generated by Confab. 
Examples of molecules with conformations found by 
BOA that have significantly lower energies than those 
found by Confab are shown in Fig.  5. The proportion 
of LECs recovered by BOA decreased as the number of 
rotatable bonds increased. This is because BOA was lim-
ited to a maximum of 100 energy evaluations. Confab, on 

Fig. 2  Distributions of the number of energy evaluations used by 
Confab versus the number of rotatable bonds

Fig. 3  Energy difference versus number of rotatable bonds: BOA 
and uniform random search. The red dotted line indicates no energy 
difference between the lowest energy conformation found by the 
search algorithm and that found by Confab. The black line indicates 
the median energy difference of the uniform random search. Note 
that the median (213 kcal/mol) for molecules with six rotatable bonds 
is not shown in figure. The blue and orange groups show the result 
for BOA with EI, and BOA with LCB, respectively
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the other hand, had the opposite trend of that for BOA, 
as it was able to consume orders of magnitude more 
energy evaluations than BOA (Fig. 2).

We assessed the ‘champion rate’ of all search methods 
in each trial, i.e. the percentage of molecules that the 
search algorithm found better conformations than Con-
fab in a single trial. Uniform random search had the low-
est champion rate (see Fig. 6). We observed a similar rate 
in BOA search with both acquisition functions, EI and 
LCB. BOA search has a very high champion rate of 100% 
and 55% in molecules with one and two rotatable bonds, 
respectively. As expected, it decreases as the number of 
rotatable bonds increases. The champion rate is approxi-
mately 25% for molecules with three and four rotatable 
bonds, and 10% for molecules with five or more rotat-
able bonds. A key question here is how many samples 
are required to recover a better conformation and thus 
achieve a high recovery rate. We address the influence of 
the maximum number of evaluations “Search duration” 
in section.

Wilcoxon signed‑rank test
The Wilcoxon signed-rank test of energy difference dis-
tributions (Table 1) showed that uniform random search 
is significantly different from BOA with EI and LCB 
(p-value ≪ 0.01) for all numbers of rotatable bonds. 
Note that the sample sizes of the sets of molecules with 
one and two rotatable bonds are small, and we combined 
these with molecules having three rotatable bonds for 
the statistical test. This gave more reliable test results. 
For the EI-LCB pair, we obtained a large p-value except 

for molecules with one to three rotatable bond (p-value 
of 0.02). Thus we found no evidence to reject the null 
hypothesis that the results for EI and LCB come from the 
same distribution.

Furthermore, we assessed the variation in energies 
found by BOA. In particular, we computed the maximum 
variation for each molecule, by extracting the lowest 
energy conformation found in each trial and computing 
the maximum difference in energy among these confor-
mations. The results are summarized in Additional file 3. 
We observed a smaller variation in BOA than uniform 
search. The variation increases exponentially in uniform 
search while the variation increases gradually as the 
number of rotatable bonds increases in BOA search. The 
median reaches approximately 9 kcal/mol for molecules 
with six rotatable bonds in BOA search with EI and LCB. 
The range is larger in BOA with LCB than BOA with EI, 
except for molecules with five rotatable bonds.

RMSD and TFD
Both RMSD and TFD were used to measure the distance 
between reference conformer and that obtained by vari-
ous search methods. The lowest energy conformation 
across all methods was used as the reference conformer, 
and two scenarios were considered. Case 1 considered 
the lowest energy conformation found by either BOA or 
uniform random search from all trials for each molecule, 
while Case 2 considered the lowest energy conformation 
found by Confab.

The conformers generated by uniform random search 
usually have higher RMSD and TFD values than those 
generated by BOA (see Additional file 3). The conforma-
tions found by BOA with both acquisition functions had 
similar distributions in RMSD and TFD values in Case 2, 
while EI and LCB slightly vary in Case 1.

Similarly, we grouped molecules with three or fewer 
rotatable bonds together. In addition, we combined 
molecules with five or more rotatable bonds together in 
Case (1) due to the small sample size in molecules with 
six rotatable bonds. Wilcoxon signed-rank tests for the 
RMSD and TFD distributions showed consistent results 
(see Additional file  4): the distribution of conformers 
generated by uniform random search is significantly dif-
ferent from that generated by BOA (p value ≪ 0.01). The 
conformers generated by BOA with both acquisition 
functions, EI and LCB, are not statistically different from 
each other.

Search duration
We investigated the effect of doubling the maximum 
number of energy evaluations to 200 on the Bayesian 
optimization algorithm, for the set of molecules with five 
rotatable bonds. We found that the results were more 

Fig. 4  Frequency with which any method can find the lowest 
possible energy found by any of the search methods, from five 
independent trials. Note that Confab tends to use orders of 
magnitude more iterations than either BOA (EI and LCB) or uniform—
the maximum number of iterations used for Confab is shown in 
Fig. 2, while a maximum of 102 iterations was used for both BOA and 
uniform random search
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robust and had smaller ranges of energetic differences 
than were found with 100 iterations. Figure  7 shows 
that the median of the energy difference distributions 
decreased by 1.1 kcal/mol for EI, and 1.3 kcal/mol for 
LCB. The maximum variation also decreased, by 1.5 kcal/
mol for EI, and 1.7 kcal/mol for LCB. Thus, increasing the 
maximum number of iterations improves the likelihood 
of finding low-energy minima, and decreases the stochas-
tic variance between multiple runs.

Computational cost
Performance in terms of finding the lowest energy 
is improved by increasing the maximum number of 
energy evaluations. However, the computational cost 
also grows significantly (see Fig. 8). We should note that 

the computational complexity of the Gaussian process 
regression is O(N 3) , where N is the number of evalua-
tions. The run time analysis on BOA was performed on 
a desktop running Fedora 28 with an Intel Core i7-6700 
operating at 3.40 GHz, and 32  GB of RAM. A single 
core was used for MMFF94 energy evaluation and driv-
ing the torsion angles. All cores were used in the GPy-
Opt operations. The time did not include the time to 
read input molecules or write the conformers to disk. It 
took about 7 ms to update the torsions and evaluate the 
energy 100 times in a molecule with six rotatable bonds. 
Hence, the computational time is dominated by the 
operations within GPyOpt. This is not surprising as we 
chose a relatively fast energy function, i.e. MMFF94. If 
the energy function was replaced by a more accurate but 

Fig. 5  Examples where BOA found lower energies than Confab: a for omegacsd-FUPFIF, the lowest energy Confab found was 117 kcal/mol, 
while for BO, it was 70 kcal/mol; b for omegacsd-CDBMPI10, the lowest energy Confab found was 150 kcal/mol, while for BO: 118 kcal/mol; c 
for omegapdb-1sn5, the lowest energy Confab found was 131 kcal/mol, while for Bayesian optimization, it was: 99 kcal/mol. The lowest energy 
conformations found by Confab and BOA are shown in green and orange respectively. Figures are generated by PyMOL
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computationally more expensive method, such as a quan-
tum mechanical method, we expect that the Bayesian 
optimization algorithm would become a more competi-
tive search strategy than those used by other stochastic 
search methods.

In future work, we plan to explore two approaches to 
reduce computational cost: (a) using different surro-
gate models that have lower computational complex-
ity [43, 44]; and (b) incorporating more accurate priors to 
improve the search speed.

Alternative energy functions in BOA
The energy function explored by Bayesian optimiza-
tion algorithm could be the result of a multi-step, “black 
box” protocol. For example, each energy value at a given 
point in the search space could be the result of a short 
MMFF94 optimization—not just a single-point energy 
calculation as used here (i.e. the common “fixed-rotor” 
approximation)  [1]. In such a scenario, BOA would 
“learn” the torsion angles that minimize steric clashes 
in the molecule. This would not be comparable with the 
systematic Confab and uniform random search methods 
investigated here, because changes in bond lengths and 
bond angles introduced by the MMFF94 optimization 
would also change the energy landscape being optimized. 
Bond lengths and bond angles are never changed by 
Confab or torsion-driven uniform random search. This 
makes it hard to compare our current results with other 
stochastic search methods such as distance geometry, 
constrained distance geometry, and molecular mechan-
ics energy minimization provided by tools such as RDKit. 
We intend to complete a comprehensive comparison with 
free, open-source, and commercial toolkits in the future, 

Fig. 6  Champion rate: percentage of conformers with lower energy 
than Confab recovered by BOA with EI, BOA with LCB, and uniform 
random search. The error bars show the variation in the trials. It 
can be seen that both variants of BOA recover a lower energy 
conformer than Confab much more often than uniform random 
search, although the overall recovery rate drops as the number of 
rotatable bonds increases. A maximum of 100 iterations was used 
for molecules with four or more rotatable bonds and 50 iterations 
otherwise

Table 1  Energy difference: Wilcoxon signed-rank test 
on each method pair

Molecules with three or fewer rotatable bonds ( Nrot : 1, 2, 3 ) are grouped 
together due to small sample size. The p-values are rounded to 2 significant 
figures

Method-pair Nrot 1,2,3 4 5 6

Uniform-EI 8.1× 10
−24

4.5× 10
−23 3.5× 10

−17
2.8× 10

−15

Uniform-LCB 4.5× 10
−24

4.5× 10
−23 3.7× 10

−17
2.6× 10

−15

EI-LCB 0.02 0.44 0.89 0.09

a Energy difference b Maximum variation in energy

Fig. 7  Effect of doubling the maximum number of energy evaluations: a energy difference; b maximum variation in energy. Note that only 
molecules with five rotatable bonds are tested. BOA with 100 iterations and 200 iterations are shown in blue and orange respectively. As expected, 
the energy difference and variation in energy decreases as number of energy valuations increases
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but note that at present among common tools, only the 
BOA strategy seeks to find the lowest energy conformer.

Gaussian process initialization in BOA
Parameter initialization is important in GP regression. 
Poor initialization can easily lead to numerical instabili-
ties, and several approaches can be used to address the 
issue: one would be to place priors on the parameters; 
alternatively, it may be possible to set boundary con-
straints on the parameters. The former approach would 
require more computational cost but would give a more 
robust estimation of the parameters.

Conclusion
In this study, Bayesian optimization algorithm was used 
to find the lowest energy conformation for a set of 572 
molecules with one to six rotatable bonds selected from 
the dataset assembled by Ebejer et  al.  [40]. Using this 
strategy, we have been able to incorporate our prior 
knowledge about torsion angle preferences extracted 
from crystal structures to accelerate the search for the 
lowest energy conformation.

We find that, by inherently sampling all possible dihe-
dral angles, this approach often finds lower energy 
minima even below those generated by systematic enu-
meration, and with far fewer conformations. For small 
numbers of rotatable bonds (e.g., 1–3), BOA frequently 
finds lower energy conformations compared to system-
atic search in Confab. As the search space increase, BOA 
still finds lower energy geometries ∼20–40% of the time, 
despite many times fewer iterations.

More efficient methods for finding the lowest energy 
conformation of a small molecule will help accelerate 
the calculation of molecular properties and thus help to 
advance the fields of material design and drug discov-
ery. Further studies are required to validate the search 
performance of BOA in higher dimensional space, and 
thus tackle more flexible molecules with more rotatable 
bonds.
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