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A Formulation for
Fluid–Structure Interactions
in FEBIO Using Mixture Theory
Many physiological systems involve strong interactions between fluids and solids, posing
a significant challenge when modeling biomechanics. The objective of this study was to
implement a fluid–structure interaction (FSI) solver in the free, open-source finite ele-
ment code FEBIO, that combined the existing solid mechanics and rigid body dynamics
solver with a recently developed computational fluid dynamics (CFD) solver. A novel
Galerkin-based finite element FSI formulation was introduced based on mixture theory,
where the FSI domain was described as a mixture of fluid and solid constituents that
have distinct motions. The mesh was defined on the solid domain, specialized to have
zero mass, negligible stiffness, and zero frictional interactions with the fluid, whereas the
fluid was modeled as isothermal and compressible. The mixture framework provided the
foundation for evaluating material time derivatives in a material frame for the solid and
in a spatial frame for the fluid. Similar to our recently reported CFD solver, our FSI for-
mulation did not require stabilization methods to achieve good convergence, producing a
compact set of equations and code implementation. The code was successfully verified
against benchmark problems from the FSI literature and an analytical solution for
squeeze-film lubrication. It was validated against experimental measurements of the flow
rate in a peristaltic pump and illustrated using non-Newtonian blood flow through a
bifurcated carotid artery with a thick arterial wall. The successful formulation and imple-
mentation of this FSI solver enhance the multiphysics modeling capabilities in FEBIO rele-
vant to the biomechanics and biophysics communities. [DOI: 10.1115/1.4043031]

1 Introduction

The mechanics of deforming solids and flowing fluids are two
of the most fundamental aspects of biomechanics. As a result,
there has been much recent development in modeling tools that
combine both of the classical fields of solid and fluid mechanics,
increasing the use of fluid–structure interactions (FSI). FSI can be
used as a modeling tool in many areas of biomechanics and bio-
physics including, but not limited to, cardiovascular mechanics
where blood flows through the deforming heart and vasculature
[1–3], diarthrodial joint lubrication where pressurized synovial
fluid flows between deforming articular layers [4], cerebrospinal
mechanics where fluid flow through the ventricular cavities may
cause significant deformation of surrounding soft tissues [5–7],
vocal fold and upper airway mechanics [8,9], viscous flow over
endothelial cells [10,11], canalicular and lacunar flow around
osteocytes resulting from bone deformation [12–14], and many
applications in biomedical device design [15–18].

A summary of the few available open-source FSI codes suitable
for biomechanical modeling is given in Sec. S1 available in the
Supplemental Materials on the ASME Digital Collection. FEBIO, a
free, open-source finite element software,1 was developed specifi-
cally to address the needs of the biomechanics and biophysics
communities. The source code itself is freely available for down-
load.2 While it can be customized using user-written plug-ins [19],
its built-in capabilities are extensive. It offers a broad range of con-
stitutive relations suitable for studying nonlinear, anisotropic, inho-
mogeneous, hyperelastic, and viscoelastic solid materials that may
also undergo tissue damage and remodeling, and also be subjected
to a state of prestrain [20–24]. It can describe biological tissues

with mixture theory, accounting for interstitial fluid and solute
flow in a porous deformable solid matrix, also accommodating
chemical reactions [21,25]. It includes robust contact algorithms
that handle large deformations and sliding, with or without friction,
for elastic, biphasic, and multiphasic materials [26–28].

Recently, we formulated and implemented a novel 3D compu-
tational fluid dynamics (CFD) formulation in FEBIO, based on iso-
thermal compressible flow to analyze Newtonian and non-
Newtonian viscous fluid mechanics in FEBIO without requiring the
use of stabilization methods [29]. Therefore, in this study, we
combine these capabilities of FEBIO by including FSI using the
framework of mixture theory. The overall goal of combining these
features in an open-source platform is to allow users to easily
implement new algorithms and share their models with their peer
communities. Therefore, this study also places an emphasis on
developing a conceptually straightforward and compact set of
governing equations for FSI. Because of the novelty of our formu-
lation, we also provide an extensive series of verification and vali-
dation problems using this new formulation to illustrate the
flexibility of FEBIO and to test our implementation.

Fluid–structure interaction is commonly modeled using two
general approaches, employing either a fixed mesh containing the
freely flowing fluid through which a solid may move, or separate
moving meshes for the fluid and solid that satisfy certain continu-
ity conditions at their interface [30]. The immersed boundary
method uses the former approach [31,32] as reviewed in Sec. S2
available in the Supplemental Materials on the ASME Digital
Collection. The second common FSI approach is the arbitrary
Lagrangian–Eulerian (ALE) formulation [33,34] using the
space–time FE method [35–38], also described in more detail in
Sec. S2 available in the Supplemental Materials on the ASME
Digital Collection. In this study, we develop a novel implementa-
tion of FSI, which belongs to the general family of ALE methods.
However, we tailor our formulation to eliminate two aspects of
the ALE/general space–time FE method that arguably increase the
mathematical complexity of that approach, which may discourage
nonexpert users and developers from extending the capabilities of
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an open-source FSI code. First, we note that most CFD codes
have adopted the assumption of incompressible flow, relying on
methods that satisfy the inf-sup condition [39,40] by using stabili-
zation schemes such as the streamline-upwind/Petrov-Galerkin
(SUPG), pressure-stabilizing/Petrov-Galerkin, and Galerkin/least-
squares [35,41]. FSI formulations that employ these methods must
similarly supplement Galerkin’s method with stabilization terms,
increasing the mathematical complexity of the formulation and
requiring specialized schemes for different element types. In con-
trast, we previously showed that our isothermal compressible flow
formulation automatically satisfies the inf-sup condition without
requiring additional stabilization terms, making it easily adaptable
to any element type [29]. The FSI formulation presented here simi-
larly avoids the need for such stabilization, thus producing a simpler
set of equations. In addition, this formulation successfully adapts the
generalized-a method for temporal discretization used in other ALE
formulations [38,42,43], where the user can choose to either con-
serve energy, at the potential cost of perpetuating dynamic distur-
bances, or dampen higher frequencies. As in prior implementations,
optimal behavior and results are problem-dependent.

Second, the space–time FE method provides an elaborate math-
ematical framework to deal with spatial and temporal discretiza-
tion of material and spatial domains, whose description (e.g., Ref.
[38]) may appear daunting to many finite element practitioners. In
this study, we employed a mixture theory approach to simplify
our FSI formulation without compromising mathematical rigor.
Mixture theory is a general framework for modeling mixtures of
solid and fluid constituents [44–47]; its application to biome-
chanics has led to significant advances in soft tissue mechanics
[48–52]. The mixture framework in FEBIO has been highly success-
ful for modeling deformable porous media [20,53], including neu-
tral [27,54] and charged solutes in multiphasic mixtures [25], and
chemical reactions among solutes and solid constituents [21].
Thus, a feature already implemented in FEBIO is the interaction of
solid domains with biphasic domains. A biphasic domain consists
of a solid–fluid mixture where the solid matrix is porous and
deformable, having non-negligible stiffness, and where the fric-
tional drag between fluid and solid is far more significant than the
viscous friction within the fluid. The solid matrix nodes of a
biphasic domain are typically shared with the nodes of adjoining
solid domains so that the solid displacement is continuous at those
interfaces. Alternatively, this continuity of the solid displacement
may be enforced with a contact interface [26].

Our proposed FSI approach shares a conceptual analogy to the
fluid–solid interactions in a biphasic medium, capitalizing on our
extensive expertise in finite element modeling of mixture
domains. In a biphasic medium, fluid and solid material points
coexist in an elemental region at any given time; each material
point has its own independent motion; hence, a relative velocity
between the fluid and solid may be defined. In the finite element
code implementation, the solid constituent is described in a mate-
rial frame and the fluid constituent in a spatial frame. Hence, the
finite element mesh follows the motion of the solid (i.e., each
finite element node or integration point describes a solid material
point), whereas the fluid flows past these material points with a
relative velocity. The mixture framework provides the foundation
for evaluating material time derivatives in a material frame for the
solid and in a spatial frame for the fluid. In our FSI formulation,
we model the fluid domain as a special case of a biphasic medium
where the porous solid domain is assumed to have negligible stiff-
ness, zero mass, and zero friction with the viscous fluid. The role
of the porous solid is to define the now deformable mesh through
which the fluid flows and to transfer the deformations and trac-
tions imposed across solid–fluid interfaces to surrounding solid
domains. These surrounding solid domains may deform due to
conditions prescribed on their boundaries and as a result of the
tractions generated by the fluid along the fluid–solid interfaces.
Boundary conditions may also be prescribed directly on the fluid
domains, such as moving boundaries. As such, our fluid-FSI for-
mulation belongs to the family of ALE schemes; however, the

spatio-temporal discretization of the mixture domain employs fun-
damental concepts of mixture theory, using the material time
derivative following the motion of the mesh to considerably sim-
plify the governing equations and FSI finite element formulation.

2 Finite Element Implementation

In our formulation, the fluid domain is strictly a solid–fluid
mixture; we denote this domain by Xf and call it the fluid-FSI
domain to emphasize that its mesh is deformable. In the current
implementation, this domain may be surrounded by one or more
impermeable solid domains Xs whose material may be hyperelas-
tic, viscoelastic, or even rigid, undergoing large deformations or
motions. The movable and deformable interfaces between Xf and
Xs are denoted by Cfs; these represent the boundaries across which
fluid–structure interactions occur. The remaining boundaries of Xf

are denoted by Cf; these boundaries may also move and deform.
In most applications, the solid meshes of Xf and Xs may be contin-
uous across Cfs, meaning that the finite elements of these domains
share common nodes and solid displacement degrees-of-freedom
on Cfs. However, it is also possible to model Cfs as tied interfaces
joining disparate meshes, making it easy to select different ele-
ment types or mesh refinements for Xf and Xs, though we do not
examine this specific implementation here. The derivations pre-
sented below address the analysis of the fluid-FSI domains Xf; the
analysis of domains Xs was described previously [20].

2.1 Governing Equations. We model the domain Xf as a
mixture of an isothermal compressible viscous fluid and an iso-
thermal hyperelastic compressible porous solid, where the solid
motion represents the mesh motion. The solid constituent has zero
mass density (qs¼ 0), and negligible (but nonzero) elasticity to
regularize the mesh motion. The fluid flows through this mesh,
unimpeded by the porous solid. In particular, in this FSI model,
there is no frictional interaction between the fluid and solid mate-
rials inside the mixture domain (i.e., no Darcy-Brinkman type of
friction), but the no-slip boundary condition may be prescribed on
boundaries Cfs of the mixture domain, where applicable.

The momentum balance of the fluid is

qf af ¼ divrf þ qf b (2.1)

where qf is the fluid density, rf is the fluid Cauchy stress, b is the
body force per mass acting on the fluid, and af is the fluid acceler-
ation, given by the material time derivative of the fluid velocity v

f

in the spatial frame

af ¼ @vf

@t
þ Lf � vf (2.2)

where Lf ¼ grad vf is the fluid velocity gradient. Since there are
no interactions between the fluid and porous solid in our FSI
implementation, the interactive momentum supply term that nor-
mally appears in the momentum balance equation of a mixture
constituent [55] is set to zero. In principle, the same form of the
momentum equation may be used for the solid as that of Eq. (2.1)
(substituting f with s). However, since we are assuming that
qs¼ 0, the momentum for the solid reduces to

div rs ¼ 0 (2.3)

where rs is the solid Cauchy stress (the stress caused by the mesh
deformation).

We model the fluid as isothermal and compressible, consistent
with our earlier CFD implementation [29]. Thus, the fluid stress
may be separated into the elastic (thermodynamic) pressure p(Jf),
which only varies with the fluid volume ratio Jf as required by the
axiom of entropy inequality, and the viscous stress sðJf ;Lf Þ

rf ¼ �pIþ s (2.4)
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As done in our CFD solver [29], we integrate the mass balance for
the fluid to produce

qf ¼ qf
r

Jf
(2.5)

where qf
r is a material constant representing the fluid density in

the reference state (e.g., under ambient pressure) and Jf ¼ detFf

is the Jacobian of the fluid deformation, where F
f is the fluid

deformation gradient. Since we have introduced Jf as an additional
kinematic variable, we need to solve for it using the kinematic
constraint between Jf and the fluid velocity v

f

@Jf

@t
þ grad Jf � vf ¼ Jf div vf (2.6)

expressed here in the spatial frame; this relation is derived by tak-
ing the material time derivative of F

f following the fluid motion.
The mesh of the fluid-FSI domain is defined on the solid com-

ponent of the mixture. Therefore, we denote the relative velocity
between the fluid and solid by

w ¼ vf � vs (2.7)

(This term is generally called the convective velocity c in standard
ALE formulations [56].) Since the solid constituent has zero vol-
ume fraction in this specialized mixture, based on our assumption
that the solid has zero mass density, this expression also repre-
sents the volumetric flux of fluid relative to the solid. We choose
to define the nodal DOFs in the mixture domain Xf to be the rela-
tive fluid velocity w, the fluid dilatation ef¼ Jf� 1, and the solid
displacement u, which is related to the solid velocity via vs ¼ _u,
with the dot operator denoting the material time derivative follow-
ing the motion of the solid. All three nodal degrees-of-freedom
represent kinematic variables describing the motion and deforma-
tion of fluid and solid constituents of Xf. The choice of w is moti-
vated by the fact that the no-slip condition can be prescribed
easily on interfaces Cfs by letting w¼ 0. The choice of ef instead
of Jf is motivated by the fact that initial and boundary conditions
ef¼ 0 are more convenient to handle in a numerical scheme than
Jf¼ 1. (For notational convenience, we will continue using Jf in
the equations below, instead of ef.) Thus, the fluid velocity has to
be evaluated from the nodal DOFs using

vf ¼ wþ vs (2.8)

It follows that the fluid velocity gradient also needs to be obtained
from

Lf ¼ Lw þ Ls (2.9)

where Lw ¼ grad w and Ls ¼ grad vs. The fluid acceleration may
now be rewritten in terms of the DOFs as

af ¼ _wþ _vsþðLw þ LsÞ � w (2.10)

where

_vs ¼ @vs

@t
þ Ls � vs

_w ¼ @w

@t
þ Lw � vs

(2.11)

are the material time derivatives of the solid and relative fluid
velocities in the spatial frame, following the motion generated by
vs [55]. We conveniently use this material time derivative (instead
of the material time derivative following the motion generated by
v

f, which was employed in Eqs. (2.2) and (2.6)) since we define
the mesh of Xf on the solid constituent. Subsequently, when we
evaluate integrals over finite element domains defined in the mate-
rial frame of the solid, these material time derivatives following
the motion generated by vs conveniently reduce to partial time

derivatives in the solid material frame. This ability to distinguish
among material time derivatives following the motions of various
mixture constituents is a strength of the mixture framework and
one of the primary reasons for adopting it here. A similar scheme
was used in our previous implementation of solute transport
within deformable porous domains, to account for the motion of
solutes relative to the porous solid matrix [25,54].

Similarly, the kinematic constraint relating Jf and v
f may be

rewritten as

_J
f þ grad Jf � w ¼ Jf divðwþ vsÞ (2.12)

where

_J
f ¼ @Jf

@t
þ grad Jf � vs (2.13)

is the material time derivative of Jf in the spatial frame, following
the motion generated by v

s. Finally, as done in our prior studies of
biphasic and multiphasic materials [25,26,54], we find it numeri-
cally more accurate to use the kinematic identity

div vs ¼
_J
s

Js
(2.14)

wherever divvs appears in the governing equations, where Js ¼
detFs is the Jacobian of the solid deformation and Fs ¼
Iþ Grad u is the solid deformation gradient.

In summary, our governing equations for the mixture domain
Xf are

div rs ¼ 0 ;

qf af ¼ div rf þ qf b ;

1

Jf
_J
f þ grad Jf � w

� �
¼ div wþ

_J
s

Js

(2.15)

where af is given by Eq. (2.10) and rf by Eq. (2.4).

2.2 Virtual Work and Weak Form. The virtual work state-
ment is dW¼ 0, where the virtual work integral for a Galerkin
finite element formulation [57] is given by

dW ¼
ð

Xf
dvs � div rs dv

þ
ð

Xf
dw � div rf þ qf b� afð Þ

� �
dv

�
ð

Xf
dJf 1

Jf
_J
f þ grad Jf � w

� �
� div w�

_J
s

Js

� �
dv (2.16)

These integrals are evaluated in the current configuration of Xf;
dvs is the virtual solid velocity, dw is the virtual relative fluid
velocity, and dJf is the virtual fluid energy density (see explana-
tion of dJf in the Appendix of Ref. [29]). Using the divergence
theorem, the weak form of this statement may be written as the
difference dW¼ dWext� dWint between the external virtual work
dWext and the internal virtual work dWint, where

dWint ¼
ð

Xf
rs : grad dvs dv

þ
ð

Xf
s : grad dw dvþ

ð
Xf

dw � grad pþ qf af
� 	

dv

þ
ð

Xf
dJf 1

Jf
_J
f þ grad Jf � w

� �
�

_J
s

Js

� �
dv

þ
ð

Xf
w � grad dJf dv ; (2.17)
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and

dWext ¼
ð
@Xf

dvs � ts da

þ
ð
@Xf

dw � ts daþ
ð

Xf
dw � qf b dv

þ
ð
@Xf

dJf wn da : (2.18)

Recall that @Xf ¼ Cf [ Cfs. In the expression for dWext, we note
that ts ¼ rs � n is the solid traction, ts ¼ s � n is the fluid viscous
traction, and wn ¼ w � n is the normal component of the relative
fluid velocity on the boundary @Xf, whose outward unit normal is
n. These variables represent the natural boundary conditions for
this formulation. If boundary conditions are not set explicitly on
@Xf or portions thereof, the natural boundary conditions are thus
ts¼ 0, ts¼ 0 and wn¼ 0. Essential boundary conditions are pre-
scribed on the solid displacement u, relative fluid velocity w, and
fluid dilatation ef. In particular, a no-slip boundary condition may
be prescribed on Cfs by setting w¼ 0. A symmetry plane may be
prescribed with the essential boundary condition un � u � n ¼ 0
and the natural boundary conditions ts¼ 0 and wn¼ 0.

Since we need some small elasticity to produce a nonzero rs

and regularize the deforming mixture mesh in Xf, prescribing u on
@Xf may produce a negligible but nonzero solid traction, t

s � 0 on
that portion of the boundary. In general, the mixture traction is
defined as t ¼ ts þ tf , where tf ¼ rf � n ¼ �p nþ ts is the fluid
traction. Because of the way we chose to split the internal and
external virtual work in Eqs. (2.17) and (2.18), neither t nor tf is a
natural boundary condition in this formulation. A desired value
for t

f may be prescribed using a combination of the natural bound-
ary condition ts and the essential boundary condition Jf such that
p(Jf) produces the desired elastic pressure.

Similarly, a desired value of t is prescribed by setting the values
of t

s (natural) and t
f (combination of natural and essential). There

are two general scenarios where t needs to be prescribed in this
manner: (1) When a fluid boundary Cf represents a free surface
(such as the fluid surface in channel flow), the mixture traction
should be set to zero on that boundary, t¼ 0. In that case, it is nec-
essary to explicitly enforce ts¼ –tf as a traction boundary condi-
tion on the solid constituent. Both of these tractions will have
negligibly small magnitudes; nevertheless, this condition must be
enforced explicitly to impart the free fluid surface its natural
shape. (2) At a fluid–solid interface Cfs, the mixture traction t act-
ing on this interface must be equal and opposite to the traction act-
ing on the surrounding solid domain Xs. Since u is continuous
across Cfs, either due to shared nodes or the enforcement of a tied
interface, it is only necessary to supplement the traction on Xs

with –t
f.

For both of these cases, the resulting virtual work on the solid
domain is

dF ¼ �
ð

Cfs
dvs � tf da ¼ �

ð
Cfs

dvs � rf � n da ; (2.19)

where the elemental area da on Cfs may be evaluated from the
covariant basis vectors ga (a¼ 1, 2),

da ¼ jg1 � g2j dg1dg2 (2.20)

where

ga ¼
@x g1; g2
� 	
@ga

(2.21)

and xðg1; g2Þ is the parametric representation of Cfs, defined on
the solid constituent. The outward normal n to Xf on Cfs is eval-
uated from

n ¼ g1 � g2

jg1 � g2j
(2.22)

As a result, the virtual work can be rewritten as

dF ¼ �
ð

Cfs
dvs � rf � ðg1 � g2Þ dg1dg2 (2.23)

In FEBIO, this boundary condition is called fluid-FSI traction,
which the user must explicitly prescribe on deformable interfaces
Cfs.

2.3 Linearization and Spatial Discretization. The solution
of the nonlinear equation dW¼ 0 is obtained by linearizing this
relation as

dW þ DdW½Du� þ DdW½Dw� þ DdW½DJf � � 0 (2.24)

where the operator DdW½�� represents the directional derivative of
dW at ðu;w; Jf Þ along an increment D u of u, D w of w, or DJf of
Jf [57]. The details of this linearization are presented in Sec. S3
available in the Supplemental Materials on the ASME Digital
Collection. The constitutive relations employed in our formulation
are described in Sec. S4 available in the Supplemental Materials
on the ASME Digital Collection. The spatial discretization in
terms of nodal degrees-of-freedom is also presented in Sec. S5
available in the Supplemental Materials on the ASME Digital
Collection. In addition, the temporal discretization is presented in
Sec. S6 available in the Supplemental Materials on the ASME
Digital Collection. The linearization of the FSI interface traction,
along with specialized boundary conditions, which were defined
for a fixed CFD domain in our previous study [29], such as back-
flow and tangential stabilization and flow resistance, is also reder-
ived in Sec. S7 available in the Supplemental Materials on the
ASME Digital Collection to account for moving boundaries in an
FSI analysis. Details on the FSI solver itself are included in Sec.
S8 available in the Supplemental Materials on the ASME Digital
Collection. Finally, we describe the verification of fluid mass con-
servation based on our governing equations in Sec. S9 available in
the Supplemental Materials on the ASME Digital Collection.

3 Verification and Validation

In this section, we report the results of selected FSI benchmark
problems described in the paper by Bathe and Ledezma [58].
These problems investigated how well our formulation handles
the strong coupling of the fluid and solid domain, moving bounda-
ries, large deformations with the fluid and solid domains, and solid
domains sandwiched by two fluid domains. We also replicated the
free-surface wave propagation problem analyzed by Hughes et al.
[33] and analyzed energy dissipation for various values of q1.
We supplemented these benchmark problems with the modeling
of squeeze-film lubrication between flat parallel plates for which
an analytical solution can be obtained by solving the Reynolds
equation [59]. We also used this problem to show mesh conver-
gence by comparing with the analytical solution. Then, we illus-
trated the capabilities of FEBIO with a model of the bifurcated
carotid artery where the arterial wall was an anisotropic, heteroge-
neous, multilayered, and fiber-reinforced composite (two fiber
families) described by Holzapfel’s material model [60]; we mod-
eled the blood as a Carreau fluid, to illustrate that our formulation
can easily account for non-Newtonian behavior. We also illus-
trated one case where adipose tissue was used to constrain the
bifurcated artery, as occurs physiologically. We also examined
the importance of using realistic boundary conditions to achieve
physically meaningful results, which also demonstrated the flexi-
bility that FEBIO has to offer with material models and boundary
conditions. Finally, we reported a validation of our FSI implemen-
tation by comparing model predictions and experimental
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measurements of the flow rate in a peristaltic pump, at different
angular velocities of the rollers. This example emphasized the
incorporation of rigid bodies and contact algorithms within the
FSI module. Unless specified otherwise, all analyses were tran-
sient, using a Newtonian fluid with zero bulk viscosity and q1¼ 0
for the generalized-a time integration scheme; the solid constitu-
ent of Xf used a compressible Neo-Hookean material [57] with
Young’s modulus E¼ 10�9 Pa, and Poisson’s ratio �¼ 0.

Equations were solved using Newton’s method with Broyden
updates; solver settings were the same as described in our recent
CFD study [29] (also see Supplemental Materials on the ASME
Digital Collection.).

3.1 One-Dimensional Slip Piston. This 1D analysis exam-
ined the strong coupling between the fluid domain Xf and the solid
domain Xs at the interface Cfs [58]. Details of the model geometry,
boundary conditions, and material properties can be found in Fig.
9 of Ref. [58]. Briefly, a deformable Mooney–Rivlin elastic solid
piston pushes a column of fluid out of an opening, which is kept at
ambient (zero) pressure (Fig. 1); the back of the elastic solid pis-
ton is imparted a linearly increasing velocity and the fluid slips
along the walls of its domain. The displacement and velocity of
the fluid–solid interface Cfs, and the mixture traction normal to
Cfs, were examined and compared between FEBIO and Fig. 10 of
Ref. [58]. The FEBIO model had 48 nodes, 11 elements, and 124
degrees-of-freedom. Results are shown in Fig. 2, demonstrating
good agreement for all three measures.

3.2 Moving Boundary Piston-Cylinder Problem. This
moving boundary problem was described in Fig. 5 of Ref. [58]. It
only includes a fluid domain Xf, consisting of the cylindrical
chamber of a piston-cylinder system, feeding into a narrower sta-
tionary cylindrical tube; only one-quarter of the geometry was
modeled to take advantage of symmetry (Fig. 3). In the FEBIO

model there were 12,073 nodes, 10,080 elements, and 73,941
degrees-of-freedom. All walls were nonslip and the end of the nar-
row tube was kept at ambient (zero) pressure. The wall represent-
ing the piston surface moved at a constant velocity. The fluid
pressure and axial fluid velocity along the centerline of the cylin-
drical geometry were examined and compared between FEBIO and
Fig. 6 of Ref. [58]. Results are shown in Fig. 4, demonstrating
good agreement at all reported time points.

3.3 Bubble Inflation Problem. This bubble inflation problem
was described in Fig. 13 of Ref. [58]. It tests for large deforma-
tions in both fluid and solid domains. It includes two fluid
domains, Xf

top and Xf
bot, separated by a thin Mooney–Rivlin elastic

solid domain Xs discretized with solid (hexahedral) elements
(Fig. 5). The left, right, and top surfaces of Xf

top were exposed to
ambient conditions (zero pressure), whereas the bottom surface of
Xf

bot was subjected to a fluid pressure that increased linearly with
time. No-slip conditions were imposed on the bottom wall of Xf

top,
the side walls of Xf

bot, and the fluid–solid interfaces Cfs
top and Cfs

bot

on both sides of Xs. The model was run with time-step
Dt¼ 0.001 s until t¼ 0.25 s. The FEBIO model had 26,276 nodes,
12,842 elements, and 127,646 degrees-of-freedom. The mesh
deformation at the final time point is shown in Fig. 5 and may be

Fig. 1 One-dimensional slip piston analysis, showing the
mesh at times t 5 0, 3, 7, and 10 s. A constant velocity was pre-
scribed on the left boundary of Xs and the fluid pressure was
set to zero at the right boundary of Xf. The side walls of Xf were
set to slip.

Fig. 2 One-dimensional slip piston analysis, comparing FEBIO

results with those of Bathe and Ledezma [58] for the displace-
ment, velocity, and normal traction at the fluid–solid
interface Cfs

Fig. 3 Moving boundary piston-cylinder problem, showing the
mesh of the quarter model at times t 5 0, 100, and 195 s. The
fluid pressure was set to zero at the rightmost boundary of the
outlet tube. The piston face, represented by the moving bound-
ary, was imparted a constant velocity. All internal faces of the
piston cylinder and tube were set to no-slip.
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compared to Fig. 13 of Ref. [58]. The time evolution of the maxi-
mum principal stretch and vertical displacement at the membrane
center were compared between FEBIO and Fig. 14 of Ref. [58],
showing good agreement (Fig. 6).

3.4 Free Surface Wave. This problem examined the ability
of our formulation to model free-surface wave propagation by rep-
licating the problem described by Hughes et al. [33]. This moving
boundary problem modeled an experiment on solitary wave gener-
ation in a long channel, subjected to the force of gravity, with the
wave generated by smoothly displacing the left end of the channel
over a finite distance. Hughes et al. [33] examined two coarse

meshes, and we replicated their second one here (see their Fig. 4),
having two elements along the height and 161 elements along the
length of the channel (Fig. 7) for a total of 972 nodes, 322 ele-
ments, and 4206 degrees-of-freedom. All other parameters and
dimensions were kept the same as in that study, including the
large time increment they used; the fluid was modeled as inviscid.
In this problem, the top surface of the channel is the free surface
on which we imposed a fluid-FSI traction. In addition to compar-
ing FEBIO results to those of Ref. [33], we used this problem to
examine energy conservation as a function of q1 in the general-
ized-a time integration scheme. The energy was calculated as the

Fig. 4 Moving boundary piston-cylinder problem, comparing
FEBIO results with those of Bathe and Ledezma [58] for (a) the
fluid pressure and (b) the axial fluid velocity, along the center-
line of the piston cylinder and tube at times t 5 40, 100, and 160

Fig. 5 Bubble inflation problem, showing mesh in reference configuration (left) and final con-
figuration at time t 5 0.25 (right). The pressure was prescribed as a linearly increasing function
of time p0(t) at the bottom face of Xf

bot.

Fig. 6 Bubble inflation problem, comparing FEBIO results to
those of Bathe and Ledezma [58] for (a) the vertical displace-
ment and (b) the first principal stretch of the top of the bubble
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sum of the potential and kinetic energies of the fluid over the
entire domain Xf, plus the strain energy of the solid constituent of
Xf, though the latter was entirely negligible in this analysis.
Results showed good agreement between FEBIO (q1¼ 1) and the
prior study [33] for the propagating wave profile at the midpoint
and endpoint of the analysis (Fig. 7), and for the propagating
wave velocity, which was in theory predicted to be 3.295 unit
length/s, while in FEBIO, it was calculated to be 3.290 unit length/s.
Energy conservation was improved as q1 was increased from 0 to
1 (Fig. 8), with the latter value demonstrating exact conservation,
as expected from this time integration scheme.

3.5 Squeeze-Film Lubrication Between Flat Parallel
Plates. A squeeze-film lubrication problem was analyzed with
FEBIO, and the results were compared to an analytical solution of
the Reynolds equation [59]. We looked specifically at a pair of
parallel plates, squeezing a Newtonian lubricant along the

direction normal to the plates. The analytical solution for the fluid
pressure p and fluid shear stress s acting on the top plate is
given by

p x; tð Þ ¼
3ll2w

2h3 tð Þ 1� 4X2ð Þ (3.1)

s x; tð Þ ¼ �
6lwx

h2 tð Þ (3.2)

where x is the position with respect to the midpoint along the
length of the plates, l is the plate length, X¼ x/l is the normalized
position from the center of the plates (varying from �0.5 to 0.5),
l is the shear viscosity of the lubricant, h(t) is the lubricant film
thickness, and w¼ dh/dt is the speed at which the top plate is
approaching the bottom plate. The mass flow rate of fluid exiting
the parallel plate domain, per unit depth, is _m ¼ qlwd.

The top plate was prescribed a normal velocity w while the bot-
tom plate was fixed, with the fluid domain spanning the space
between these two surfaces and no-slip conditions prescribed
along the plates. The converged mesh had 30 elements along the
film thickness, with a dual bias to capture boundary layers near
both surfaces, and 450 elements uniformly distributed along the
length of the plates, for a total of 27,962 nodes, 13,500 eight-node
hexahedral elements, and 133,372 DOFs. The fluid material prop-
erties were set to K¼ 1013 Pa to enforce near-incompressibility
(consistent with the given analytical solution), qf

r ¼ 862:9 kg=m3,
and l¼ 0.20889 Pa�s, using the properties of SAE 10W-40 engine
oil at 20 �C.3

For our model, we chose l¼ 1 m and w¼ 90 lm/s. The analysis
spanned 10 s (0	 t	 10) such that h(0)¼ 1 mm and
h(10)¼ 0.1 mm, with the top plate displacing until the film thick-
ness decreased to 0.1 mm. The time-step was set to Dt¼ 0.05 s.
The peak fluid pressure, p(0, t), and the fluid shear stress at the
final time, s(x, 10), were compared with the above analytical solu-
tions, showing good agreement (Fig. 9). The finite element

Fig. 7 Free surface wave problem using an inviscid fluid, showing (a) the mesh at t 5 0 and
color contours of the normalized vertical displacement at the midpoint (t 5 143.1 s) and end-
point (t 5 286.2 s) of the analysis; and (b) a comparison of FEBIO results and those of Hughes
et al. [33] for the normalized vertical displacement versus normalized horizontal positions

Fig. 8 Free surface wave problem, showing the sum of poten-
tial and kinetic energies of the fluid over the entire domain Xf

for various values of q‘. Increasing values of q‘ demonstrate
improved energy conservation, with ideal results achieved at
q‘ 5 1. The total energy is normalized to the steady-state value
achieved under ideal conditions.

3https://wiki.anton-paar.com/en/engine-oil
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solution for the pressure distribution p(x, t) at selected values of t
was also compared to the analytical solution (Fig. 10). Good
agreement was found between theory and FEBIO for the whole
range of x at all selected times.

Mesh convergence was verified using progressively finer
meshes, comparing the peak pressure at the final time point, p(0,
10), to the analytical solution as shown in Fig. 11. The relative
error was shown to decrease at the rate of 1/(# of elements). We
also verified that the mass flow rate of the oil being squeezed out
of the plates matched the theoretical value, from the coarsest
mesh density (0.049% error with 135 elements) to the finest
(
 10�5% with 24,000 elements).

3.6 Carotid Bifurcation. This problem analyzed a bifurcated
carotid artery with thick arterial wall and non-Newtonian blood,
surrounded by an adipose tissue matrix in one of the test cases, to
illustrate the various features available in FEBIO, such as fiber-
reinforced constitutive models for the arterial wall and the ability
to interface dissimilar meshes using a tied contact interface. The
artery model was obtained from the GrabCAD community,4 simi-
lar to Ref. [29]. It was converted into the length unit of meter and
meshed to include a boundary layer refinement using four-node
tetrahedral elements, defining the fluid domain Xf (163,771 ele-
ments). Blood was modeled as a Carreau fluid, using the parame-
ters from Ref. [61], where viscosity is calculated as

l ¼ l1 þ l0 � l1ð Þ 1þ k_cð Þ2
h in�1

2

(3.3)

where l is viscosity, l1 is viscosity at infinite shear rate, l0 is vis-
cosity at zero shear rate, k is the characteristic time, _c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D : D
p

is the shear rate, and D is the rate of deformation (symmetric part
of L), and n is the power index. Blood properties were set to
qf

r ¼ 1 060 kg=m3; l0 ¼ 0:056 Pa � s; l1 ¼ 0:00345 Pa � s,
k¼ 3.313 s, n¼ 0.3568, and K¼ 2.2� 109 Pa. The inlet (Cf

in) had
a diameter of 6.28 mm and the two outlets (Cf

lg and Cf
sm) had

respective diameters of 4.26 mm and 3.04 mm.
The arterial wall was created by extruding the outer surface of

the artery twice, with the tunica media given a thickness of
0.33 mm and the tunica adventitia a thickness of 0.17 mm, for a
total arterial wall thickness of 0.5 mm. These domains corre-
sponded to Xs

med and Xs
adv. The intima layer was not modeled

explicitly, as it was assumed to provide a negligible contribution
to the mechanical behavior of the arterial wall. Thus, the
fluid–structure interface Cfs was located between Xf and Xs

med. All
elements in the arterial wall consisted of six-node pentahedra
(15,424 elements in each of Xs

med and Xs
adv).

The arterial wall constitutive model proposed by Holzapfel
et al. was used [60], which models the tissue as a fiber reinforced
composite with two fiber families. The material properties used
here were obtained from Ref. [62] for the mean values of the
human common carotid at the lower pressure range:
c¼ 122,300 Pa, k1¼ 24,700 Pa and k2¼ 16.5 in the media;
c¼ 59,600 Pa, k1¼ 180,900 Pa, and k2¼ 109.8 in the adventitia.
The fiber families formed an angle of 66.9 deg in the media
and 630.1 deg in the adventitia relative to the circumferential
direction, which was determined at each element from the
local direction of maximum principal curvature of the outer sur-
face of each layer. In addition, we set qs¼ 1000 kg/m3 for the
dynamic response of the solid domains Xs

med and Xs
adv, and used a

bulk modulus of 108 Pa to enforce a nearly incompressible
response.

For the fluid domain, an inlet velocity v ¼ vnn was prescribed
on Cf

in having a parabolic spatial profile, and an average value
v0(t) whose time history is shown in Fig. 12, rising from a dia-
stolic plateau of 0.10 m/s to a systolic maximum of 0.48 m/s in
three consecutive cycles (Re¼ 165–800). A flow resistance
boundary condition [29,63] was prescribed on both outlet faces
Cf

lg and Cf
sm, with R ¼ 4� 108 kg=m4 � s and a pressure offset

p¼ 104 Pa. The inlet velocity was initially ramped up smoothly
from zero to the diastolic value in 0.05 s, while the outlet pressure
offset was ramped up smoothly over 0.25 s, to minimize the
effects of pulse waves propagating in opposite directions from the
inlet and outlets. Similarly, backflow and tangential stabilization
[29,64] were prescribed on outlet faces Cf

lg and Cf
sm, with b¼ 1.

(Also, see Supplemental Material on the ASME Digital Collec-
tion.) A fluid dilatation corresponding to a pressure p¼ 104 Pa
was prescribed at the inlet rim to enhance the stability of the
numerical solution, ramped up smoothly in 0.25 s. The interface
Cfs was assumed to be no-slip and subjected to a fluid-FSI trac-
tion. Three different models were analyzed to explore the influ-
ence of various boundary conditions needed to restrain the motion
of the solid domains Xs

med and Xs
adv as the blood flowed under the

conditions described above. In model A, the artery was embedded
within a rectangular block (60 mm� 30 mm� 20 mm) of subcuta-
neous adipose tissue modeled as a compressible Neo-Hookean
solid [57] with qs¼ 1000 kg/m3, E¼ 1.17� 104 Pa, and �¼ 0.3
[65]. The adipose tissue domain Xs

adt was created by Boolean sub-
traction of the artery from the block and meshed coarsely (77,314
four-node tetrahedral elements) relative to the arterial domains
(Xf [ Xs

med [ Xs
adv), as shown in Fig. 13. The interface Cs between

Xs
adv and Xs

adt was modeled as a tied contact interface [28]. The
displacements of the walls of the adipose tissue were fixed. In
model B, the artery was constrained by fixing the displacements
of all nodes located on the inlet and outlet surfaces, inclusive of
the fluid and solid domain boundaries. In model C, the artery was
constrained by fixing only the displacements of nodes located on
the inlet surface. Given these model configurations and boundary
conditions, models A–C had a total of 273,127, 236,635 and
237,778 degrees-of-freedom, respectively. The models were set to
run 1550 time steps with Dt¼ 1 ms.

Fig. 9 Squeeze-film lubrication between flat parallel plates:
Comparison of FEBIO results against the analytical solution of
the Reynolds equation for (a) peak fluid pressure p(0, t) at the
center of the plate, over the entire duration of the analysis
(0 £ t £ 10 s), and (b) shear stress s(x, 10) along the entire
length of the plate at the final time

4https://grabcad.com/library/carotid-bifurcation
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For model A, upon raising the fluid velocity from zero to the
diastolic plateau of 0.10 m/s, the mass of fluid in domain Xf

increased by approximately 15% relative to the reference configu-
ration at t¼ 0 due to inflation of the artery, thus providing a mea-
sure of the arterial wall compliance in response to the diastolic
pressure (10.7 kPa in this model). At the peak systolic pressure
(13.8 kPa), the fluid mass was approximately 17% higher than that
of the reference configuration. The magnitude of the fluid velocity
on a cross section and the first principal stress rs

max on the outer
surface of the adventitia are displayed in Fig. 14 for model A at
systole of the second cycle (t¼ 0.87 s, Fig. 12). Similarly, rs

max is
displayed for model B, showing that the different methods of con-
straining the outer surfaces of the artery resulted in measurable
quantitative differences in the stress response and arterial defor-
mation. Despite those differences, it is interesting that the simpler
constraints of model B did not produce drastically different out-
comes than the more computationally expensive constraining
method of model A, suggesting that it may represent a viable type
of constraint in some applications. In contrast, the over-simplified
constraint of model C produced a highly unstable response, as
seen in Fig. 15, where the artery folded onto itself due to the
strong effects of inertia forces as the blood rushed into the artery

during the initial ramping of the inlet velocity (0	 t	 0.168 s).
This result emphasizes that the modeling of fluid–structure inter-
actions challenges users to develop better intuition for setting up
physically realistic boundary conditions when the fluid and solid
interact strongly. In addition to the above models used for explor-
ing solid boundary constraints, we also examined the effect of
simplifying the constitutive model of the arterial wall by neglect-
ing the role of fibers and assuming homogeneous properties across
the media and adventitia (model D), or by assuming that the arte-
rial wall was rigid (model E, which is a standard CFD analysis
with only a fluid domain). For model D, which used the same
boundary conditions as model A, we used c¼ 97,000 Pa (volume
weighted average of media and adventitia ground matrix proper-
ties of model A), qs¼ 1000 kg/m3, and a bulk modulus of
5� 107 Pa to enforce near incompressibility. Model E used the
same conditions on the boundaries of Xf as model A.

Overall, we found that the fluid maximum wall shear stress
smax achieved its largest value at systole, equal to 45.9 Pa in model
A, 34.6 Pa in model D, and 46.0 Pa in model E. Also, the arterial
wall responses in models A and D were significantly different
from each other. In model D, the mass of fluid at diastole
increased by 59% relative to the reference configuration, and at

Fig. 10 Squeeze-film lubrication of flat parallel plates: Comparison of FEBIO fluid pressure
results against the analytical solution of the Reynolds equation, as a function of normalized
length X, at selected time points

Fig. 12 Prescribed average inlet velocity of bifurcated artery.
Note that inlet is set to be parabolic, fully developed flow and
the pulsatile flow runs for three cycles.

Fig. 11 Mesh convergence study of squeeze-film lubrication
between flat parallel plates, showing relative error of peak pres-
sure at center of plate at t 5 10 s as a function of the number of
elements in the mesh
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systole by 83%, confirming much greater compliance of the arte-
rial wall in the absence of fiber reinforcement. The peak value of
rs

max at systole was 1.52 MPa for the adventitia and 0.176 MPa for
the media in model A, while it was 0.268 MPa for model D. Simi-
larly, the peak value of the first principal stretch in the arterial
wall was 1.14 for model A and 1.80 for model D. From these
results, it is evident that the stiffening of the fibers in the Holzap-
fel model had a significant effect in the expansion and stress
response of the arterial wall, primarily in the circumferential
direction. As a result of the vascular wall stiffness, smax was very
similar in FSI model A and CFD model E, but significantly under-
estimated in the softer FSI model D.

In addition, we verified mass conservation in model A by exam-
ining the mass flow rate,

Ð
Cf qf w � n da, across the inlet and outlets,

and the time rate of change of total fluid mass m ¼
Ð
Xf qf dv in the

arterial lumen, as shown in Fig. 16. Taking the sum of all these
mass flow rates produced an error less than 1.15% relative to the
peak inlet mass flow rate across the entire analysis time, verifying
that mass was sufficiently well conserved in this simulation.

3.7 Peristaltic Pump. The dimensions of a peristaltic pump
(Manostat Vera Model No. 72-315-000) were measured and used
to model the main pump elements within FEBIO. The pump
(Fig. 17) consisted of a flexible tubing backed by a semicircular
pump casing (radius¼ 31.17 mm) beginning and ending with lin-
ear segments to align the inlet and outlet portions of the tubing.
Three rollers (diameter¼ 14.33 mm) were spaced equally apart on
a circle with radius¼ 21.37 mm, initially offset by 2.1275 mm to
the left of the semicircular casing center. The tubing (Tygon R-
3603), which had an outer diameter of 4.7625 mm and an inner
diameter of 1.3875 mm, was modeled as a compressible Neo-
Hookean elastic solid (Xs

tub) with qs ¼ 1180 kg=m3; E ¼ 4:5 MPa
and �¼ 0.4, as obtained from the manufacturer’s material specifi-
cations. The angular velocity x of the rollers was varied in the
analysis (2.202 	 x 	 5.398 rad/s). Deionized water was used as
the pumped fluid, with qf

r ¼ 1000 kg=m3; l ¼ 0:001 Pa � s, and
K¼ 2.2� 109 Pa in Xf. To validate the FEBIO model, the mass flow
rate of the pump was obtained experimentally over the given
range of x; in the experiment, the tubing inlet was placed in a
large diameter beaker of water of nearly constant height
h¼ 2.6 cm, resulting in an inlet gage pressure of p¼ 255 Pa.

The inner tube wall, Cfs, was assumed to be no-slip and was
prescribed a fluid-FSI traction. The displacements of the tubing
faces (Cf and Cs) at the pump inlet and outlet were clamped. The
tubing was extended by 20 cm beyond the pump inlet and outlet,
and the displacements of those ends were also fixed. The inlet
pressure was set to 255 Pa and the outlet pressure was set to zero.
The rollers and pump casing were modeled as rigid materials; the
casing was modeled as a rigid body with fixed degrees-of-freedom
and the rollers were combined into another rigid body whose
angular velocity was set to x, and all other degrees-of-freedom
fixed. A frictionless elastic sliding contact interface [28] was pre-
scribed between the tubing outer wall and the pump casing; a sim-
ilar contact interface was prescribed between the tubing outer wall
and the rollers such that the tubing could be compressed and con-
strained within the pump casing. Backflow and tangential stabili-
zation schemes were prescribed for both the inlet and outlet
boundaries of the tubing (b¼ 1). The flow was also constrained to
remain normal to the inlet boundary.

The time steps were set to Dt¼ 2.5 ms for a total analysis time
of 2.5 s, allowing for several roller passes along the tube. For the

Fig. 13 (a) Mesh of bifurcated carotid artery, showing fluid domain Xf in red, tunica media
Xs

med in cyan, and tunica adventitia Xs
adv in yellow. (b) For model A, the artery was embedded

in a rectangular box representing subcutaneous adipose tissue Xs
adt, with a relatively coarser

mesh. The interface Cs between Xs
adv and Xs

adt was modeled as a tied contact interface.

Fig. 14 Fluid velocity magnitude and first principal stress on
the outer surface of the arterial wall, at systole in the second
cycle (t 5 0.87 s). The arterial wall has heterogeneous proper-
ties in the media and adventitia, described by the fiber-
reinforced constitutive model of [60]. In (a), the arterial wall is
surrounded by subcutaneous adipose tissue, whose outer
boundaries are fixed. In (b), the inlet and outlets are fixed and
there is no surrounding external matrix.
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first 0.25 s, the roller offset was shifted rightward to increase
occlusion of the tubing before rotation commenced. The FEBIO

model of the peristaltic pump assumed midplane symmetry for
computational efficiency. Linear hexahedral and pentahedral ele-
ments were used for all domains. There were 43,910 nodes,
38,334 elements, and 273,021 degrees-of-freedom in this model.

Model results are presented at different times for x¼ 3.842 rad/
s in Fig. 17. These results show that the tubing was substantially
occluded by the compression of each roller, to an inner diameter
of 0.023 mm (98.3% occlusion) at the minimum location. Despite
this substantial occlusion, the analysis proceeded without any dif-
ficulty. The comparison of the flow rate from the actual Manostat
pump and the FEBIO simulation is presented for several different
angular velocities and two different levels of occlusion (94.9%
and 98.3%) in Fig. 18. Experimental results produced a standard
deviation less than 3.4% of the respective mean at each angular
speed; therefore, standard deviation bars are not visible on the fig-
ure. Results from the two FSI simulation curves fell within 6%
error from experimental data, providing good validation of the
code. A sensitivity analysis showed that the mass flow rate was
not significantly affected by changes in the tubing modulus by a
factor of 1/2 or 2. Similarly, while results were somewhat sensi-
tive to the inlet and outlet tubing configurations (e.g., bent or
straight), this sensitivity diminished as the occlusion rate was
increased. Effectively, occlusion of the tube was seen to have the

most significant effect on predicted flow rate at different angular
velocities; this parameter had to be adjusted in the model since it
was not possible to extract its precise value from the measured
dimensions of the pump, tubing, and rollers. Increasing the occlu-
sion increased the flow rate for a given roller velocity; at these
high occlusions, the flow rate was proportional to the roller veloc-
ity (Fig. 18). The current FSI implementation does not allow com-
plete occlusion to take place. In the event that we can successfully
model complete flow occlusion in the future, we would expect
even closer agreement between the model and experiments.

4 Discussion

The objective of this study was to implement a novel, general-
purpose fluid–structure interaction solver in FEBIO, an open-source
finite element code specialized for applications in biomechanics
and biophysics, combining the modeling capabilities already
available in FEBIO for solid mechanics and rigid body mechanics
[20] with the recently developed CFD solver [29]. Two principal
features of this novel formulation are the use of an isothermal
compressible fluid formulation that satisfies the inf-sup condition
without requiring additional stabilization terms, and the use of a
mixture formulation to define material time derivatives that follow
the motion of the mesh. These features considerably simplify the
governing equations for FSI formulations in the ALE framework,
as summarized in Eqs. (2.10), (2.11), (2.17), and (2.18). The sim-
plicity of this formulation makes it easier for users of this open-
source code to develop extensions of this framework for their spe-
cific needs. The formulation and implementation of this FSI solver
enhance the multiphysics modeling capabilities relevant to the
biomechanics and biophysics communities, since very few open-
source FSI codes are currently available to meet their needs, and
none of these provide FEBIO’s extensive library of customizable,
nonlinear, anisotropic, hyperelastic, and viscoelastic solid materi-
als needed to model cells or biological tissues that may also
undergo remodeling and damage.

In the FEBIO implementation, all constitutive models for solid
and fluid materials are described in their own Cþþ class, derived
from parent classes for solids and fluids, themselves derived from
a parent class for all materials.5 The solid parent class includes
functions for evaluating the solid stress and its tangent with
respect to strain, at a given state of strain; the fluid parent class
includes functions for evaluating the fluid pressure and its tangent
with respect to dilatation, at a given state of dilatation, as well as
functions for evaluating the viscous stress and its tangent with
respect to the rate of deformation, at a given state of the rate of

Fig. 15 Inflation of the bifurcated artery for model C, where the inlet nodes are fixed, at differ-
ent time points up until the time it failed (t 5 0.168 s)

Fig. 16 Results from bifurcated artery model A, showing the
mass flow rates at inlet and outlet boundaries, the time rate of
change _m of fluid mass in the fluid domain, and the sum of
these measures (Total _m), which should be zero according to
the axiom of mass balance. The error observed in this analysis
was less than 1.2% of the peak mass flow rate over the entire
analysis.

5help.febio.org/doxygen/html/index.html
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deformation. Therefore, the formulation and implementation of
the FSI code remains very general, as it is not dependent on a spe-
cific set of constitutive relations, allowing the user to easily switch
between materials, such as Newtonian and non-Newtonian fluids,
compressible neo-Hookean, or uncoupled Mooney–Rivlin solid,
or even create their own material model. This framework was
demonstrated throughout the test problems presented in this study,
where a variety of solid and fluid material constitutive relations
were employed. Similarly, essential and natural boundary condi-
tions are derived from general Cþþ classes in a similar manner,
allowing users to define customized boundary conditions.

The fluid domain Xf was modeled as a special case of a
solid–fluid mixture whose solid constituent has zero mass; as
reported in our previous study [29], the use of an isothermal com-
pressible formulation for the fluid, with a physically based bulk
modulus to enforce the right amount of compressibility, produced
a set of governing equations that automatically satisfied the inf-
sup condition, allowing us to use equal-order interpolation for all
degrees-of-freedom, employing only the standard Galerkin
method without requiring the incorporation of stabilization terms.
As shown in Eq. (S5.14) available in the Supplemental Materials
on the ASME Digital Collection, the stiffness matrix in this for-
mulation is fully populated along the diagonal, leading to good
convergence behavior even when assigning physically realistic
values for the fluid bulk modulus.

The momentum balance of the fluid and solid constituents, and
the kinematic constraint between the fluid velocity and dilatation,
summarized in Eq. (2.15), were solved monolithically. Strong
coupling between the fluid and solid domains resulted from choos-
ing the velocity w of the fluid relative to the solid, instead of the
fluid velocity v

f, as nodal degrees-of-freedom. The relative fluid
velocity was a logical choice for imposing no-slip conditions,
w¼ 0, on deforming FSI interfaces. Though the fluid domain Xf

was modeled as a mixture of solid and fluid constituents, this spe-
cial mixture was formulated with zero momentum exchange
between the fluid and solid, and the solid constituent had zero
mass density. However, to regularize the deformation of the mesh
of Xf, a negligible, but nonzero, solid elasticity needed to be
imparted to the solid constituent. In the analyses reported in this
study, we found that a compressible neo-Hookean elastic solid,
with Poisson’s ratio set to �¼ 0 and Young’s modulus E set to a

negligibly small value, produced consistently good results even
under very large deformations. Moreover, we found that a range
of Young’s moduli spanning several orders of magnitude, from
10�9 Pa up to 10�2 Pa in the problems presented above, did not
significantly affect the results. In practice, the value of E should
be selected to be a few orders of magnitude smaller than the elas-
tic modulus of surrounding solid domains Xs, when present. For
moving boundary problems with no surrounding solid domains,
the value of E should be selected such that its reduction by one
order of magnitude causes no significant change in the solution.

Our FSI formulation was tested in different models that high-
lighted the different features available to the user and the efficacy
of the code. The formulation was successfully verified against
several benchmark problems found in Ref. [58], such as the 1D
slip piston (Fig. 1), which tested the strong coupling between fluid
and solid domains; the piston-cylinder problem (Fig. 3), which
tested the response to moving boundaries; and the bubble inflation
problem (Fig. 5), which tested both strong fluid–solid interactions
in a problem with two fluid domains separated by a solid domain
and large deformation in both fluid and solid domains. These vali-
dated models enhanced our confidence in the results of the carotid
bifurcation problem, where similar responses occurred. We

Fig. 17 Mesh of the overall peristaltic pump (top). The pump mesh at t 5 0 s (bottom left),
pump with velocity arrows at t 5 0.25 s (bottom center), and pump with velocity arrows at
t 5 0.5 s (bottom right).

Fig. 18 Comparison of the experimental flow rates and the
flow rates obtained from FEBIO for different amounts of
occlusion
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verified our code’s ability to model a free surface wave by repro-
ducing the results of Ref. [33] (Fig. 7); this problem was also used
to verify that our implementation correctly satisfied energy con-
servation in the limit of q1¼ 1 (Fig. 8). Also, FSI formulations
are notoriously difficult to verify against analytical solutions,
since few such solutions exist. However, a useful category of
engineering applications that offers analytical solutions for FSI is
the field of lubrication. In this study, we showed that our formula-
tion could successfully reproduce the analytical solution for
squeeze-film lubrication between parallel plates, a moving bound-
ary problem, obtained by solving the Reynolds equation (Figs. 9
and 10). We validated our code against experimental data by mod-
eling an actual peristaltic pump in FEBIO and comparing modeled
and measured flow rates at multiple pump speeds (Fig. 17), taking
advantage of sliding contact interfaces and rigid body mechanics
in FEBIO. In the context of FSI, where so few known solutions
exist, the ability to reproduce this wide range of verification prob-
lems, supplemented by an experimental validation, affirms that
our novel mixture-based formulation is robust and valid. Finally,
we illustrated a biomechanics application of this new FSI solver
by modeling blood flow in a bifurcated carotid artery using a
range of useful features already available in FEBIO: The blood was
modeled as a non-Newtonian Carreau fluid, which shows that the
material models for the fluid can extend beyond just Newtonian
fluids. The thick arterial wall was modeled as an inhomogeneous
elastic solid material (media and adventitia, Fig. 13(a)) using the
fiber-reinforced, nearly incompressible tissue model of Holzapfel
et al. [60]. We explored a variety of methods to constrain the
motion of the outer arterial wall (Figs. 14 and 15), including one
where the artery was surrounded by subcutaneous adipose tissue
modeled with a coarser mesh and attached with a tied contact
interface (Fig. 13(b)). In addition, we demonstrated the impor-
tance of choosing physically relevant boundary conditions, which
can greatly affect the convergence and results in the model, as
seen in the failed case without the surrounding adipose tissue,
where only the inlet was constrained in Fig. 15. We also used a
simpler arterial wall constitutive model to understand some of the
ramifications of such choices in FSI analyses, and also performed
a standard CFD analysis to examine the influence of using FSI on
predictions of the fluid maximum shear stress. These illustrations
were not meant to be exhaustive, as there are other interesting
measures and phenomena that could be examined with FSI
capabilities.

There are various measures that can be taken to improve con-
vergence of a simulation with our FSI formulation. In most cases,
we found that adding a boundary layer mesh near no-slip bounda-
ries or other areas of sharp fluid velocity gradients significantly
improved the convergence, compared to global mesh refinement.
As a result, boundary layer refinement was done in all simulations
where it was assumed to be necessary. Generally, this was only a
requirement with the fluid domain, as the refinement of the solid
domain could improve accuracy but appeared to have little effect
on convergence in most cases. Additionally, analyses may benefit
from smoothly ramping up prescribed displacements, velocities,
or pressures from zero to the desired levels, as was done for exam-
ple in surface wave propagation, the peristaltic pump, and the
bifurcated carotid artery analyses, since a convenient (but non-
physical) sudden application of pressure or flow can send defor-
mational waves propagating through the solid, sometimes causing
accordion-like deformations that can lead to instabilities in FSI
problems.

Since our FSI formulation did not explicitly require stabiliza-
tion methods such as streamline-upwind/Petrov-Galerkin or
Galerkin/least-squares, no special consideration was required for
using linear versus higher order element interpolations. Thus,
quadratic elements such as 20- or 27-node hexahedra, 15-node
pentahedral, and 10- or 15-node tetrahedral currently available in
FEBIO may be used in FSI analyses using the current formulation.
These element types can be used to create coarser meshes with
less biased boundary layers. Furthermore, for our current FSI and

CFD implementations, turbulence may be modeled using direct
numerical simulation (DNS) only, which is highly demanding
computationally, although future additions of turbulence models
remain an option. Finally, as FSI problems are complex, the use
of backflow and tangential stabilization may be required for outlet
surfaces, and occasionally for inlet surfaces, as there may be tem-
porary recirculation of fluid at these surfaces, which is not intui-
tively evident a priori. As a cautionary note, in some problems
where sustained backflow at the outlet is physically expected,
applying backflow stabilization may artificially lower the fluid
velocity to the point where mass balance is not well conserved,
since this boundary condition consists of applying a viscous trac-
tion opposing the flow. This undesired side effect, which only
occurs in FSI (not CFD), is exacerbated by irregular meshes. For-
tunately, it can be detected directly from the analysis results, and
thus mitigated by using this type of boundary condition selectively
(e.g., applied temporarily to stabilize the initiation of a dynamic
analysis, but turned off once the desired flow conditions are
achieved; and using more regular meshes when feasible).

For our FSI formulation, the generalized-a method was imple-
mented successfully based on the work of Jansen et al. [43] and
Bazilevs et al. [38]. It was implemented both for the FSI fluid
domains Xf and the surrounding solid domains Xs. For these solid
domains, we were also careful to employ an exact energy-
momentum conservation scheme when using q1¼ 1 [66], though
this specific feature was not relevant in the problems presented
above. In some cases, such as the peristaltic pump or the bifur-
cated artery, q1¼ 0 produced the best result as it sufficiently
dampened higher frequencies, where such damping had little
effect on the accuracy of the solution. In those examples, using a
higher value of q1 did not sufficiently dampen the higher fre-
quencies and led to an unstable solution, particularly when there
was a rapid change in one or more of the prescribed boundary
conditions. Overall, optimal behavior was problem-dependent and
should be examined by the user.

The FSI formulation of this study represents only the first step
in our broader strategy to develop a robust solver for applications
in biomechanics and biophysics. Currently, our FSI formulation
only interfaces fluid domains with solid domains (e.g., elastic,
viscoelastic, and rigid solids), which are impermeable to the fluid.
Since FEBIO also includes modules for biphasic and multiphasic
porous-permeable deformable domains, our future implementa-
tions of FSI will address transport of fluid across interfaces
between fluid and biphasic/multiphasic domains. Since multipha-
sic domains also incorporate solute transport, future FSI (and
CFD) implementations will also model solute transport and chem-
ical reactions within the fluid domain. In addition, we plan to
implement new features that will improve the functionality of the
present FSI code. Currently, the solid domain surrounding the
fluid domain cannot occlude the flow completely, as noted in the
peristaltic pump example; therefore, a contact or collision detec-
tion algorithm for the solid domain with itself will be developed
that can temporarily deactivate the fluid domain during flow
occlusion. The development of tied fluid interfaces, which will
allow for dissimilar meshes between fluid domains, or at the inter-
face between fluid and solid domains, would also represent useful
features. Large deformations in FSI analyses can lead to signifi-
cant mesh distortions, which may degrade the numerical solution
and limit the applications of this approach. Therefore, the incorpo-
ration of adaptive mesh regeneration techniques would represent a
valuable addition to this formulation. In conjunction, implement-
ing collision detection algorithms will improve the performance
of our code particularly with thin solids experiencing large strains.
Similarly, our monolithic FSI formulation must solve for seven
degrees-of-freedom at each node in Xf, and our existing quasi-
Newton based solution method [29] becomes unwieldy with prob-
lems having more than
 106 degrees-of-freedom. Therefore, iter-
ative solvers specialized for our FSI formulation need to be
developed and implemented to decrease memory requirements
and increase computational efficiency.
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