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Abstract

Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can often be 

summarized in terms of only a few state variables (a few equations), a trait that reduces complexity 

and facilitates exploration of behavioral aspects of otherwise intractable models. High model 

dimensionality and complexity makes symbolic, pen–and–paper model reduction tedious and 

impractical, a difficulty addressed by recently developed frameworks that computerize reduction. 

Symbolic work has the benefit, however, of identifying both reduced state variables and parameter 

combinations that matter most (effective parameters, “inputs”); whereas current computational 

reduction schemes leave the parameter reduction aspect mostly unaddressed. As the interest in 

mapping out and optimizing complex input–output relations keeps growing, it becomes clear that 

combating the curse of dimensionality also requires efficient schemes for input space exploration 

and reduction. Here, we explore systematic, data-driven parameter reduction by means of effective 
parameter identification, starting from current nonlinear manifoldlearning techniques enabling 

state space reduction. Our approach aspires to extend the data-driven determination of effective 

state variables with the data-driven discovery of effective model parameters, and thus to accelerate 

the exploration of high-dimensional parameter spaces associated with complex models.
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1. Introduction

Our motivation lies in the work of Sethna and coworkers on model sloppiness [1], as well as 

in related ideas and studies on parameter non-identifiability [2], active subspaces [3] and 

more. These authors investigate a widespread phenomenon, in which large ranges of model 

parameter values (inputs) produce nearly constant model predictions (outputs). This 
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behavior, termed sloppiness and observed in complex dynamic models over a wide range of 

fields, has been exploited to derive simplified models [4, 5]. Additional motivation comes 

from our interest in model scaling and nondimensionalization, time-honored ways to reduce 

complexity but often more closely resembling an art than definite algorithms.

One extreme case of sloppiness, termed parameter non-identifiability, arises when model 

predictions depend solely on a reduced number of parameter combinations. In such a setting, 

the parameter space is foliated by lower-dimensional sets along which those combinations, 

and hence also the resulting observables (the outputs), retain their values. In such 

circumstances, it is neither possible nor desirable to infer parameter values from 

observations; the parameters are said to be non-identifiable. One should, instead, re-

parameterize the model with a reduced number of identifiable, effective parameters and, if 

desired, use those to explore the model input–output structure. Such identifiability analysis 

decomposes parameter space globally on the basis of model response, yet its symbolic 

nature can make it cumbersome and highly sensitive to small perturbations: even a minute 

dependence on certain parameter combinations can destroy the invariance of the 

decomposition. (Computational) sensitivity analysis is more robust, as it weighs the degree 

by which parameter combinations affect response; however, it is inherently not global in 

parameter space, as it uses a (local) linearization. We attempt to reconcile and fuse these two 

perspectives into an entirely data-driven, nonlinear framework for the identification of global 
effective parameters.

To fix ideas, we consider the caricature model of Fig. 1, given as an explicit vector function 

of two parameters, f0(p1, p2) = (p1p2, ln(p1p2), (p1p2)2). Given access to input–output 

information (black-box function evaluation) but no formulas, one might not even suspect 

that only the single parameter combination peff = p1p2 matters. Fitting the model to data f* = 

(1, 0, 1) in the absence of such information, one would find an entire curve in parameter 

space that fits the observations. A data fitting algorithm based only on function evaluations 

could be “confused” by such behavior in declaring convergence. As seen in Fig. 1(a), 

different initial conditions fed to an optimizer with a practical fitting tolerance δ ≈ 10−3 (see 

figure caption for details) converge to many, widely different results tracing a level curve of 

peff. The subset of good fits is effectively 1–D; more importantly, and moving beyond the fit 

to this particular data, the entire parameter space is foliated by such 1–D curves (neutral 

sets), each composed of points indistinguishable from the model output perspective. 

Parameter non-identifiability is therefore a structural feature of the model, not an artifact of 

optimization. The appropriate, intrinsic way to describe parameter space for this problem is 

through the effective parameter peff and its level sets. Consider now the inset of Fig. 1(a), 

corresponding to the perturbed model fε(p1, p2) = f0(p1, p2) + 2ε(p1 – p2, 0, 0) and fit to the 

same data. Here, the parameters are identifiable and the minimizer (p1, p2) unique: a perfect 

fit exists. However, the foliation observed for ε = 0 is loosely remembered in the shape of 

the residual level curves, and the optimizer would be comparably “confused” in practice. It 

is such model features that provided one of the original motivations in the work of Sethna 

and coworkers; in their terminology, this model is sloppy. The presence of lower-

dimensional, almost neutral parameter sets (“echoed” in the elongated closed curves in the 
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inset) increases disproportionately the importance of certain parameter combinations and 

reduces accordingly the number of independent, effective system parameters.

Our goal is to extract a useful intrinsic parameterization of model parameter space (input 
space) solely from input–output data. As we shall see, this parameterization may vary across 

input space regimes and, in the context of ODEs, we will associate that variation with the 

classical notions of regular and singular perturbations using explicit examples. For the time 

being, a pertinent question concerns the purely data-driven identification of the sloppy 

structure in Fig. 1. One answer is given by the manifold-learning technique we choose to 

work with in this paper: diffusion maps (DMAPS; see SI and e.g. [6]). If a given dataset in a 

high-dimensional, ambient Euclidean space lies on a lower-dimensional manifold, then the 

DMAPS objective is to parameterize it in a manner reflecting the intrinsic geometry (and 

thus also dimension) of this underlying manifold. In our case, we work with the space of 

input–output combinations, where each data point consists of parameter values and the 

resulting observations. DMAPS turns the dataset into a weighted graph and models a 

diffusion process (random walk) on it. The graph weights determine the transition 

probabilities between points and depend solely on an application-driven understanding of 

data closeness or similarity. Typically, DMAPS base this similarity measure on the 

Euclidean distance in the ambient space; yet, for our applications in most of this paper, this 

similarity will be informed solely by output observations. The dataset is parameterized, 

finally, by eigenvectors of the corresponding Markov matrix, relating in turn to a 

(discretized) eigenproblem for the Laplace–Beltrami operator on the underlying manifold 

[7]; one may perceive here an analogy with Singular Value Decomposition in classical 

Principal Component Analysis (PCA) [8]. In our input–output setting, DMAPS 

coordinatizes the low-dimensional manifold hosting the dataset. Both the effective 

parameters and the observables are now functions on this low-dimensional manifold, 

therefore both the input space and (what in sloppiness terminology is called) the model 

manifold are jointly described in terms of this intrinsic, common parameterization based on 

leading diffusion modes.

As a concrete example, consider randomly sampling the input space of our model above, i.e. 

a (p1, p2)–parallelogram [0, a]×[0, b] as in Fig. 1, and using as our pairwise similarity 

measure the Euclidean distance between points in this input space. Applying DMAPS to that 

dataset recovers the sampled parallelogram, i.e. DMAPS correctly identifies the dimension 

of the underlying manifold and coordinatizes it using two diffusion eigenmodes. For this 

simple shape, the leading (nontrivial, independent) eigenmodes assume the form ϕ1(x, y) = 

cos(πp1/a) and ϕj(x, y) = cos(πp2/b), where the index j of the first eigenfunction 

independent of ϕ1 depends on a/b. This parameterization maps the (p1, p2)–rectangle 

bijectively to the (ϕ1, ϕ2)–domain [−1, 1] × [−1, 1], so DMAPS recovers the original 

parameterization up to an invertible nonlinear transformation. Our main idea here is to retain 

sampling of the input (parameter) space but use, instead, a similarity measure (also) 
informed by the output, i.e. by the model response at the sampled parameter points. As a 

first but meaningful attempt for the unperturbed example above, we work with the output-
only similarity measure ∥f0(p) – f0(p′)∥ between parameter settings p and p′. 1
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In the context of our example, the output-only similarity measure ensures that only 

parameter values lying on distinct level sets of peff are seen as distinct. Because of this, our 

chosen similarity measure immediately reveals the effective parameter space to be 1–D, as in 

Fig. 1(b). Coloring the points by the first DMAPS mode ϕ1(p1, p2) confirms that this data-

driven procedure “discovers” sloppiness. Data points having different parameter settings 

(different “genotypes”) but the same output (same “phenotypes”) are found as level sets of 

the first nontrivial DMAPS eigenfunction ϕ1 on the dataset, obtained in turn by our black-

box simulator and without recourse to the explicit input–output relation f0. Additionally, the 

decomposition of parameter space into “meaningful” and “neutral” parameter combinations 

can be performed using a small local sample, possibly resulting from a short local search – 

e.g. a few gradient descent steps, or local brief simulated annealing runs. This type of local 
decomposition can prove valuable to the optimization algorithm, as it reveals local directions 

that are fruitful to explore and others (along neutral sets) that preserve model predictions 

(goodness of fit). These latter ones may, in turn, become useful later in multi-objective 
optimization, where one optimizes additional objectives along level sets discovered during 

optimization of the original one [10]. It is precisely the preimages, in parameter space, of the 

level sets of the first meaningful DMAPS coordinate ϕ1 that correspond to the neutral 

parameter foliation.

The remainder of the paper is structured as follows: In Section 2, we use a simple, linear, 2–

D, singularly perturbed dynamical system to bring forth the components of our data-driven 

framework, while retaining the connection with sloppiness terminology. Readers unfamiliar 

with DMAPS may want to start with the brief relevant material in the SI. The main result we 

illustrate in that section is the connection between singular perturbation dynamic 

phenomenology and data-driven detection of (what one might consider as) loss of observed 

dimensionality. This occurs here simultaneously in both state (model output) and parameter 

(model input) space. We also explore the transition region between unperturbed and 

singularly perturbed regimes and, finally, contrast “data-driven singular perturbation 

detection” with “data-driven regular perturbation detection” through another simple–yet 

informative–caricature. In Section 3, we move beyond caricatures to other prototypes. In 

Section 3a, we explore a simple kinetic example with two sloppy and one meaningful 

nonlinear parameter combination, readily discovered by DMAPS. This brings up the 

important issue of physical understanding: the correspondence between input combinations 

uncovered through data mining and physically meaningful parameters. That model also 

enables comparison of analytical and data-driven approaches (QSSA, [11]). Section 3b uses 

the time-honored, textbook example of Michaelis–Menten–Henri enzyme kinetics to show 

something we found surprising: how data-driven computations may discover parameter 

scalings (in this case, an alternative nondimensionalization) that better characterize the 

boundaries of the singular perturbation regime. Section 3 concludes with the discussion of 

an important subject, namely non-invertible input–output relations. We elucidate that issue 

using a classical chemical reaction engineering literature example, connecting the Thiele 

modulus (parameter) and the effectiveness factor (model output) for transport and reaction in 

1We warn the reader that output-only similarity measures may be inappropriate for general input–output relations (e.g. [9]), such as 
bifurcation diagrams, in which several behaviors may coexist for a single input. We illustrate this further below, using a system with 
inputs/outputs that do not maintain a one–to–one correspondence.

Holiday et al. Page 4

J Comput Phys. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a catalyst pellet. An important connection between the dynamics of our measurement 
process and our data-mining framework arises naturally in this context. In Section 4 we 

summarize, and also bring up analogies with and differences from the active subspace 

literature: the “effective parameters” discovered by DMAPS are nonlinear generalizations of 

linear active subspaces. We conclude with a discussion of shortcomings, as well as possible 

extensions and enhancements of our approach.

2. Singularly/Regularly Perturbed Prototypes

To fix ideas and definitions, we start with a dynamical model

x. (t ∣ p) = v(x ∣ p) and x(t0 ∣ p) = x0(p), where x. ≡ dx
dt . (1)

The vector x(t ∣ p) ∈ ℝd collects the state variables at time t that are observed for parameter 

settings p ∈ ℝM, initialization x0(p) at t0 and vector-field v( ⋅ ∣ p):ℝd ℝd Equation (1) 

determines the system state x(t∣p) for all times t > t0, but the model output or response 
consists only of partial observations of that time course; e.g. certain state variables at 

specific times. Observing the system means fixing p and initial conditions (inputs) and 

recording a number N ≥ M of scalar outputs into f(p) ∈ ℝN. Each input yields a well-defined 

output f (p); as the former moves in parameter space, the latter traces out a (generically M–

dimensional) model manifold ℳ. Our data points on this manifold are input–output 

combinations (p, f(p)) ∈ ℝM + N and not merely the outputs; see SI. In the interest of 

visualization, whenever the map p ↦ f (p) is injective below, we only plot the projection of 

the model manifold on the output space ℝN. To illustrate these definitions, we consider a 

singularly perturbed caricature chosen for its amenability to analysis,

x. = 2 − x − y,
εy. = x − y, with

x(0) = x0,
y(0) = y0 . (2)

We also fix x0 and distinct times t1, t2, t3 (see caption of Fig. 2), view both p = (ε, y0) as 

inputs and monitor y; concisely, f (p) = [y(t1∣p), y(t2∣p), y(t3∣p)]. The final ingredient is a 

metric that provides the DMAPS kernel with a measure of closeness between different 

input–output combinations. For simplicity, we discuss here the output-only Euclidean metric 

∥f (p) – f (p′)∥ and defer a discussion of other options to a later section. The phase portraits 

corresponding to two distinct ε–values are plotted in Fig. 2(a). For small enough ε, all points 

on the vertical line segment x = x0 (fast fiber) contract quickly to effectively the same base-
point on a 1–D invariant subspace (slow subspace) before our monitoring even begins. 

Memory of y0 and of the boundary layer (inner solution) is practically lost and, in the 

timescale of our monitoring protocol, trajectories with bounded y0 shadow the evolution of 

that base-point and yield, with 𝒪(ε) accuracy, the same output mirroring the leading order 

slow dynamics (outer solution). As ε increases, the output begins to vary appreciably 

because the fast contraction rate decelerates and the slow invariant subspace is perturbed. 
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However, observations still lie practically on the slow subspace and are thus insensitive to 

y0. For even larger ε, the disparity in contraction rates is relatively mild and different inputs 

yield visibly different trajectories; the output is jointly affected by ε and y0.

This situation is evident in Fig. 2(b–c), showing a randomly sampled set of inputs p(1), … , 

p(L) and their simulated outputs f (p(1)), … , f (p(L)); the colored patches are meant as visual 

aids. The yellow patch outside the singularly perturbed regime maps into a 2–D region of the 

model manifold, whereas intermediate ones (blue, green) are gradually stretched into 1–D 

segments; as ε ↓ 0, or log(ε) → – ∞, the effective model manifold dimensionality cascades 

from two to one to zero. In the 1–D part of the model manifold and over the scales we 

consider, ε informs model output much more strongly than y0. As ε ↓ 0, the output 

trajectory approaches a well-defined limit – the leading order outer solution – and all inputs 

are mapped to within 𝒪(ε) of a parameter-free output: the model manifold “tip.” This is 

evident in the red patch deep inside the singularly perturbed regime, demonstrating the joint 
reduction in state and in parameter space dimensionality for the scales of interest: first, the 

evolution law involves a single state variable, with the other slaved to it algebraically; and 

second, all small enough ε–values produce at leading order the same, practically y0–

independent output.

To glean the information above by data mining, we apply DMAPS (see [12] for the code) 

with an output-only informed kernel to the dataset and obtain the re-coordinatization 

(p(ℓ), f(p(ℓ))) (ϕ1
(ℓ), ϕ9

(ℓ)). Here, ϕ1, ϕ9 ∈ ℝL are independent eigenvectors of the DMAPS 

kernel, i.e. discretizations (on the dataset) of eigenfunctions of the Laplace–Beltrami 

operator defined on the model manifold ℳ. As such, they describe diffusive eigenmodes 

whose level sets endow ℳ with an intrinsic, nonlinear coordinate system. The domain of 

that coordinate system (DMAPS space) is shown in Fig. 2(d). Here also, the stretching factor 

increases and the dimensionality of the mapped patches cascades, as we progress into the 

singularly perturbed regime. The preimage, in parameter space, of that coordinate system is 

shown in Fig. 3(a,c), allowing us to define distances between inputs in terms of the outputs 

they generate. Figure 3(b,d) portrays complementary images, namely the coordinatization of 

DMAPS space in terms of the inputs ε and y0. Finally, Fig. 4(a–b) and Fig. 4(c–d) show the 

model manifold colored by the inputs as well as by the diffusion eigenmodes.

These figures relate input, output and DMAPS domains to model dynamics and suffice to 

reproduce our earlier observations on model output. In the 2–D part of the DMAPS domain 

and of the model manifold, distinct points on the latter correspond to distinct diffusion 

coordinates and distinct inputs ε and y0; see Fig. 3. As ε decreases, however, the dependence 

on y0 becomes attenuated and the output controlled by ε alone. In the terminology 

introduced earlier, y0 becomes sloppy and both the DMAPS domain and the model manifold 

transition to a 1–D regime parameterized by ε; the y0–values span an ever-diminishing 

width. In this regime, the level sets of the eigenmodes visibly align with each other, both in 

input space and on the model manifold; see Fig. 3(a,c) and Fig. 4(c–d). Finally, as ε ↓ 0, all 

parameter settings converge to the same (ϕ1, ϕ9)–value, as the output converges to the “tip” 

of the model manifold and of the DMAPS domain.
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In summary, our output-informed application of DMAPS parameterizes the input–output 

combinations comprising the dataset in a manner indicative of how model inputs dictate 

model outputs. The parameterization applies primarily to the output component of the 

dataset, but it can be pulled back to yield a simultaneous, consistent re-parameterization of 

the input component. This showcases the main contribution in this paper: a way to intuit 

system properties by parameterizing the input–output relation through the geometry of the 

manifold that collects model inputs and model outputs, as encoded in eigenfunctions of the 

Laplace–Beltrami operator.

2.1. Regularly perturbed prototype

In the singularly perturbed prototype discussed above, we noted the simultaneous loss of 

output sensitivity to (certain) initial conditions and parameters, as ε ↓ 0. Additionally, we 

demonstrated how this system behavior can be intuited by mining input–output data with the 

help of DMAPS. Figure 5(b) shows the result of applying the same methodology to the 

regularly perturbed example

x. = − x + εx3, with x(0) = x0 . (3)

Here also, we view p = (ε, x0) as parameters and monitor the system state x(t∣p) at distinct 

times.

Similarly to the singularly perturbed model, the model output approaches a well-defined, 

limiting response in the asymptotic regime ε ↓ 0. Yet, in this case that response remains 
strongly dependent on x0: distinct initial conditions yield distinct outputs even for ε ↓ 0, as 

seen plainly in Fig. 5. In panel (a), the limiting edge ε = 0.001 is seen to outline a 1–D 

boundary of the full 2–D model manifold, instead of a point as was the case for the 

singularly perturbed model. That same edge is seen to be parameterized by ϕ1, in panel (b), 

rather than correspond to a single ϕ1–value. This result is clearly underpinned by the 

uniform convergence of the trajectory x(t∣p) to x(t∣0, x0) = x0e–t, which is ε–free but 

depends strongly on x0 and defines the aforementioned 1–D model manifold boundary. This 

regular perturbation behavior, and specifically the lack of dimensionality reduction in terms 

of initial conditions, generalizes directly to higher state and parameter space dimensions.

3. Beyond caricatures

3.1. The ABC model

Having examined simple singularly and regularly perturbed models, we turn our attention to 

the data-driven detection of an effective parameter in a paradigmatic chemical reaction 

network. We specifically consider the three-species, analytically tractable system (SI)

A
k−1

k1 B
k2 C, initialized with A0 = 1, B0 = C0 = 0 . (4)
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The Quasi-Steady-State Approximation (QSSA; [13, Ch. 5]) for mechanism (4)

C(t ∣ p) = 1 − e
−keff

QSSAt
, where keff

QSSA =
k1k2

(k−1 + k2) , (5)

and is valid for k1 ↓ k2 [13]. A detailed analysis, however (see SI), establishes that the 

approximate solution is actually

C(t ∣ p) = 1 − e
−kefft

, where keff =
k1k2

k−1 + k1 + k2
. (6)

To detect this dimensionality reduction and “discover” keff in a data-driven manner, we view 

the kinetic constants as inputs, p = (k1, k−1, k2), and monitor product concentration at preset 

times, f (p) = [C(t1∣p), … , C(t5∣p)]. Then, we fix a model output in the regime of 

applicability of (6) and mine sampled parameter settings with outputs “similar” to that 

reference response. Here, we used as reference the output corresponding to parameter 

settings p* = (10−1, 103, 103) and measured similarity in the Euclidean sense, retaining 

sampled points p satisfying ∥f (p) – f (p*)∥ < δ for some δ > 0. Figure 6(b–f) examines two 

nested such “good datasets”, one of almost perfect fits (δ = 10−3; Fig. 6(b-c)) and another of 

less good fits (δ = 10−1; Fig. 6(d)). Data-mining the “zero residual level set” in 3-D 

parameter space with an input-only informed DMAP metric confirms its 2-D nature. The 

data-driven coordinatization of the full input space by output-only ϕ1 and input-only (ψ1, 

ψ2) decomposes the space in a manner tuned to model output. A related data-processing of 

good fits using linear PCA was performed, e.g., as in [14] for a neuron model; clearly, linear 

PCA here would give the erroneous impression of full-dimensionality due to manifold 

curvature.

This result is valid in the input regime k1k2 ≪ (k1 + k−1 + k2)2, that extends the QSSA, and 

keff is the effective parameter (approximately) determining the output. This expression 

represents a reduction of input space from 3–D to 1–D; the foliation of parameter space by 

the (nonlinear) level sets of keff is shown schematically in Fig. 6(a). The set of parameter 

settings with outputs within δ = 10−1 of the reference output is clearly 3–D and visibly 

composed of level sets of keff spanning an appreciable keff range. An application of DMAPS 

with the Euclidean, output-only-informed similarity measure reveals the existence of a 

single effective parameter without recourse to an analytic expression. Indeed, the DMAPS 

coordinate ϕ1 traces keff accurately, see Fig. 6(d,f). Note, for comparison, that keff
QSSA is a 

worse predictor of model output, see Fig. 6(e). It follows that level sets of ϕ1 in parameter 

space give (almost) neutral sets, i.e. level sets of keff whose points yield indistinguishable 

outputs. An algorithm to explore parameter space effectively would march along ϕ1, whereas 

sampling parameter inputs at constant ϕ1 would allow one to map out level sets of keff. This 

can be of particular utility in multi-objective optimization [10], where a second objective can 

be optimized on the set keff = keff (p*) optimally fitting the data f* = f (p*).
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Fig. 6(e,f) raises the crucial issue of physical interpretation of the effective parameters 

discovered through data mining. Although such data-driven parameters are not expected to 

be physically meaningful, the user can postprocess their discovery by formulating and 

testing hypotheses on whether they are one-to-one with (i.e., encode the same information 

as) physically meaningful parameters.

3.2. Michaelis–Menten–Henri (MMH)

Continuing the development of a data-driven framework to identify effective parameters, we 

now treat a benchmark for model reduction methods. The MMH system [15, 16] describes 

conversion of a substrate S into a product P through mediation of an enzyme E and 

formation of an intermediate complex C,

S + E
k−1

k1
C

k2 P + E .

Under conditions often encountered in practice, the first reaction step reaches quickly an 

(approximate) chemical equilibrium and becomes rate-limiting. Product sequestration 

proceeds on a much slower timescale, during which the first reaction approximately 

maintains its quasi-steady state.

In that regime, simultaneous state and parameter space reduction is possible, as system 

evolution is described by a single ODE involving a subset of the problem parameters. There 

have been several, increasingly elaborate estimates of the parametric regime where QSSA 

applies, which were underpinned by different system nondimensionalizations. The first key 

estimate was that of [17], where the authors identified that regime as ET ≪ ST involving the 

(conserved) total amounts of enzyme, ET = E + C, and substrate, ST = S + C + P. In that 

regime, nearly all enzyme molecules become quickly bound to substrate and the complex 

saturates. The authors of [18] brought the kinetic constants into play and extended the 

regime to ET ≪ ST + KM, where KM = (k−1 + k2)/k1 is the so-called Michaelis–Menten 

constant. This asymptotic regime extends the one of [17] by including the case where the 

complex dissociates much faster than it forms.

Our goal in this section is twofold: first, to identify the effective parameterS) informing 

system evolution in the asymptotic regime; and second, to show how the extended 

parametric region of [18] is captured in a data-driven manner by our methodology. To 

accomplish this in a completely automated way would necessitate using a black-box 

simulator for (a subset of) the dimensional state variables S, E, C, P evolving in dimensional 

time T. This, in turn, would necessitate a candid discussion on tuning of monitoring times to 

capture the slow dynamics and how that relates to experimental/simulation data. We 

circumvent this issue here for brevity and focus, instead, on the equivalent, non-dimensional 

version in [18]. In that version, T, S, C, E, P have been rescaled into dimensionless variables 

t, s, e, c, p; additionally, e, p have been eliminated using the enzyme and substrate 

conservation laws. The result is the 2–D ODE system
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s. = (κ + 1)[ − (1 + σ)s + σcs + κ(κ + 1)−1c],
εc. = (κ + 1)[ (1 + σ)s − σcs − c] .

(7)

The composite parameters here are ε = ET/(ST + KM), σ = ST/KM and κ = k−1/k2, and they 

may in principle assume any positive value. The initial conditions (s0, c0) are arbitrary, and 

e, p can be recovered from the rescaled conservation laws e + σc/(σ + 1) = 1 and s + εc + p 
= 1. The system is expressed in slow time, so that quasi-steady state is achieved over an 𝒪(ε)
time and product sequestration occurs over an 𝒪(1) timescale. In this reformulation, the 

asymptotic regime where QSSA applies is ε ≪ 1, according to [18], and εh = (1 + 1/σ) ε ≪ 
1 according to [17]; the former plainly extends the latter. Initially, we select as our 

observable the rescaled complex concentration at distinct times (t1, t2, t3) = (0.5, 1, 1.5), so f 
(p) = [c(t1∣p), c(t2∣p), c(t3∣p)]T Our parameter set is the triplet p = (ε, σ, κ), with (s0, c0) = 

(1, 0) fixed as in the original experimental setting [16].

Figure 7(b–d) demonstrates that the model response is unaffected by κ and strongly affected 

by σ, with the limit ε ↓ 0 corresponding to an asymptotic regime. Further, Fig. 7(d) makes it 

plain that the system evolution in that regime is controlled by σ. This is in stark contrast to 

the parameter-free reduced dynamics of caricature (2) and agrees with theory, which predicts 

that the evolution of p in 𝒪(1) timescales is dictated by the leading order problem [18] (see 

also SI).

p = 1 − s − εc, subject to s. = − c = − (1 + 1 ∕ σ) s
s + 1 ∕ σ . (8)

On the basis of these results, we conclude that the model manifold is effectively 2–D and not 
3–D as one might initially surmise, with the asymptotic regime ε ↓ 0 corresponding to a 

curve parameterized only by σ. As a corollary, the model manifold dimensionality 

transitions from two to one in that regime, without being further reduced to zero. This is 

evident in Fig. 8(b), showing (part of) the model manifold for the setup above.

We next turn to a data-driven characterization of the asymptotic regime and relate that to the 

characterizations in [17, 18]. Using simulated trajectories of (7) and applying our DMAP 

methodology with an output-only informed metric, we coordinatize the model manifold 

through the independent eigenmodes (ϕ1, ϕ4). Figures 8(c–d) show that manifold in DMAPS 

space; the asymptotic limit is the lower-left bounding curve (light blue). We can use these 

diffusion coordinates to characterize the asymptotic regime as a neighborhood of that 
boundary, so that the success of εh and ε in capturing that regime is measured by the extent 

their level sets track the boundary. Figures 8(c–d) color the DMAPS domain by εh and by ε; 

plainly, the ε–coloring traces the domain boundary quite well, with ε ≪ 1 represents a bona 
fide neighborhood of it. Small values of εh, on the other hand, fail to outline such a 

neighborhood: all level sets coalesce at the single point representing the εh–axis (i.e. the 

regime σ ↓ 0). This is made even plainer in Fig. 8(e–f), where one sees how the εh ≪ 1 

regime misses a substantial part (colored purple) of the asymptotic regime captured by ε ≪ 
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1. On account of this, we can conclude that ε is indeed a better “small parameter” than εh. It 

is important to note that a black-box, data-driven approach can have no knowledge of ε, εh 

or any other “human” description of the problem. What it can do, as we just saw, is enable 

us to test human-generated hypotheses on the data; we – or Segel and Slemrod [18] – are the 

ones generating the hypotheses.

4. Non-invertible input-output relations

Throughout this paper so far, we have used an output-only-informed kernel to obtain 

intrinsic DMAPS parameterizations of the combined input–output manifold. Our approach 

consisted of using eigenfunctions of the Laplace–Beltrami operator on the model manifold, 

and our insights about parameter (input) space came from how it was jointly parametrized 

by these eigenfunctions. The approach was useful in the data-driven study of parameter non-

identifiability and even sloppiness. We will now show that it fails dramatically when the 

mapping from parameter space to the model manifold is noninvertible, i.e. when distinct, 

isolated parameter values produce identical model responses, f (p) = f (p′) for p ≠ p′.

A well-known instance of this situation arises in the study of reaction–diffusion in porous 

catalysts and is illustrated in Fig. 9. For isothermal reactions, the output – the dimensionless 

“effectiveness factor” f (p) ≡ η – is a monotonic function (with known asymptotic limits) of 

the input – the Thiele modulus p ≡ Φ [19] (Fig. 9, left). For exothermic reactions, however, 

η may depend on Φ nonmonotonically and the relation becomes noninvertible; alternatively, 

points on the model manifold are revisited, as the input sweeps the positive real axis, Fig. 9 

(right). Sampling the input Φ uniformly on the horizontal axis naturally results in a 

nonuniform density for the output η on the vertical axis (plotted on the right of each panel in 

Fig. 9). This observed output probability density function (pdf) embodies the input-output 

relation and brings to mind an analogy with Bayesian measure transport from a prior density 

to a posterior one. It is worth noting that, noninvertibility causes pronounced discontinuities 

on the output pdf on the right.

Coloring input–output (η – Φ) profiles by the leading DMAPS eigenfunction of an output-

only-informed kernel shows that the data-driven coordinate, ϕ1, which successfully 

recovered (parameterized) the input Φ on the left fails to do so on the right. The problem lies 

with the output-only metric employed, and its resolution requires a new, more informative 

DMAPS kernel such as

K∗(p, p′) = exp − ‖p − p′‖2

ϵ2 − ‖f(p) − f(p′)‖2

ϵa . (9)

Taking into account both inputs (p – p′) and outputs (f (p) – f (p′)), this kernel manages to 

differentiate inputs having the same output. Figure 10(b) corroborates the appropriateness of 

this kernel for a = 4: its primary eigenvector varies monotonically over the model manifold. 

This is also evident in Fig. 10(a), in which we have plotted input, output and the data-driven 

parameter ϕ1
∗ against arclength of the input–output response curve. In effect, ϕ1

∗ is in an one-

to-one correspondence with the arclength, and thus “discovers” a good parameterization of 
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the curve. This particular (a = 4) kernel – originally proposed by Lafon [7] in a different 

context – prioritizes output over input; due to the ϵ–scalings, the input-term only becomes 

significant when needed, i.e. for nearby inputs producing similar outputs.

The use of appropriately scaled input and output similarities can thus resolve input–output 

noninvertibility. Can such noninvertibility be resolved when we do not know the inputs, yet 

have some control over the measurement process? The answer is, remarkably, in the 

affirmative. A data-driven parameterization of input space can be obtained even in the 
absence of actual recorded input measurements by using a little local history of output 

measurements in the spirit of the Whitney, Nash and Takens embedding theorems [20, 21, 

22]. Figure 10(c–d) illustrates how unmeasured inputs can, in a sense, be recovered by 

recording pairs of output measurements rather than single output measurements. 

Specifically, we formulate a measurement protocol in which the output η is measured 

sequentially, first for a random input Φ and then for Φ = Φ + Δ (for some unknown but 

fixed Δ). Using this analogy to Takens delay embeddings in nonlinear dynamics, redefining 

the model manifold in terms of such measurement pairs, and reverting to the output-only-

informed metric based on such pairs yields a single data-driven effective parameter ϕ1
∗ ∗

which consistently parametrizes both the (unkown) input Φ as well as the output η pairs. 

Using a little measurement history can thus also resolve model noninvertibilities, and allow 

us to parametrize input-output relations.

Discussion

We presented and illustrated a data-driven approach to effective parameter identification in 

dynamic “sloppy” models – model descriptions containing more parameters than minimally 

required to describe their output variability. Our manifold-learning tool of choice was 

Diffusion Maps (DMAPS), and we applied it to datasets that typically consisted of input–

output combinations generated by dynamical systems. The inputs were mostly model 

parameters, but we also viewed initial conditions as inputs to differentiate between (what 

traditionally would be referred to as) singularly and regularly perturbed multiscale models. 

The outputs were ensembles of temporal observations of (some of) the state variables. By 

modifying the customary DMAPS kernel to rely mainly on – or, in most of the paper, only 
on – the observed outputs, we were able to “sense” the sloppy directions and automatically 

unravel nonlinear effective model re-parameterizations.

It is important to note that, as often the case with numerical procedures, this approach does 

not characterize the effective parameters through explicit algebraic formulas. In fact, we saw 

in our treatment of the ABC model that an off–the–shelf, algebraically formulated effective 

parameter (keff
QSSA) predicted system output worse than the parameter found by DMAPS. 

This approach (a) helps test hypotheses about the number and physical interpretability of 

effective parameters, see our in-context discussion of the MMH model; (b) provides a 

natural context in which to make predictions for new inputs, through “smart” interpolation 

(matrix/manifold completion); and (c) assists experimental design through intelligent 

sampling of input space (see e.g. the biasing of computational experiments in [23, 24]). 

Clearly, what was achieved here by the sampling of ODE model outputs can in principle be 
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extended to PDE models by sampling in time and space. The leading eigenfunctions of our 

DMAPS-based approach (effective parameters) are, in general, nonlinear combinations of 

the system parameters. Actively changing the value of these combinations – “moving 

transversely to level sets” of the eigenfunction – leads to appreciable changes of the model 

output.

It is interesting to draw an analogy between identifying these effective parameters and the 

linear parameter combinations of Constantine and coworkers [3] affecting scalar model 

predictions: what they call “active subspaces” (see SI for a more detailed comparison). The 

analogy is illustrated here in Fig. 11, for which we used our first, simple model that gave rise 

to Fig. 1 but with the scalar output f (p) = log(p1p2). The active subspace approach, applied 

independently to each of the datasets shown as oval patches, yields the solid black direction 

as “neutral” and their normal as the active subspace (per patch). To enable comparison, each 

dataset is also colored by the value of the leading DMAPS eigenfunction ϕ1 obtained with 

the output-only-informed metric. DMAPS plainly gives nonlinear “neutral” level sets (gray 

lines), with ϕ1 providing a nonlinear version of an “active” parameter combination: an 

effective parameter. Combining the data across patches leaves our curved level sets 

consistent; a linear approach would encounter problems, as these level sets start curving 

appreciably. Two scenarios were discussed in this paper: the first, involving an output-only-

informed kernel, proved useful in the data-driven study of sloppiness. Coordinates from the 

intrinsic model manifold geometry pulled back on the input (i.e. parameter) space provided 

our “effective parameters”. The second, less explored scenario involved the non-invertible 

case where the same model output is observed for different isolated inputs and, more 

generally, one has input-output relations. The simple modifications of the DMAPS metric 

we used to resolve this, and the connection we drew to a “measurement process history” and 

embedding theorems, is a simple first research step in the data-driven elucidation of complex 

input–output relations by designing appropriate measurement protocols. We expect that 

similarity measures exploiting a measurement process, rather than a single measurement 

(e.g. “Mahalanobis-like” pairwise similarity measures [25]) may well prove fruitful along 

these lines. The physical interpretability of data-discovered effective parameters can be 

established in a postprocessing step, by testing whether they are one-to-one, on the data, 

with subsets of equally many of the physical parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Exact and learned (global) parameter space foliations for the model fε (p1, p2) = (p1p2 

+ 2ε(p1 – p2), ln(p1p2), (p1p2)2). The combination peff = p1p2 is an effective parameter for 

the unperturbed (ε = 0) model, since f0 =const. whenever p1p2 =const. (a) Level sets of the 

cost function δ(p) = ∥fε (p) – f* ∥ for the unperturbed (main) and perturbed (inset) model 

and for data f* = (1, 0, 1) corresponding to (p1, p2) = (1,1). Level sets of peff can be learned 

by data fitting: feeding various initializations (triangles) to a gradient descent algorithm for 

the unperturbed problem yields, approximately, the hyperbola peff = 1 (circles; colored by 

initialization). This behavior persists qualitatively for ε = 0.2 despite the existence of a 

unique minimizer p*, because δ (p) remains within tolerance over extended almost neutral 
sets around p* that approximately trace the level sets of peff. (b) Learning peff by applying 

DMAPS, with an output-only-informed metric (see the SI), to input–output data of the 

unperturbed model. For ε = 0, points on any level curve of peff are indistinguishable for this 

metric, as f0 maps them to the same output. DMAPS, applied to the depicted oval point 

cloud, recovers those level curves as level sets of the single leading nontrivial DMAPS 

eigenvector ϕ1.
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Figure 2: 
(a) Phase portrait of (2) for a range of initial conditions (x0, y0) and two representative ε–

values. Solid points mark states at the monitoring times (t1, t2, t3) = (0.5, 1, 1.5) for 

trajectories starting at x0 = −1. For ε = 0.01, the points lie close to the slow subspace and 

appear y0–independent; for ε = 0.3, instead, they lie off it and vary appreciably with y0. (b) 

A sample of the model input space, overlaid with distinct rectangular patches. (c) Mapping 

of the input sample of panel (b) to the 3–D output space. The images of the random sample 

outline part of the model manifold, while those of the patches show the dimensionality 

reduction due to the singularly perturbed structure of the model. (d) Mapping of the input 

sample in DMAPS coordinates. The transformations from (b) to (c–d) are discussed in the 

text.
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Figure 3: 
Application of DMAPS to the singularly perturbed model (2) with an output-only-informed 

metric. (a, c) Input (parameter) space, coordinatized by two independent eigenmodes ϕ1 and 

ϕ9; (b,d) the diffusion coordinate domain (DMAPS space), coordinatized by ε and y0. All 

parameter settings in the singularly perturbed regime (ε ⪅ 0.03) yield effectively the same 

model response, (ϕ1, ϕ9) ≈ (−0.028, 0) in diffusion coordinates, as seen by the broad 

monochromatic swaths at small ε–values in (a,c). Intermediate ε–values (0.03 ⪅ ε ⪅ 0.2) 

yield an effectively 1–D output: ϕ9 becomes slaved to ϕ1, see (b,d). Even larger ε–values 

yield a fully 2–D model manifold, captured by the independent color variation in all panels. 

The progressive decline of effective domain dimensionality is evident, as ε decreases, as is 

the loss of memory of the initial condition y0, starting already in the 1–D regime.
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Figure 4: 
(a–b) Model manifold colored by the model parameters (inputs). For large ε, the model 

manifold is evidently coordinatized by (ε, y0). As ε decreases, the system loses memory of 

the initialization y0 and model responses for different y0 bundle together. In the singularly 

perturbed regime (deep blue in panel (a)), all memory of y0 has been lost. (c–d) Model 

manifold colored by leading independent DMAPS coordinates. Evidently, ϕ1 tracks ε well, 

with the regime ε ≪ 1 corresponding to ϕ1 ≈ −0.028. The coordinate ϕ9 is transverse to ϕ1 in 

the 2–D regime but, as ε decreases, becomes slaved to it and dimension reduction occurs.
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Figure 5: 
Model manifold and parameter space for the regularly perturbed system (3) with inputs (ε, 

x0) and monitoring times (t1, t2, t3) = (0.25, 1.0, 1.75). (a) Model manifold colored by ε and 

its projections on the coordinate planes. For large ε, the system is fully 2–D (orange/red 

region). As ε decreases, the model response becomes increasingly determined by x0 alone. 

Contrary to Fig. 3, where the ε ≪ 1 regime was mapped to a limiting point, the limiting 

submanifold here is 1–D (blue straight line). (b) Parameter space colored by the DMAPS 

coordinate ϕ1. DMAPS visibly captures the importance of x0, as ε ↓ 0: the parameterization 

varies in the x0 direction and remains unchanged along lines of constant x0.
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Figure 6: 
Data-driven detection and characterization of the effective parameter keff for (4) using 

DMAPS. All datasets were obtained by presetting the reference output f* = f (p*) with p* = 

(10−1, 103, 103) and a specific tolerance δ > 0 and, then, sampling log-uniformly a 

rectangular domain in input space to retain inputs satisfying ∥f (p) – f*∥ < δ. (a) Illustration 

of level sets of keff in parameter space (k1, k−1, k2). Equation 6 dictates that points on each 

same colored foil exhibit nearly identical model responses. (b–c) Dataset for δ = 0.001; this 

is practically the 2–D surface keff (p) = keff (p*) of (almost) perfect fits. An application of 

input-only DMAPS on this set reveals its 2–D nature and coordinatizes it through the 

eigenfunctions ψ1, ψ2. (d) Dataset for δ = 0.1, colored by the first output-only DMAPS 

eigenfunction ϕ1. DMAPS clearly discovers the effective parameter, as ϕ1 remains 

effectively constant on level sets of keff. This striking one-to-one relation is evident in panel 

(f), in terms of the (ϕ1, keff)–coordinates. The same dataset plotted in (ϕ1, keff
QSSA–coordinates 

(panel e) is, by contrast, visibly noisier.
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Figure 7: 
(a) Phase portrait of the rescaled MMH model (7) with σ = κ = 1. The plotted trajectories 

start at (1, 0.2) and correspond to various ε–values, to illustrate the rate of attraction to the 

slow manifold (blue) and subsequent convergence to the origin. (b–d) Parameterization of 

the facets σ = 1, ε = 0.1 and κ = 10 of the (ε, σ, κ)–space (input space) by the leading 

(output-only) DMAPS eigenvector ϕ1. Evidently, κ is sloppy: the output is insensitive to it 

over several orders of magnitude. As ε ↓ 0, the system enters an asymptotic regime whose 

slow, reduced dynamics is strongly informed solely by σ.
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Figure 8: 
(a) Relevant parameter domains in (εh, ε)-space and in (σ, ε)–space (inset; both 

logarithmic), related through σ = 1/(εh/ε – 1). Boundaries are colored consistently across 

panels to help visualize the transformations between spaces. (b) Model manifold ℳ in 

output space, as (εh, ε) vary and κ = 10 is fixed. (c–d) Model manifold observed in DMAPS 

space, colored by εh in panel (c) and by ε in panel (d). (e) Similar to (a) but with uniform 

(not logarithmic) spacing, and with the highlighted regions εh ≪ 1 (orange triangle) and ε ≪ 
1 (orange triangle and purple rectangle). (f) Image of the regions highlighted in panel (e) in 

DMAPS space.
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Figure 9: 
Left: Output η, vs. input Φ for the isothermal catalyst pellet (β = 0.0, see SI) colored by ϕ1. 

Right: Same plot for a nonisothermal (β = 0.2) pellet. For uniform input Φ sampling, the 

observed output pdf’s (see text) are plotted alongside each panel. Using output-only 

informed DMAPS is unable, as the coloring shows, to accurately parameterize the 

noninvertible case: Widely different sections of the curve on the right take on the same color. 

Note also the discontinuity in the density along the η axis in the right figure, a hallmark of 

noninvertibility.
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Figure 10: 

(a) Input Φ, output η and DMAPS eigenfunction ϕ1
∗ corresponding to (9) plotted against the 

arclength of the curve in Fig. 9. The eigenfunction clearly parameterizes both input and 

output. (b) input–output response curve colored by the eigenfunction ϕ1
∗ using (9) with ϵ = 

0.0125. In both (b) and (c), Φ was sampled on a uniform grid between 0.9 and 10 for a total 

of 1043 points. (c) Plot of log(ηi+Δ) (corresponding to log(Φi) + Δ where Δ ≈ 0.05.) against 

log(ηi) (corresponding to log(Φi)); this “delay embedding” is one-to-one with the original 

curve. (d) input–output response curve colored by the eigenfunction ϕ1
∗ ∗ corresponding to 

the “augmented output” DMAPS kernel K ∗ ∗ ≡ exp( − (η‒ − η‒′)2 ∕ ϵ2), where η‒ = (ηi, ηi + Δ)

and similarly for η‒′. Here we used ε = 0.01. Either of these new, modified kernels 

parameterizes the non-invertible response curve successfully.
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Figure 11: 
Comparison of Active Subspaces and DMAPS in local patches for a model similar to that 

shown in Fig. 1. See text and also SI. Here, f(p) = (log(p1p2)).
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