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Abstract

Purpose: Astrocytes perform a plethora of important functions in the central nervous system 

(CNS) and are involved in cocaine-evoked synaptic plasticity. Previously, we showed that while 

cocaine decreased cyclin A2 expression in primary human neural progenitor cells, it increased 

cyclin A2 expression in human astrocytes. Since cyclin A2 is an essential regulator of the cell 

cycle, the aim of the present study is to clarify the effect of cocaine on proliferation of human 

astrocytes and elucidate the underlying molecular mechanisms.

Methods: Primary human astrocytes were treated with either 1, 10, or 100 μM cocaine for 48 hr, 

and cell proliferation was measured using the CyQUANT cell proliferation assay. To elucidate the 

molecular mechanisms through which cocaine affects the proliferation of astrocytes, we analyzed 

gene expression profiles in cocaine-treated primary human astrocytes using a human focused 

cDNA array. Gene ontology/pathway enrichment analysis, STRING protein-protein interaction 

analysis, RT-qPCR, and western blotting were used to identify signal transduction pathways that 

are involved in cocaine-induced astrocyte dysfunction.

Results: Cocaine at 10 and 100 μM significantly increased human astrocyte proliferation. Gene 

expression profiling revealed the JNK MAP kinase pathway as a driver of cell proliferation 

affected by cocaine in human astrocytes. Further experiments showed that cocaine-induced JNK 

activation induced up-regulation of cyclin A2, leading to enhanced proliferation of human 

astrocytes.
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Conclusion: Cocaine-induced abnormal increases in the number of astrocytes may cause 

disruption in neuron-glia signaling and contribute to synaptic impairment in the CNS. 

Understanding the mechanisms of cocaine’s effects on human astrocytes may help to reveal the 

involvement of glial cells in addictive behaviors.
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1. Introduction

Astrocytes have significant structural, metabolic and trophic roles in modulating and 

coordinating neuronal structure and function, both in normal brain function and in disease 

states (Araque & Navarrete, 2010). Astrocytes mediate immune surveillance and 

inflammatory responses, guide neural development, regulate neuronal excitability, and 

modulate communication within neural networks (Ricci et al., 2009; Bernardinelli et al., 

2014). Astrocytes are essential for brain homeostasis, while brain insults of various types 

often trigger a complex change known as reactive astrogliosis (Ricci et al., 2009). Increasing 

evidence shows that prolonged substance abuse can propagate a cascade of cellular insults 

that ultimately lead to the activation of neuroinflammatory pathways and perturbs CNS 

networks (Cadet & Bisagno, 2014). Notably, alterations in astrocyte morphology such as 

elongation of GFAP-positive processes have been identified in the hippocampus of drug 

abusers (Weber et al., 2013). Nevertheless, effects of drugs of abuse on astrocytes in shaping 

neuronal dynamics and astrocyte-neuron ensembles remain unclear.

1.1. The role of astrocytes in CNS development

During development of the central nervous system (CNS), astrocytes play significant roles in 

guiding neuronal differentiation (Johansson & Stromberg, 2002), migration (Cardenas et al., 

2014), synaptogenesis (Allen, 2013; Clarke & Barres, 2013; Ullian et al., 2004, 2001), and 

activity-dependent synaptic remodeling (Chung et al., 2013; Chung et al., 2015; Tasdemir-

Yilmaz & Freeman, 2014). They have also been suggested to play a role in activity-

dependent myelination (Ishibashi et al., 2006). Therefore, developmental defects in astrocyte 

proliferation and differentiation can negatively impact neuronal development and formation 

of the precise neuronal connectivity required for correct development and function of the 

CNS (Khakh & Sofroniew, 2015; Pekny et al., 2016; Sofroniew & Vinters, 2010; Stipursky 

et al., 2012). In support of this, overproduction of astrocytes at the expense of neurons has 

been seen in the brains of fetuses with Down’s syndrome (Zdaniuk et al., 2011), as well as in 

mouse models of other genetic neurodevelopmental diseases that manifest in humans with 

cognitive impairment (Sloan & Barres, 2014). These neurodevelopmental diseases include 

cardio-facio-cutaneous syndrome (Urosevic et al., 2011), Costello syndrome (Paquin et al., 

2009), neurofibromatosis type 1 (Hegedus et al., 2007), and Noonan’s syndrome (Gauthier 

et al., 2007). Many recent studies have also reported upregulation of astrocytic genes in 

individuals with autism spectrum disorders (ASDs; reviewed by Sloan & Barres, 2014), 

suggesting that astrocytic dysfunction may be a neuropathological factor in these disorders.
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1.2. The role of astrocytes in addiction

In the adult brain, astrocytes are involved in regulating glutamatergic and GABAergic 

neurotransmission, supplying substrates for neuronal metabolism, and maintaining ionic 

balance in the brain (Schousboe, 2004; Stobart & Anderson, 2013). They are also a key 

component of the blood-brain barrier, regulating transport of materials between the brain and 

the blood supply (Cheslow & Alvarez, 2016), and can be markedly affected by exposure to 

substances of abuse. For example, exposure of rats to cocaine or methamphetamine resulted 

in reactive astrogliosis (characterized by increased astrocytic proliferation and expression of 

glial fibrillary acidic protein, GFAP) in addiction-associated brain regions that undergo 

neuronal synaptic plasticity in response to these drugs. These brain regions include the 

nucleus accumbens, prefrontal cortex, and hippocampus (Fattore et al., 2002; Bowers & 

Kalivas 2003; O’Callaghan & Miller, 1994; Ferrario et al., 2005; Robinson&Kolb, 2004, 

1999; Robinsonetal.,2001). Furthermore, cocaine exposure has been shown to decrease 

astrocytic expression and activity of the glutamate transporter GLT-1 (Knackstedt et al., 

2010), a critical regulator of glutamate concentration in the brain (Rothstein et al., 1994). 

These effects of psychostimulants on astrocytes suggest that alterations in the morphology 

and physiology of astrocytes in brain areas critical for the manifestation of addictive 

behaviors may contribute to a vulnerability to initiate and persist in drug addiction.

1.3. Cyclin A2 and cocaine

Cyclin A2, a cell cycle regulator, has been implicated in the control of entry into S phase 

(Huet et al., 1996). Previously, we showed that cocaine decreased cyclin A2 expression in 

primary human neural and oligodendrocyte progenitor cells, but did not alter its expression 

in neurons or microglia (Lee et al., 2008; 2009). In contrast, cocaine increased the cyclin A2 
transcript in human astrocytes (Lee et al., 2008; 2009). Cocaine-induced dysregulation of 

cyclin A2 expression in neural progenitor cells has been shown to inhibit cell proliferation 

and induce premature neuronal differentiation, ultimately resulting in decreased numbers of 

post-mitotic neurons (Lee et al., 2008, 2011; Kindberg et al., 2014; Lee et al., 2016).

The cocaine-induced increase in expression of cyclin A2 in astrocytes has led us to 

hypothesize that cocaine may enhance the proliferation of astrocytes, which could increase 

their relative numbers in the brain. To identify the specific pathways by which cocaine 

affects astrocyte proliferation, we examined gene expression profiles in cocaine-treated 

human astrocytes. More detailed knowledge of cocaine-induced astrocyte plasticity could 

enhance our understanding of the mechanisms involved in substance use disorders.

2. Methods

2.1. Primary human astrocyte culture

Primary human astrocytes were purchased from ScienCell Research Laboratories and 

incubated in poly-L-lysine coated culture flasks. Astrocytes were maintained in DMEM/F12 

supplemented with 10% fetal bovine serum, 50 U/ml penicillin, and 50 μg/ml streptomycin 

(Invitrogen) at 37°C in a humidified atmosphere of 5% CO2 and 95% air, with the medium 

replaced every three days.
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2.2. Immunocytochemistry

Primaryhumanastrocyteswerefixedwith4%PFA for 10 minutes, washed with PBS, and 

blocked with 0.2% Triton X-100 in PBS supplemented with 5% BSA and 10% goat serum. 

Cells were then incubated with primary antibody rabbit anti-GFAP (1:1000; DAKO) in 0.2% 

Triton X-100 in PBS with 5% BSA and 5% goat serum. Corresponding fluorescent-labeled 

secondary antibodies were used (Alexa Fluor 555 for red; R&D Systems). Images were 

captured using a Carl Zeiss Axiovert 200M (Jena, Germany) microscope.

2.3. Drugs

Cocaine hydrochloride was provided by the National Institute on Drug Abuse.

2.4. Cell proliferation

Primary human astrocytes were plated onto 96-well plates at 3.5×103 cells/well. After 

starvation for 24 hr in starvation medium (DMEM/F12 with 0.5% FBS, 50 U/ml penicillin, 

and 50 μg/ml streptomycin; Invitrogen), astrocytes were treated with cocaine at 

concentrations of 1, 10, and 100 μM for 48hr, or were left untreated as a control. Cocaine 

hydrochloride was dissolved in sterile water at 10mM stock concentration. Cell proliferation 

was then measured using the CyQUANT cell proliferation assay (Invitrogen), according to 

the manufacturer’s protocol. Fluorescence was measured at an excitation wavelength of 

485nm, and an emission wavelength of 530nm using a TECAN fluorescence microplate 

reader.

2.5. RT-qPCR

Total RNA was extracted from human astrocytes using RNA STAT-60 (Tel-Test) and 

subsequently treated with TURBO DNase (Ambion) to remove residual genomic DNA. RT-

qPCR was employed to quantify cyclin A2 expression using cDNA synthesized from 

DNase-treated RNA (Transcriptor First Strand cDNA Synthesis Kit; Roche). RT-qPCR of 

cyclin A2 was accomplished using the LightCycler® 480 SYBR Green I Master with 

LightCycler 480 Real-Time PCR System (Roche) as described previously (Lee et al., 2015). 

The primer sequences and sizes of the PCR products for human cyclin A2 were 5’ 

GCAAACAGTAAACAGCCTGCG 3’ (sense), 5’ TCAACTAACCAGTCCACGAGG 3’ 

(antisense), 386 bp; and for human GAPDH were 5’ ACCACAGTCCATGCCATCAC 3’ 

(sense), 5’ TCCACCACCCTGTTGCTGTA 3’ (antisense), 452 bp. Measurements were 

performed from two separate runs of six independent biological samples, and all results 

were normalized to GAPDH, which did not differ between samples.

2.6. Human focused cDNA array

Subconfluent primary human astrocytes were starved for 24 hr and treated with 10 or 100 

μM cocaine for 24 hr. Total RNA was extracted from astrocyte cultures using TRIzol (Life 

Technologies). cDNA microarray analysis was performed using a human focused array, 

which contained 2737 genes, incorporating 1152 genes previously employed in a specialized 

Neuroarray (Barrett et al., 2001). cDNA probes were prepared by reverse transcription with 

[33P]-dCTP from 5 μg total RNA obtained from each sample. cDNA probes were purified by 

using Biospin P-30 spin columns (Bio-Rad). Array membranes were prehybridized in 4ml 
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microhy-bridization buffer (Research Genetics) in a rotating hybridization oven at 55°C for 

2 hr, and then heat-denatured cDNA probes were applied to the microarrays for 18 hr at 

55°C with rotation. The microarray membranes were sequentially washed in 2×SSC 

containing 0.1% SDS for 5min twice at room temperature, and in 2×SSC containing 0.1% 

SDS for 20min twice at 65◦C. The microarrays were exposed to low energy phosphorimager 

screens (Molecular Dynamics) for 5 days and scanned with a Phosphorimager Storm 860 

system (Molecular Dynamics) at 50 μm resolution. ImageQuant software (Molecular 

Dynamics) was used for image analysis.

Z score transformation normalization (Cheadle et al., 2003) was employed to compare the 

array data between different treatments. Z score transformation allows analyzing array data 

independent of the original pixel intensities and can be used in the calculation of p values for 

significance estimates. To calculate the gene expression changes after cocaine treatments, Z 

scores were converted to Z ratios, which represent fold-like changes for each gene. To 

calculate the significant changes in gene expression, Z tests were calculated. Significance 

thresholds were a z-test criteria of p<0.05 (two-tailed) and a z-ratio criteria of ≥ |1.5|.

Associations of gene ontology terms with cocaine-responsive transcripts in human astrocytes 

were obtained with the Fast Assignment and Transference of Information (FatiGO) web tool 

(http://fatigo.bioinfo.cipf.es/). Enrichr (Bio-Carta) was employed for pathway enrichment 

analysis (http://amp.pharm.mssm.edu/Enrichr/), and STRING analysis was used to elucidate 

protein-protein interactions involving JNK (http://string-db.org).

The levels (1–8) in GO analysis (Ashburner et al., 2000) indicate increasing degrees of 

specificity. Level 1 is the most general, so that at level 1 each category contains a large 

number of individual genes, but is less informative. As levels increase from 1 to 8, there are 

more categories but each category contains fewer individual genes. Level 8 is the most 

specific, and can be thought of as providing information about specific molecular pathways. 

In FATiGo analysis, level 3 is the default and can be considered to indicate general 

biological processes.

2.7. Western blotting

Western blotting was performed as previously described (Leeetal., 2015). Lysates containing 

30 μg total protein were separated by SDS-PAGE and transferred overnight to PVDF-FL 

membranes at 4°C. The membranes were immunoblotted with primary antibodies against 

phospho-JNK (1:1000, Santa Cruz), JNK (1:1000, Santa Cruz), and α-tubulin (1:5000, 

Sigma-Aldrich). Western blots were developed with infrared dye-labeled IRDye 800CW and 

IRDye 680CW secondary antibodies (Li-Cor Biosciences) while imaging and intensity of 

immunoreactive bands were quantified using the Odyssey infrared imaging system.

2.8. Statistical analysis

Statistical analyses were performed with GraphPad InStat. Data are shown as means±SEM. 

For multiple comparisons, data were analyzed by one-way ANOVA followed by Tukey’s 

compromise post-hoc test. The criterion for statistical significance was p<0.05.
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3. Results

3.1. Cocaine stimulates the proliferation of human astrocytes and upregulates expression 
of cyclin A2

GFAP-positive primary human astrocytes (Fig. 1A) were treated with various concentrations 

of cocaine (1, 10, and 100 μM) for 48 hr. The number of astrocytes in each condition was 

then measured and compared to the number at the initiation of the treatment. As shown in 

Fig. 1B, the numbers of astrocytes in cocaine-treated cultures were significantly increased in 

a dose-dependent manner as compared to controls. Furthermore, cocaine (10 and 100 μM, 

48 hr) significantly increased the expression of cylin A2 in human astrocytes (Fig. 1C).

3.2. Microarray expression profiling identifies JNK MAP kinase pathway as a proliferation 
promoter affected by cocaine

For the array data there were 40 and 88 genes differentially regulated by 10 and 100 μM 

cocaine, respectively, in human astrocytes (28 up-regulated and 12 down-regulated at 10 μM 

cocaine; 71 upregulated and 17 down-regulated at 100 μM cocaine; Supplementary Table 1).

The FatiGO tool, which extracts gene ontology (GO) terms that are significantly represented 

in clusters of genes (Al-Shahrour et al., 2004), was used to find substantial associations of 

biologically relevant terms in cocaine-responsive transcripts. The results for biological 

processes at level 3 indicated that the largest category of genes whose transcription was 

altered by 10 and 100 μM cocaine treatment included genes associated with cell proliferation 

(Fig. 2A and B). These findings are coincident with the stimulatory effects of cocaine on 

human astrocyte proliferation (Fig. 1B). More specific biologically relevant terms could be 

found by employing the deeper levels of the GO hierarchy (Al-Shahrour et al., 2004). 

However, there were fewer genes with annotations at deeper GO levels. When analyzing 95 

human astrocyte genes affected by either 10 or 100 μM cocaine at level 8, 50% of the genes 

were associated with the JNK cascade (Fig. 2C). Subsequent pathway enrichment analysis 

on these 95 cocaine-responsive genes resulted in 94 annotated pathways from the BioCarta 

database(Supplementary Table 2), the top 10 of which are shown in Fig. 2D. The MAP 

kinase signaling pathway, which includes the JNK MAP kinases, ranks fourth among the 94 

annotated pathways (Fig. 2D and Supplementary Table 2).

3.3. Protein-protein interactions involving JNK identified by STRING

It has been demonstrated that MAP kinase-dependent activation of Fos and Jun family 

transcription factors is required for cell cycle progression (Zhang & Liu, 2002). Activation 

of Fos and Jun family transcription factors have been shown to result in the induction of 

cyclin A2 promoter activity, leading to cell proliferation (Sylvester et al., 1998; Andrecht et 

al., 2002). We therefore employed the STRING database of known and predicted protein 

interactions to identify interactions between JNK and other cocaine-responsive genes 

associated with MAPK cascades, Fos and Jun family transcription factors, and cyclin A2. 

Figure 3 summarizes the network of predicted protein-protein interactions for JNK 

(MAPK8) and the protein products of 6 cocaine-regulated genes, including MAP4K5, 

MAP3K10, MAP2K4, FOS, JUNB, and cyclin A2 (CCNA2). Except for MAP4K5, all of 

the protein components are linked together (Fig. 3).
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3.4. Cocaine induces JNK activation in primary human astrocytes

To determine whether cocaine activates the JNK pathway in human astrocytes, we examined 

JNK activation in response to 10 or 100 μM cocaine at various time points. Western blotting 

showed that 10 μM cocaine significantly increased the phosphorylated form of JNK within 6 

hr after treatment (Fig. 4). Cocaine at 100 μM activated JNK even earlier, with a significant 

increase in phosphorylated JNK within 3 hr after exposure (Fig. 4). Phosphorylation of JNK 

remained significantly elevated up to 48 hr (Fig. 4).

3.5. Reversal of cocaine-induced cell proliferation and increased expression of cyclin A2 
in human astrocytes by JNK inhibitor

To determine whether a JNK inhibitor can reverse cocaine-induced proliferation, human 

astrocytes were pretreated with 10 μM SP600125 for 30min before treatment with 10 μM 

cocaine. Pretreatment with SP600125 reversed cocaine-induced proliferation of astrocytes 

(Fig. 5A). Furthermore, SP600125 also inhibited the cocaine-induced increased expression 

of cyclin A2 in astrocytes (Fig. 5B).

4. Discussion

Our study shows that cocaine induces significant increases in both the astrocytic expression 

of cyclin A2 and the proliferation of primary human astrocytes. Consistent with these 

findings, gene ontology enrichment analysis of cocaine-responsive transcripts revealed “cell 

proliferation” as the top enriched GO term on gene sets identified after both 10 and 100 μM 

cocaine exposure. Subsequent pathway enrichment analysis and STRING protein network 

analysis suggested the JNK/MAP kinase pathway as a promoter of cocaine-induced 

proliferation in astrocytes. In the STRING analysis, JNK was modeled as the center of the 

network and was predicted to have functional interactions with other upstream components 

MAP3K10 and MAP2K4, as well as downstream components FOS, JUNB, and cyclin A2 

(CCNA2).

Involvement of the JNK pathway was then directly tested and verified by inhibition studies 

using the JNK inhibitor SP600125, which reversed both the cocaine-induced astrocyte 

proliferation and the upregulation of cyclin A2. These data indicate that cocaine-induced 

activation of JNK results in an increase in cyclin A2 expression, leading to proliferation of 

human astrocytes.

The MAP kinase signaling cascade is a major modulator of cell growth, differentiation, and 

development (Seger & Krebs, 1995). It has been suggested that JNK, a member of the 

mammalian MAPK family, is activated by cocaine in the rat dorsal striatum and nucleus 

accumbens (Go et al., 2010; Boudreau et al., 2007). Moreover, cocaine has been shown to 

activate JNK in primary human and rat neurons (Kovalevich et al., 2015; Yao et al., 2009; 

Dey & Snow, 2007) as well as to lead to upregulation of transcripts in the JNK signaling 

pathway in the fetal mouse cerebral wall (Novikova et al., 2005). Despite the link between 

cocaine and JNK activation, the cellular effects of cocaine-induced JNK activation in the 

brain are not clear. Although cocaine exposure in vitro has been shown to induce 

neurotoxicity (Yao et al., 2009; Dey & Snow, 2007), we did not observe any cocaine-
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induced increase in cell death, as assayed by the Annexin V-FITC Apoptosis Assay 

(Clontech, data not shown). In our study, cocaine-induced JNK activation in human 

astrocytes was predicted to be mediated through MLK2 (MAP3K10) and MKK4 (MAP2K4) 

by STRING analysis (Fig. 3). JNK has been shown to activate FOS and JUNB (Zhang&Liu, 

2002), and the expression of both FOS and JUNB was up-regulated by cocaine in human 

astrocytes (Supplementary Table 1; Fig. 3). Notably, it has been suggested that FOS and 

JUNB promote cell division through up-regulation of cyclin A2 expression during S-phase. 

Therefore, it is reasonable to assume that the cocaine-induced activation of JNK signaling 

through FOS and JUNB amplified cyclin A2 expression, resulting in enhanced proliferation 

of astrocytes.

Reactive astrogliosis, characterized by increased astrocytic proliferation and GFAP 

expression, is a common response to CNS injury and disease that leads to pathological 

dysfunction of astrocytes (Chung et al., 2015). Cocaine exposure has been shown to induce 

reactive astrogliosis in rodent brain regions responsible for the manifestation of addictive 

behaviors, such as the prefrontal cortex, nucleus accumbens, and hippocampus (Fattore et 

al., 2002; Bowers & Kalivas 2003; O’Callaghan & Miller, 1994; Ferrario et al., 2005; 

Robinson & Kolb, 2004, 1999; Robinson et al., 2001). There is increasing evidence that 

astrocytes signal with neurons and participate in synaptogenesis and synapse elimination, as 

well as in synaptic plasticity (Chung et al., 2015; Clarke & Barres, 2013; Ullian et al., 2004; 

2001; Chung et al., 2013; Tasdemir-Yilmaz & Freeman, 2014). Drug-evoked synaptic 

plasticity has been shown to be involved in the development of addiction (Muñoz-Cuevas et 

al., 2013), yet the mechanisms that underlie these adaptive synaptic changes are not clear. 

Cocaine-induced reactive astrogliosis might impact astrocyte-dependent synaptic plasticity, 

ultimately leading to the development of addiction. Additionally, cocaine has been shown to 

influence synaptic transmission by down-regulation of the astrocyte glutamate transporter, 

GLT-1 (Knackstedt et al., 2010). Since glutamate signaling is associated with drug-seeking 

behavior (D’Souza, 2015), decreased uptake of glutamate by astrocytes mayalso contribute 

to the development of addiction.

Astrogliosis refers to the activation of astrocytes which occurs in response to brain insult or 

injury of various types. This may involve various changes in astrocyte properties and 

functions, among which are hypertrophy, process extension, increased expression of markers 

such as vimentin and GFAP, and increased rates of proliferation (Burda & Sofroniew, 2014; 

Ekmark-Lewin et al., 2010; Mohn & Koob, 2015; Suzumura et al., 1993). For certain types 

of brain injury, such as dopaminergic denervation and toluene exposure, astrogliosis is 

characterized by hypertrophy and increased vimentin and/or GFAP expression without 

increased astrocyte proliferation (e.g. Gotohda et al., 2000; Morales et al., 2016). Astrocytes 

are constantly renewed and replenished in the adult brain. Increased astrocyte proliferation 

is, however, seen in numerous conditions including stroke (Choudhury & Ding, 2015; 

Buchhold et al., 2007), prion disease (Hafiz & Brown, 2000), chronic ethanol treatment 

(Scheetz et al., 1988), and, notably, exposure to cocaine (Cai et al., 2016). Although 

proliferation is only one facet of astrogliosis, the present model may nonetheless be useful in 

defining the properties of astrocytes which predispose this cell type to proliferate in response 

to injury.
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Cyclin A2 accumulates in the late G1 phase of the cell cycle and regulates S phase entry 

(Loukil et al., 2014). Cyclin A2 has been shown to be involved in the proliferation of 

reactive astrocytes (Koguchi et al., 2002). Moreover, TNF-alpha is associated with brain 

injury-induced reactive gliosis through MAPK signaling pathway (Zhang et al., 2000; 

Chiang et al., 1994). Our data show that expression of TNFSF12 and TNFRSF1B were 

significantly increased by 100 μM cocaine(Supplementary Table 1), suggesting a novel role 

of TNF-alpha signaling in drug-induced astrogliosis.

In summary, our findings demonstrate that cocaine, acting through the JNK/MAP kinase 

pathway, induces cyclin A2 expression and enhances the proliferation of human astrocytes. 

Cocaine-induced reactive astrogliosis in the brain might impact astrocyte functions such as 

synapse formation and regulation of neurotransmission, thereby contributing to subsequent 

vulnerability to drug addiction. Illuminating the mechanisms by which cocaine induces 

astrogliosis may lead to the development of new therapies for cocaine-induced synaptic 

changes caused by astrocyte dysfunction.

It is noteworthy that whereas neural progenitor cells show a decrease in proliferation in 

response to cocaine (Lee et al., 2008; Kindberg et al., 2014; Lee et al., 2016), astrocytes 

show the opposite response, an increase in proliferation. In view of the well-established 

property of astrocytes to proliferate following certain types of brain injury (Burda et al., 

2016; Bardehle et al., 2013; Loewen et al., 2016) this differential response of astrocytes to 

cocaine may reflect a general proliferative tendency of astrocytes in response to various 

brain injury, damage, or stress. It may be that cocaine provides a model which taps into 

fundamental properties of astrocytes which differ from those of neurons and neural
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Fig. 1. 
Cocaine induces proliferation and up-regulates expression of cyclin A2 in primary human 

astrocytes. (A) Immunofluorescence staining for glial fibrillary acidic protein (GFAP) in 

primary human astrocytes. Scale bar, 50μm. (B) Primary human astrocytes were treated with 

cocaine at concentrations of 0, 1, 10, and 100 μM for 48 hr. Inset: dose-dependent increase 

of cell proliferation by 48-hr treatment with cocaine (n=9). (C) Expression of cyclin A2 in 

primary human astrocytes treated with cocaine. Astrocytes were treated with 0, 1, 10, and 

100 μM cocaine for 48 hr, and cyclin A2 was measured by RT-qPCR analysis (n=6). 

Statistical analysis was performed using one-way ANOVA followed by Tukey’s compromise 

post-hoc test for B and C; **p<0.01 and ***p<0.001. Data are shown as means±SEM.
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Fig. 2. 
Functional breakdown of microarray-identified genes which showed significant changes 

after cocaine treatment. (A-C) FatiGO was employed to extract Gene Ontology (GO) terms 

from the transcripts changed by cocaine. (A) 40 transcripts changed by 10μM cocaine 

categorized at biological process level 3. (B) 88 transcripts changed by 100 μM cocaine 

categorized at biological process level 3. (C) 95 transcripts changed by either 10 or 100 μM 

cocaine categorized at biological process level 8. Percentages relate to total number of genes 

changed by cocaine with an ontology at each biological process level. Only categories > 5% 

of total number of transcripts changed by cocaine are shown. (D) Pathway enrichment 

analysis on the BioCarta database was employed to identify signal transduction pathways 

from 95 transcripts changed by either 10 or 100 μM cocaine. The red rectangles indicate the 

potential gene ontology categories or signal transduction pathways affected by cocaine that 

were selected for further analysis.
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Fig. 3. 
JNK protein-protein interaction network by STRING analysis. JNK and six cocaine-

regulated genes were integrated to the network. Nodes represent proteins, and differently 

colored lines indicate the various types of evidence for the interaction.
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Fig. 4. 
Time course of JNK activation in primary human astrocytes treated with cocaine. Primary 

human astrocytes were exposed to 10 or 100 μM cocaine for the indicated lengths of time. 

The phosphorylation status of JNK was determined by normalizing phosphorylated forms to 

total JNK proteins and expressed as percentage of the control values (n=4). Statistical 

analysis was performed using one-way ANOVA followed by Tukey’s compromise post-hoc 
test; *p<0.05, **p<0.01, and ***p<0.001. Data are shown as means±SEM.
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Fig. 5. 
Reversal of cocaine-induced changes in cell proliferation and cyclin A2 expression in 

primary human astrocytes by the JNK inhibitor SP600125. SP600125 (10 μM) was applied 

to primary human astrocytes 30 min before 10 μM cocaine administration. Cell proliferation 

and expression of cyclin A2 were measured 48 hr after cocaine treatment. (A) For the cell 

proliferation assay, data are shown as percentages of control cell numbers at 0 hr (n=6). (B) 

The expression of cyclin A2 was expressed as fold changes in relationship to the control 

values (n=6). Statistical analysis was performed using one-way ANOVA followed by 

Tukey’s compromise post-hoc test; *p<0.05 and ***p<0.001. Data are shown as means

±SEM.
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