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Abstract

In a variety of applications involving longitudinal or repeated-measurements data, it is desired to 

uncover natural groupings or clusters which exist among study subjects. Motivated by the need to 

recover clusters of longitudinal trajectories of conduct problems in the field of developmental 

psychopathology, we propose a method to address this goal when the response data in question are 

counts. We assume the subject-specific observations are generated from a first-order 

autoregressive process which is appropriate for count data. A key advantage of our approach is 

that the class-specific likelihood function arising from each subject’s data can be expressed in 

closed form, circumventing common computational issues associated with random effects models. 

To further improve computational efficiency, we propose an approximate EM procedure for 

estimating the model parameters where, within each EM iteration, the maximization step is 

approximated by solving an appropriately chosen set of estimating equations. We explore the 

effectiveness of our procedures through simulations based on a four-class model, placing a special 

emphasis on recovery of the latent trajectories. Finally, we analyze data and recover trajectories of 

conduct problems in an important nationally representative sample. The methods discussed here 

are implemented in the R package inarmix, which is available from the Comprehensive R Archive 

Network (http://cran.r-project.org).
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1 | INTRODUCTION

Many longitudinal studies have the aim of tracking the change in some outcome or response 

over time. This is an important and common goal in the field of developmental 

psychopathology, which aims to study the natural history of common childhood psychiatric 

diseases such as conduct disorder and delinquency. Often, there exists substantial variability 

in the observed response trajectories across subjects, and grouping subjects with similar 

trajectories may reveal certain sub-populations that exhibit interesting developmental 

patterns. In conduct disorder research, for example, such distinct “developmental sub-types” 
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of trajectories are of great interest because the classification carries important information 

about level of impairment, future life outcomes, and possible etiologic origin.1,2 

Furthermore, it is of interest to robustly estimate such trajectory sub-types using large and 

representative samples, to do so in a computationally efficient way, and to use those 

estimates to recover class membership at the subject level. The problem of identifying a 

finite number of sub-populations is frequently formulated as a latent class or finite mixture 

model3 where the distribution governing the observations on a given subject is determined 

by an unobserved class label.

In an alternative approach to the analysis of longitudinal data, random effects are introduced 

to account for the heterogeneity across subjects and the correlation among observations on 

the same subject. If the conditional distribution of the response given the values of the 

random effects is not Gaussian, however, the marginal distribution of the response will 

typically not have a closed form. In these cases, evaluation of the likelihood requires 

numerical integration over the distribution of the random effects. Direct maximization of the 

likelihood then involves numerical integration for every evaluation of the likelihood. A 

number of other estimation approaches for models of this type, commonly referred to as 

generalized linear mixed models (GLMMs), have been proposed, including approximate 

methods such as penalized quasi-likelihood,4,5 Monte Carlo methods,6 and marginalized 

random effects models.7

More recently, some authors have combined the latent class and random effects approaches. 

They have observed that with longitudinal data, a small number of latent classes is not 

sufficient to account for the association among repeated observations within subjects. They 

have therefore developed models with latent random effects in addition to the latent discrete 

variables indicating class membership.8,9 Although this approach has gained traction in the 

applied literature, it poses two potential methodological drawbacks in the context of count 

data. First, the addition of class-specific random effects to the latent class model may 

complicate computation considerably. For example, if using an EM algorithm for estimation, 

not only does one confront, within each iteration, the difficulties associated with GLMMs, 

but one must also use numerical integration to update the class-membership probabilities 

within each iteration. A class-specific closed-form likelihood would be much more 

computationally tractable.

The second problem involves the distinction between what we refer to as global and local 

correlation among observations on the same subject. To articulate this concern, we first posit 

that one key role of the latent class structure is to account for the global correlation, i.e., the 

correlation that exists between all observations on a subject, whether they are separated by a 

short or by a long time lag. In a classic latent class analysis, given class membership, all 

observations on a given subject are independent, and this assumption drives the 

identification of the model. This assumption is, however, somewhat restrictive, and there are 

concerns that it could lead to models with too many classes that are too small if there 

remains residual correlation (conditional on class membership) among the repeated 

observations within the same subject. An obvious solution is to allow—and model—in a 

restricted way some correlation among some observations. The introduction of random 

effects into growth mixture models attempts to address this need. A concern, however, is that 
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random effects also account for a more global type of correlation, potentially confounding 

the role of the latent classes and that of the class-specific correlation structure in model 

identifiability, fitting, and testing, especially when classes are not crisply separated.

To elaborate on this point, we note that classic latent class, or finite mixture, models can be 

thought of as being identified through two mechanisms. First, in multivariate data, the 

responses on a given unit (in this case a person) are posited as being independent given class 

membership, so that the latent class structure accounts for the realized association between 

univariate components on a given person. Second, the marginal distributional form of a 

univariate component of a multivariate response is specified as a mixture of class-specific 

forms. We view the first mechanism as being the more informative of the two. The concern 

is that random effects models also account for association between univariate components on 

a given person, as do the latent classes, thereby weakening model identifiability for the 

latent class structure. In contrast to random effects models, auto-regressive processes 

represent an alternative and more local source of within-subject correlation, allowing 

observations close together in time to be more strongly correlated than those further apart. 

Local correlation is not at all accounted for by the latent class structure. With a class-specific 

local correlation model, the observations far apart in time will be nearly independent, 

strengthening model identifiability.

To address these issues, we propose a longitudinal latent class model for count data which 

yields a closed-form class-specific likelihood, accounts for local correlation among the 

repeated measures on a given subject, and allows for global association to be accounted for 

by the latent class structure. With our approach, correlations between observations far apart 

in time will be especially informative about class membership because the subject-specific 

correlation between these two observations will be negligible due to the assumed AR(1) 

correlation structure. The closed-form class-specific likelihood offers gains in computational 

efficiency, and the implementation of our method provides an additional resource to existing 

software10 for estimating latent class models with longitudinal, non-Gaussian outcomes.

Our contributions in this paper are as follows. In the next section, we provide a technical 

description of our discrete data AR(1) process latent class trajectory model, followed in 

Section 3 with our approach to estimating and making inferences on model parameters. 

There, we rely on a variation of the EM algorithm that exploits a general estimating function 

rather than the true likelihood score function. In Section 4, we briefly introduce a measure of 

the inherent ability of latent class data to discriminate among classes for subjects in the 

population. To our knowledge, this is a previously unexplored, but important construct in a 

latent class analysis, especially when such analysis is used to assign subjects to their classes 

based on their manifest data. Because it is based on the true data generating mechanism, our 

measure represents an upper bound on the ability for any fitted statistical model to perform 

class assignment, which makes it a useful index for quantifying the underlying separation of 

the latent classes. Section 5 presents a simulation study with the aims of quantifying the 

statistical operating characteristics of our proposed model in terms of parameter estimation, 

bias, and confidence interval coverage. Additionally, we examine the ability of our approach 

to recover the mean trajectories when the data generating mechanism is different from the 

one specified by our model. Finally, in Section 6, we examine a longitudinal study of 
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conduct problems and illustrate the use of our model for class definition and assignment in 

that study. The methods discussed here are implemented in the R package inarmix, which is 

available from the Comprehensive R Archive Network (http://cran.r-project.org).

2 | MODEL DESCRIPTION

2.1 | Data Structure and Trajectory Model

Let yi = (yi1, … , yini
) be observed longitudinal counts associated with the i th subject. In 

total, we have measurements on m subjects Y = (y1, … , ym). We have observations on 

subject i at each of the time points (ti1, … , tini
), and we let yij denote the observation on 

subject i at time tij. For each subject and each observed time point, we observe a p × 1 

covariate vector xij, with Xi = (xi1, … , xini
)T denoting the ni ×p design matrix for subject i ; 

Xi will typically include and encode the time points ti j. In addition, each subject has an 

unobserved “latent class” Zi with Zi ∈ {1, … , C } indicating membership in one of C latent 

classes.

The distribution of (yi |Xi, Zi = c) is governed by a vector of class-specific parameters θc 

with p(yi |Xi, Zi = c) = pi (yi ; θc ) denoting the distribution of yi given covariates Xi and 

class label c. Observations made on different subjects are assumed to be independent, and 

the class labels (Z1, … , Zn ) are assumed to be i.i.d. random variables with the vector π = 

(π1, … , πC ) denoting the class-membership proportions (i.e., P (Zi = c) = πc ) in the 

population.

Conditional on a subject’s class, the mean-response curve or latent trajectory is

E(yi Zi = c, Xi) = Eθc
(yi) = μi

c = (μi1
c , … , μini

c ),

where Eθc
( ⋅ ) denotes taking expectation conditional on subject i belonging to class c and 

design matrix Xi.

We relate the mean curve μi
c to the covariates through log(μi j

c ) = xi j
T βc, where βc = (β1

c, … , βp
c )

are the class-c regression coefficients. To allow for overdispersion, the variance function is 

assumed to have the form Varθc
(yi j) = ϕcμi j

c , with scale parameter ϕc allowed to vary across 

classes. Due to our data-generating model (Section 2.2), we must have ϕc > 1. For this 

reason, we often write the scale parameter as ϕc = 1 + γc, where γc > 0.

2.2 | The INAR-(1) Negative Binomial Process

Conditional on class-membership, the observations from subject i comprise a multivariate 

outcome with distribution pi (yi ; θc ), governed by the (p + 2) × 1 class-specific parameter 

vector θc = (βc
T, αc, ϕc)T where β c and ϕc play the roles described in Section 2.1 and αc is a 

parameter controlling the correlation between observations on the same subject. The 
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distribution of yi = (yi1, … , yini
) is modeled by assuming that the components yi j of yi arise 

from a first-order Markov process governed by θc. The joint distribution of yi is built up 

directly through the transition function, p(yi j |yi,j −1, Xi ; θc ), associated with the underlying 

process pi(yi; θc) = p(yi1 |Xi; θc)∏ j = 2
ni p(yi j | yi, j − 1, Xi; θc), and the correlation structure of yi 

then arises from the various dependencies introduced by this Markov process.

A stochastic process tailored specifically for count data is the integer-valued autoregressive 

(INAR(1)-NB) process with negative binomial (NB) marginals described both by 

McKenzie11 and by Bockenholt.12 For a subject in class c, observations from the INAR(1)-

NB process arise as follows: the first observation yi 1 follows a negative binomial 

distribution with Eθc
(yi1) = μi1

c  and Varθc
(yi1) = μi1

c (1 + γc). We denote this by 

yi1 NB μi1
c , μi1

c (1 + γc)  meaning that yi 1 has probability mass function

P(yi1 = k) = k + μi1
c /γc − 1

k

1
1 + γc

μi1
c /γc γc

1 + γc

k
; k ≥ 0.

The subsequent observations (yi2, … , yini
) are determined through

yi j = Hi j + Ii j, j = 2, … , ni . (1)

In (1), the term Hi j is a random variable whose distribution depends on the previous value of 

the outcome yi,,j−1. Specifically, conditional on the value of yi,j −1 and a latent success 

probability qi j, Hi j ∼ Binomial (yi, j − 1, qi j) with the understanding that Hi j = 0 whenever 

yi,j −1 = 0. The latent success probabilities (qi2, … , qini
) are themselves independent random 

variables with qi j Beta{αc μi, j − 1
c μi j

c /γc, μi, j − 1
c (1 − αcλi j

c )/γc}, where λi j
c = μi j

c /μi, j − 1
c  and 

where Beta(α, β ) represents a Beta distribution with shape parameters α and β. Because 

this implies that E[Hi j | yi, j − 1] = αcλi j
c yi, j − 1 marginally over qi j, we must have 

0 ≤ αc μi j
c /μi, j − 1

c ≤ 1 for each class; see below. One may also note that given yi ;j −1 ≥ 1 and 

class membership c, marginally over qi j ; Hi j follows a beta-binomial distribution with 

parameters (yi, i − 1, αc μi, j − 1
c μi j

c /γc, μi, j − 1
c (1 − αcλi j

c )/γc). The innovation component Ii j is 

assumed to follow a NB{μi j
c (1 − αc/λi j

c ), μi j
c (1 − αc/λi j

c )(1 + γc)} distribution where (Ii2, …, Iini
)

are mutually independent and where each Ii j is independent of the history (yi 1, … , yi,j −1).

Although the transition function p(yi j |yi,j −1, Xi, θc ) associated with the INAR(1)-NB 

process does not have a simple closed form (see part A of the supporting material), it may be 

directly computed using the fact that it is the convolution of a beta-binomial distribution and 

a negative binomial distribution. In addition, under the INAR(1)-NB process, the marginal 
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distribution (conditional on class membership) of yi j is negative binomial with Eθc
(Y i j) = μi j

c

and Varθc
(yi j) = μi j

c (1 + γc), and the class-specific correlation structure of yi is first-order 

autoregressive. That is, for two observations yi k and yi j on the same subject, the class-

specific correlation is corrθc
(yik, yi j) = αc

|k − j|. The conditional expectation of yi j given yi,j −1 

is a linear function of yi,j −1,

Eθc
(yi j | yi, j − 1) = μi j

c 1 − αc/λi j
c + αcλi j

c yi, j − 1,

and the conditional variance of yi j given yi,j −1 is given by

Varθc
(yi j | yi, j − 1) = μi j

c 1 − αc/λi j
c ϕc + αcλi j

c yi, j − 1 1 − αcλi j
c μi, j − 1

c /γc + yi, j − 1
1 + μi, j − 1

c /γc
.

It is also worth mentioning that our specification of the INAR(1)-NB process implies the 

additional restriction on the relation between the autocorrelation parameters and the latent 

trajectories: αc
2 < mini, j{μi, j − 1

c /μi j
c , μi j

c /μi, j − 1
c } for each c. Nevertheless, when all of the 

latent trajectories are reasonably smooth, this constraint is not especially restrictive as the 

values of {μi, j − 1
c /μi j

c } will be close to one.

3 | ESTIMATION

Because a finite mixture model with a pre-specified number of components can easily be 

formulated as a “missing-data” problem, the EM algorithm provides an attractive estimation 

approach. In our model, if the individual class-membership labels Z = (Z1, … , Zn ) were 

observed, the “complete-data” log-likelihood would be

logL(Θ, π; Y, Z) =
i = 1

m

c = 1

C
1 Zi = c log(πc) + log pi(yi; θc) .

Above, Θ = (θ1, … , θC ) where θc = (βc
T, αc, γc)T are the parameters associated with class c, 

and π = (π1, … , πC ) is the vector of mixture proportions.

Given current, iteration-k, estimates of parameters (Θ(k ), π(k )), each EM iteration obtains 

new parameter estimates by maximizing the current exp1ectation of the complete-data log-

likelihood, with the expectation being taken over the unobserved class labels, viz.
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(Θ(k + 1), π(k + 1)) = argmax
Θ, π

E{logL(Θ, π; Y, Z) |Y, Θ(k), π(k)}

= argmax
Θ, π c = 1

C

i = 1

m
Wic(Θ(k), π(k)) log(πc) + log pi(yi; θc .

Here, Wi c (Θ(k ), π(k )) is the current estimated posterior probability that subject i belongs to 

class c, namely

Wic(Θ(k), π(k)) = P(Zi = c |yi, Θ(k), π(k)) =
πc

(k)pi(yi; θc
(k))

Σsπs
(k)pi(yi; θs

(k))
.

3.1 | Estimating Equation Approach for Computation

In each step of the EM algorithm, updating the class probabilities is straightforward because 

the “M” update is simply the average of the current posterior probabilities,

πc
(k + 1) = 1

m i = 1
m

W ic(Θ(k), π(k)). However, to update the remaining parameters, we must 

maximize C separate weighted log-likelihood functions

θc
(k + 1) = argmax

θc i = 1

m
W ic(Θ(k), π(k))log pi(yi; θc) , c = 1, …, C . (2)

Because each such log-likelihood function is a sum over many complicated transition 

probabilities, implementing the maximization in (2) may be challenging.

Instead of updating the parameters by maximizing each of the weighted log-likelihood 

functions directly, we found that replacing the score function with a more manageable 

estimating function provides a less cumbersome approach. That is, rather than solving

i = 1

m
Wic(Θ(k), π(k))

∂logpi(yi; θc)
∂θc

= 0

for each class, we instead solve

i = 1

m
W ic(Θ(k), π(k))Ui(θc) = 0, for c = 1, …, C, (3)

where Ui (θc ) forms an unbiased estimating function (i.e.,Eθc
[Ui(θc)] = 0) for each class. 

Such an approach, where within each EM iteration the maximization step is approximated 

by solving an estimating equation, is similar to the estimation strategy detailed by Elashoff 

and Ryan.13 Replacing the score function with an alternative estimating function has also 
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been found to be useful in a variety of other domains, for example, in fitting robust mixture 

regression models.14

Our choice of Ui (θc ) relies on the extended quasilikelihood function procedure for 

constructing estimating equations proposed by Hall and Severini.15 These estimating 

functions considerably simplify computation (i.e., by solving (3)) when compared to using 

score functions. Tailoring the estimating functions of Hall and Severini to the case of a log-

link function and an AR(1) correlation structure yields the (p + 2) × 1 estimating function

Ui(θc) =

Ui
[1](θc)

Ui
[2](θc)

Ui
[3](θc)

= 1
ϕc

Xi
TAi

1/2(μi
c)Ri

−1(αc)Ai
−1/2(μi

c)(yi − μi
c)

2ϕcαc(ni − 1)
1 − αc

2 − (yi − μi
c)T dRi

−1(αc)
dαc

(yi − μi
c)

1
ϕc

(yi − μi
c)TAi

−1/2(μi
c)Ri

−1(αc)Ai
−1/2(μi

c)(yi − μi
c) − ni

. (4)

In (4), Ai(μi
c) is the ni × ni matrix defined by Ai(μi

c) = diag{μi1, …, μini
} and Ri (αc ) is the ni × 

ni correlation matrix whose (k, j ) entry is Ri(αc)[k, j] = αc
|k − j|.

The equation determined by setting the p-component vector i = 1
m Ui

[1](θc) to zero

1
ϕc i = 1

m
Xi

TAi
1/2(μi

c)Ri
−1(αc)Ai

−1/2(μi
c)(yi − μi

c) = 0, (5)

corresponds to the generalized estimating equation (GEE) described by Zeger and Liang.16 

In GEE, the autocorrelation parameter αc is first estimated separately and then plugged into 

(5) in order to solve for regression coefficients β c. Picking up on that theme, to solve (3) for 

a fixed c, we first update β c by solving i = 1
m W i, c(Θ(k), π(k))Ui

[1](θc) = 0, using initial values 

for (αc, ϕc ). Using this value of β c and the initial overdispersion ϕc, αc is updated by 

solving i = 1
m W i, c(Θ(k), π(k))Ui

[2](θc) = 0. The value of ϕc can then be updated non-iteratively 

because, given values of (β c, αc ), the solution to i = 1
m W i, c(Θ(k), π(k))Ui

[3](θc) = 0 for ϕc has 

a closed form. This procedure is repeated until convergence.

3.2 | Approximate EM Procedure and Standard Errors

Our approximate EM algorithm, where the score function is replaced with another, more 

manageable estimating function, may be summarized as follows:

1. Find initial estimates Θ(0), π(0). (Our initialization procedure is described in part 

C of the supporting material).
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2. Compute current estimated posterior probabilities Wi c (Θ(k ), π(k )) for each class 

c and subject i.

3. Update mixture proportions through πc
(k + 1) = 1

m i = 1
m

W ic(Θ(k), π(k)). Update 

other parameters (θ1, … , θC ) by solving i = 1
m W i, c(Θ(k), π(k))Ui(θc) = 0

4. Repeat steps (2) and (3) until convergence.

Parameter estimates (Θ, π) produced from the above iterative procedure may be viewed as a 

solution to the estimating equation G(Θ, π) = i = 1
m Gi(Θ, π) = 0 where Gi (Θ, π) is the (p 

+ 3)C – 1 × 1 victor defined as Gi(Θ, π) = [vec(Vi)
T, bi

T]T and where Vi is the (p + 2) × C 

matrix Vi = [W i1(Θ, π)Ui(θ1), ……, W iC(Θ, π)Ui(θC)] and bi is the (C − 1) × 1 vector 

bi = [W i1(Θ, π) − π1, ……, W iC − 1(Θ, π) − πC − 1]T. The notation vec(Vi ) means that vec(Vi ) 

is the (p + 2)C × 1 vector formed by stacking the columns of Vi on top of one another.

It can be shown that G (Θ, π) is an unbiased estimating function (see part B of the 

supporting material), and conditions under which consistent solutions of unbiased estimating 

equations are asymptotically normal are discussed in a number of sources.17,18 When it is 

further assumed that the number of classes C is correctly specified and that (Θ, π) are 

consistent estimates of the true model parameters, we have that 

Σ−1/2{(Θ, π)T − (Θ, π)T} d N(0, I), as m−→ ∞. The estimated covariance matrix Σ is given 

by

Σ = 1
m i = 1

m
E{DGi(Θ, π)}

−1
1
m i = 1

m
Gi(Θ, π)Gi(Θ, π)T 1

m i = 1

m
E{DGi(Θ, π)}

−1T

. (6)

In (6), DGi (Θ, π) is the ((p + 3) C − 1) ((p + 3) C − 1) matrix of partial derivatives 

DGi(θ, π) = ∂Gi(Θ, π)/ ∂(Θ, π). Standard errors are computed from the diagonal elements of Σ.

4 | CLASS ASSIGNMENT AND MEASURES OF DISCRIMINATION

After estimating latent trajectories for each class, one often wishes to go back and assign or 

classify subjects based on their empirical resemblance to one of the estimated trajectories. 

Even though all model parameters may be estimated accurately, however, the associated 

classification procedure may not have a high rate of correct assignment, and this poor class-

discrimination may be due to little underlying class-separation between the latent trajectories 

μi
c or to high levels of noise ϕc in the response. In these cases, the ability to correctly classify 

subjects is limited by the class separation inherent in the underlying true data generating 

model rather than any deficiencies in the model specification or estimation procedure.

To separate the roles that underlying class separation and estimation error play in the 

accuracy of estimating latent class trajectories, we, in our simulations (see Section 5), 
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employ a measure of class separation which can be thought of as a rough upper bound on 

one’s ability to correctly assign subjects to classes based on our or any other latent class 

model or estimation procedure. Specifically, we define the class separation index (CSI) as 

the expected discrimination that would be obtained by an oracle using knowledge of both the 

true generative model and the true parameter values of that model to compute posterior 

probabilities of class membership for each subject and to utilize these posterior probabilities 

for class assignment. In other words, the CSI represents the class discrimination that could 

be obtained if one knew the true data generating model and hence, represents an intuitive 

measure of underlying separation between the latent classes. In our simulation studies, we 

use the all-pairwise c-statistic16 as the measure of multi-class discrimination through which 

to compute the class separation index. The all-pairwise c-statistic lies between 0 and 1 with 

larger values indicating better discriminatory performance, and as with the more well-known 

two-class c-statistic, a value of the all-pairwise c-statistic near 0.5 indicates that the model 

performs no better than predicting class labels at random. Other multi-class measures of 

discrimination such as the polytomous discrimination index19 could be used, but we found 

the relation between the CSI and estimation performance to be quite similar for either choice 

of discrimination index. The CSI is defined more formally in Appendix A, and the 

definitions of both the all-pairwise c-statistic and polytomous discrimination index are also 

reviewed in more detail in Appendix A.

5 | SIMULATIONS

5.1 | Autoregressive Models with Four Latent Classes

Simulation Design—To evaluate the performance of our estimation procedure and to test 

our implementation, we performed a simulation study using two central scenarios (Scenarios 

I and II) as our point of reference. Each of Scenarios I and II involves a model with four 

latent classes where the class-specific model is the autoregressive negative binomial model 

described in Sections 2.1 and 2.2. In Scenario I, each subject is observed over 8 equally 

spaced time points, and in Scenario II, subjects are observed over 5 equally spaced time 

points. The latent trajectories for both of these scenarios are qualitatively similar: one 

trajectory is persistently low, one trajectory is persistently high, and the other two 

trajectories move from high (low) to low (high) values over time. The four mixture 

proportions are set to 0.5, 0.1, 0.25, and 0.15 in each of the simulation scenarios. Plots of the 

latent trajectories used in Scenarios I and II are shown in Figure 1. The choice of four 

classes for the simulation scenarios is meant to reflect the wide use of four-class models 

when identifying subtypes in the childhood development of conduct disorders.1,2 The goals 

of this simulation study include examining the empirical bias of latent trajectory estimates, 

quantifying the degree to which the standard errors provide approximately desired coverage 

levels, and assessing how each of these operational characteristics vary as a function of 

sample size and of degree of model identifiability, as quantified by the class separation 

index. In this simulation study, we focus on the setting where the only covariate is time and 

where the main goal is recovering the class-specific trajectories, but simulations which 

include subject-specific covariates would be useful for further studying the estimation and 

classification performance of our method.
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The values of the class separation index for variants of Scenarios I and II may be found in 

Table S1 of the supporting material. For each of Scenarios I and II, we varied the 

autocorrelation parameter across two levels, α ∈ {0.1, 0.4}, and the scale parameter across 

two levels, ϕ ∈ {1.25, 3}. Higher values of the scale parameter and higher levels of 

autocorrelation reduce the class separation and thereby the inherent ability to make correct 

inference on model parameters. Also, for each parameter configuration (i.e., a particular 

scenario and choice of (α, ϕ)), we ran our estimation procedure for each of the sample sizes 

m = 2, 000, m = 500, and m = 200. For each parameter configuration and sample size, we 

computed estimates on each of 200 replicated data sets. To determine convergence with a 

given tolerance level ε, we used the criterion maxk |m−1Gk(Θ, π) | ≤ ε, where G (Θ, π) is 

as defined in Section 3.2, and Gk (Θ, π) denotes the k th element of G (Θ, π). In all of the 

simulation studies, we used ε = 0.0001, and in the data analysis (see Section 6), we set ε = 

0.001 due to slow convergence when using this dataset. Though not explored in the 

simulation studies or data analysis, we have examined using the norm of G (Θ, π) to 

determine convergence (i.e., stopping whenever ||G (Θ, π)|| ≤ ε). This is a somewhat less 

strict convergence criterion that did not appear to make a substantial difference in the 

simulation studies, but a more detailed comparison of these stopping criteria may be 

worthwhile. Another possible stopping rule is to base convergence on the norm of the 

parameter residuals (i.e. stopping when θ(k + 1) − θ(k) 2 + π(k + 1) − π(k) 2 ≤ ε).

Because the class labels are not identifiable, for each model fitted, we permuted the class 

labels of the estimated parameters to minimize the L2 distance between the estimated and 

true mean curves. That is, for a set of estimates Θ = (θ1, …, θ4) and π = (π1, …, π4) obtained 

through our approximate EM procedure, we computed the optimal permutation according to

s* = argmin
𝒮 ∈ 𝒫c = 1

4
(μc − μ𝒮(c))T(μc − μ𝒮(c)),

where 𝒫 simply denotes the set of permutations of class labels (1, 2, 3, 4). We then 

computed the final estimates of the parameters through Θ = (θ𝒮*(1), …, θ𝒮*(4)) and 

π = (π𝒮*(1), …, π𝒮*(4)). Note that μc = exp(Xiβc) and μc = exp(Xiβc) do not depend on i 

because all subjects share the same design matrix in our simulation scenarios, though this 

need not be the case in real applications.

Results—Figure 2 displays the average absolute empirical bias for all latent trajectories in 

each of the eight simulation settings. The empirical bias for a particular latent class was 

found by taking the mean absolute difference between the average of the estimated trajectory 

values and the associated true values of the underlying trajectories. In Figure 2, empirical 

bias is plotted versus the values of the class separation index illustrating how the underlying 

separation among the classes tends to influence this property of estimation. Figure 2 shows 

good overall performance for simulation settings with highly distinct classes and large 

sample sizes; the average absolute empirical bias is less than 0.051 for all simulations with a 

CSI greater than 0.90 and m = 2, 000. For high values of the CSI, the empirical biases are 
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packed closely to zero but spread out considerably as the CSI declines. Comparisons 

between the empirical discrimination obtained from the fitted INAR(1)-NB models and the 

CSI are shown for each of the simulation settings in Figure S1 of the supporting material.

Empirical coverage proportions for the regression coefficients and mixture proportions are 

shown in Figure 3. As shown in this figure, the computed confidence intervals generally give 

the desired 95% coverage for large sample sizes (m = 2, 000) in highly separated settings. 

Specifically, when m = 2, 000 and the CSI is greater than 0.85, coverage levels are centered 

around 0.95 for most parameters. However, the results from this figure suggest that 

confidence intervals should be interpreted with caution for relatively small sample sizes. For 

most simulation settings, coverage appears to be consistently less than 0.95 for smaller 

sample sizes (i.e., m = 200), and for both sample sizes, the level of coverage and variability 

in coverage tends to deteriorate as the class separation decreases.

5.2 | Poisson Outcomes with Normal Random Effects

Design—To evaluate the performance of our proposed fitting procedure under model 

misspecification, we performed several simulations involving latent class models where, 

within each class, data are generated from a generalized linear mixed model with Poisson 

responses and Normal random effects. The motivation for this simulation exercise is to 

assess how well our method recovers latent trajectories when this alternative model holds 

rather than our count-valued AR(1) model.

In these simulations, conditional on a subject-specific random slope, intercept, and class 

label, the response of each subject was generated according to a Poisson distribution. In 

particular, for subject i in class c, the j th response was generated as 

Y i j |ai0, ai1, Zi = c Poisson(μi j
c ) where log(μi j

c ) = β0
c + β1

cti j + ai0 + ai1ti j, j = 1, …, T, and where 

(ai 0, ai 1) are jointly distributed Normal random variables with ai0 N(0, σc0
2 +

(T − 1)2σc1
2

4 ), 

ai1 N(0, σc1
2 ), and Cov(ai0, ai1) = − [(T − 1)σc1

2 ]/2. Consequently, marginally over (ai 0, ai 1), 

the mean trajectories are quadratic on the log scale, viz,

log{E(Y i j |Zi = c)} = β0
c +

σc0
2

2 +
(T − 1)2σc1

2

8 + [β1
c +

(T − 1)σc1
2

2 ]ti j +
σc1

2

2 ti j
2 . (7)

As in the simulations of Section 5.1, we used four latent classes c = 1, … , 4 for each 

simulation setting. In total, we considered four simulation settings of the Poisson-Normal 

model: one with eight time points and the other three having five time points. In each of 

these, the parameters were chosen so that the mean trajectories were similar to those of 

Scenario I and Scenario II. The parameter values used for each of these four simulations 

settings are provided in Table S4 of the supporting material. For each setting of the Poisson-

Normal model and each simulation replication, we fit a four-class INAR(1)-NB model, 

assuming that, within each class, the mean trajectory µc is quadratic on the log scale. As in 

the INAR(1)-NB simulations of Section 5.1, we used 200 replications for each simulation 

setting.

Henderson and Rathouz Page 12

Stat Med. Author manuscript; available in PMC 2019 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results—For the Poisson-Normal simulations, we computed the average absolute 

empirical bias for each of the latent trajectories as was done for the INAR(1)-NB 

simulations. Empirical bias values obtained from fitting the INAR(1)-NB model to data 

generated from the four simulation settings of the Poisson-Normal model are shown in 

Figure 4. Results are shown for sample sizes m = 500 and m = 2, 000. Because the latent 

trajectories in these simulations were chosen to closely match those of the INAR(1)-NB 

simulations, the empirical biases from these simulation may, to some degree, be compared to 

those from Figure 2. The empirical bias shown in Figure 4 suggest that our procedure is 

fairly robust to this form of misspecification for highly distinct classes. However, the results 

for the two simulation settings with a lower CSI suggest a lack of robustness to model 

misspecification of this type when the underlying class separation is not especially high.

6 | APPLICATION TO CNLSY DATA

6.1 | Description and Model Fitting

In this section, we consider data collected on Children of the National Longitudinal Study of 

Youth (CNLSY). The National Longitudinal Study of Youth (NLSY79) is a longitudinal 

study initiated in 1979 on a nationally representative sample of young adults. In 1986, the 

NLSY launched a survey of children of female subjects from the original NLSY79 cohort. 

Assessments of the children of the NLSY were performed biennially, and in each 

assessment, mothers were asked to respond to a series of questions regarding each of their 

children’s behavior and environment.

Though the mothers were asked to respond on a wide variety of measures, our focus lies in 

the severity of behavioral problems as measured by the “Behavior Problems Index” (BPI) in 

early childhood and by the number of delinquent acts committed during the adolescent 

years. The BPI is recorded for children ages 4 − 13 and is constructed by asking the mother 

to rate her child on a scale of 0 to 2 on each item from a list of seven common behavioral 

problems. Consequently, this yields a BPI value which is an integer between 0 and 14. 

Starting at the age of 10, the children were also asked to report the number of delinquent 

acts they committed during the past year. From age 14 onward, the mothers no longer 

responded to the BPI, leaving only the self-reported delinquency counts as a measure of 

behavioral conduct for children older than 13. In total, these data contain 9, 626 subjects 

each of whom was surveyed biennially over the ages 4 to 16 (or 5 to 17). Because of this, we 

grouped the data so that, in the absence of missing values, each individual had 7 

observations with the first observation occurring when a subject was age 4–5, the second 

observation at age 6–7, and the last observation occurring when a subject was age 16–17.

To model the evolution of behavioral problems throughout childhood and adolescence, we 

combined the BPI and delinquency counts into a single response variable. For children with 

ages less than 10, we used the BPI as the only response, and for children aged 10–13, we 

summed the delinquency counts and the BPI. For children aged 14–17, the response is 

simply the delinquency counts. To account for this methodological feature of the 

measurement process, we added a dummy variable for the time points corresponding to the 

age range 10–13 and a dummy variable for the time points corresponding to the age range 14 
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− 17. Summary statistics regarding the BPI from the CNLSY are shown in Table S2 of the 

supporting material.

We modeled the class-specific trajectories μi
c = (μi1

c , …, μini
c ), with μi j

c  denoting the mean 

response of subject i at time ti j conditional on belonging to class c, as

log(μi j
c ) = β0

c +
k = 1

3
βk

cBk(ti j) + β4
c(1{ti j = 4} + {ti j = 5}) + β5

c1{ti j ≥ 6} . (8)

In (8), Bk( ⋅ )
k = 1
3  are the B-spline basis functions of degree 3 with no interior knots and 

boundary knots placed at 1 and 7. We coded the time variable as follows: ti j = 1 for children 

ages 4–5, ti j = 2 for children ages 6–7 with the remaining five time points coded similarly.

Due to missing responses, the number of observations varied somewhat across subjects, and 

the observations for some subjects were spaced irregularly.

To handle this, we made the working assumption that the correlation only depended on the 

order of the observed responses. For instance, if subject i was observed at times 1, 2, and 4 

with a missing value at time point 3, then we would have corrθc
(yi4, yi2) = αc and 

corrθc
(yi4, yi2) = αc

2. If one did not want to use this modified assumption about the correlation 

structure, an inverse probability weighting approach such as that described by Robins20 

could be implemented under a missing at random (MAR) assumption. In this case, one 

would need to use a weighted version of Ui (θc ) when updating the parameters θ1, … , θC 

in the EM algorithm. Due to the MAR assumption, the posterior probabilities of class 

membership would only depend on the observed data and thus Wi c (Θ, π) and the updates 

of the mixture proportions would only depend on the distribution of the observed responses.

The CNLSY provides sampling weights which are estimates of how many individuals in the 

population are represented by a particular subject in the data. The sampling weights reflect 

the inverse probability that a subject was included in the sample. Because the sampling 

weights arise from a known survey sampling plan, we treat them as fixed in this analysis. To 

account for this aspect of the sampling process, we fitted latent class models where, within 

each iteration of the algorithm, we solved a weighted version of (3) and evaluated 

convergence with a weighted version of the estimating function G (Θ, π) defined in Section 

3.2. This modified version of the fitting procedure that accounts for sampling weights is 

described in more detail in part D of the supporting material.

Because the number of latent classes is unknown, we applied our procedure to the CNLSY 

data varying the number of classes from 3 to 6 where, in each case, we modeled the mean 

trajectories with (8). As is advisable in latent class modeling applications, for each choice of 

the number of classes, we repeated the estimation procedure with 20 different starting 

values; in each case, the (weighted) log-likelihood converged to the same maximum value 

for at least two runs. When comparing the best runs of these four different models (i.e., the 3 
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to 6 class models), the four-class model possessed the lowest weighted BIC though the four 

and five-class models had nearly identical values of the weighted BIC. In particular, the best 

values of the weighted BIC for the 3 to 6 class models were 161751.3, 161651.2, 161651.4, 

and 161681.0 respectively. It is worth noting that these computed BIC values may be 

regarded as a type of approximate BIC since our estimation method is not purely likelihood 

based and instead uses estimates obtained from the estimating equation method described in 

Section 3 rather than the maximum likelihood estimates. For methods such as ours which are 

not purely likelihood based, one interesting alternative to traditional BIC is the modified 

BIC measure described by Lumley and Scott.21 Designed for pseudo-likelihood methods in 

the context of complex survey data, their suggested BIC criteria uses the Wald-type test 

statistic (ΘT, πT)Σ−1(ΘT, πT)
T

 as a measure of fit and adds a modified penalty term.

The fitted trajectories and estimated class-membership proportions from the four-class 

solution are displayed in Figure 5, and here we labeled the four classes to roughly reflect 

increasing levels of conduct disorder severity with Class 1 (4) denoting the least (most) 

severe class. The right-hand panel of Figure 5 displays the estimated mean curves 

(μi1, …, μi7
c ) including all the predictors from (8). The left-hand panel displays the mean 

curves obtained by excluding the time point indicators 1{ti j = 4 or ti j = 5} and 1{ti j ≥ 6}, 

and is intended to reflect population trajectories in terms of the BPI only. The values of 

μi j
c , πc and their accompanying standard errors are displayed in Table 1. Note that μi j

c  does 

not depend on i since we did not include any subject-specific covariates in our analysis.

Under models from developmental psychopathology for conduct problems and antisocial 

behavior2, “normative”, “adolescent onset”, and “life course persistent” groups have been 

posited and empirically verified in various studies. These correspond to our fitted Classes 1, 

3, and 4. It has, however, always been recognized that there is a “fourth group” not fitting 

into those categories. In this analysis, that fourth group is Class 2, which has persistent, but 

mild and not-impairing levels of behavioral problems. Some have posited a “child limited” 

category (similar to Class 2 in Figure 1), and we did not find such a group here.

6.2 | Model Validation and Diagnostics

Additional variables in the CNLSY such as gender and criminal history allow us to examine 

associations between these variables and the latent classes identified by the four-class 

solution. Because this is an analysis relevant to the domain area of developmental 

psychopathology, these associations are critical for substantive validation of the four 

extracted classes. To investigate these associations, we randomly assigned each subject to 

one of the four identified classes using the estimated posterior probabilities of class 

membership, and cross-tabulated these assignments with other variables in the CNLSY. 

Table 2 displays a weighted contingency table of the random class assignment and maternal 

age at birth (< 20 years old, or ≥ 20 years old) only for male subjects; the resulting 

frequencies seem to support the validity of the four identified classes as the proportion of 

subjects in Classes 1 or 2 with maternal age ≥ 20 is considerably higher than the proportion 

of subjects in Classes 1 or 2 with maternal age < 20. Table 2 also shows a weighted cross 

tabulation of class assignment and of ever being convicted of a crime between ages 14 − 18, 

Henderson and Rathouz Page 15

Stat Med. Author manuscript; available in PMC 2019 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and, as demonstrated by this contingency table, the prevalence of criminal outcomes in 

Classes 3 and 4 is substantially higher than in Classes 1 and 2. Moreover, the frequency of 

criminal outcomes in those assigned to Class 4 is considerably greater than that of the other 

three classes.

While there is a variety of aspects of the model we could assess, our main interest here lies 

in using diagnostics to check whether our specification of the class-specific distribution is 

reasonable. In particular, we are especially interested in examining whether the assumed 

class-specific correlation structure corr(yik, yi j |Zi = c) = αc
|k − j| appears to hold in the CNLSY 

data. If the class labels were known, we could check the class-specific correlation structure 

by directly stratifying subjects into their respective classes and computing the desired 

correlations. We mimic this process by using each subject’s estimated posterior probabilities 

to randomly assign each subject to one of the latent classes. Such a diagnostic approach, 

where class-specific quantities are checked by sampling from the estimated posterior 

probabilities, is justified by the diagnostic procedure described by Bandeen-Roche et al.22 

As shown in that paper, this procedure is valid for detecting departures from the model if the 

assumed latent class model is indeed false.

Estimated autocorrelation functions obtained from the random stratification procedure 

described above are displayed in Figure 6 with the same class labels as used in Figure 5. For 

each random stratification, we used the subject-specific sampling weights to compute 

weighted estimates of the autocorrelation and then averaged the results from 1, 000 

replications of this random stratification process. The autocorrelation plots in Figure 5 show 

that the AR(1) structure seems plausible for the CNLSY data in that the class-specific 

correlations decay substantially over time. However, for most classes, the correlations do not 

seem to decay quite as quickly as would occur under an AR(1) assumption. A similar 

diagnostic plot for the scale parameters ϕc shown in the supporting material suggests that the 

assumption of constant class-specific overdispersion over time is quite reasonable.

7 | DISCUSSION

We have presented a method for performing a latent class analysis on longitudinal count 

data. The motivation behind this work has been to express many of the core features of latent 

class models or growth mixture models in a straightforward, computationally tractable 

framework that will improve computational performance and model identifiability and that 

will perform well even if the true data generating mechanism is the popular growth mixture 

model. The autoregressive structure used in our model serves both as a natural way to model 

dependence over time and to achieve clearer separation of correlation due to the repeated-

measurements structure and correlation due to the latent class structure.

In terms of computation, one of the chief advantages of this approach is the availability of 

the subject-specific likelihood in closed form; this simplifies computation considerably at 

least when compared with procedures that employ random effects and which require the use 

of numerical integration procedures within each class. In addition, because computational 

efficiency has been a primary motivation, we outlined an approximate EM approach which 

we found to be especially useful in this setting. Because our approximate EM algorithm 
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relies on solving a series of weighted generalized estimating equations, our approach could 

be directly extended to handle other correlation structures. In any such extension, one would 

still need to specify a class-specific likelihood function in order to compute the weights used 

in the estimating equations defined in (3). For example, as an alternative to the INAR(1)-NB 

model, one could use one of the INAR(p) processes described by Pedeli et al.23 to compute 

posterior probabilities of class membership and, within each EM iteration, solve weighted 

GEEs that have an assumed AR(p) correlation structure.

We also have utilized novel notions of class separation inherent in the data and of a given 

modeling procedure to recover that level of discrimination. Based on model classification 

indices such as those used in classification regression models, the oracle-based CSI 

quantifies the degree to which the information in the data can correctly classify subjects 

given the correct model and parameters. In this paper, we have used the CSI as a way of 

judging the difficulty of recovering class-specific trajectories. Though not fully explored 

here, this index of class separation could be further used to evaluate classification 

performance across a wider range of latent class models. Because the CSI may be computed 

for any number of alternative latent class models, comparing the CSI of an alternative latent 

class model with the empirical discrimination obtained from an assumed INAR(1)-NB 

model may serve as an effective check of the robustness of class assignment from the 

INAR(1)-NB model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A |: THE CLASS SEPARATION INDEX AND MEASURES OF 

DISCRIMINATION FOR MULTIPLE CLASSES

A.1 | Class Separation Index

Let Y = (y1, … , ym ) denote all observed data and let AC (Y) = [a1(Y), … , am (Y)]T be a 

procedure which maps data Y into an m × C matrix of nonnegative entries whose rows sum 

to one; the (i, c) entry of this matrix can be thought of as a reported probability that subject i 
belongs to class c. For instance, we could have AC (Y) = WC (Θ, π; Y), where WC (Θ, π; 

Y) = [wC (Θ, π; y1), … , wC (Θ, π; ym )]T denotes the m × C matrix whose i th row, wC (Θ, 

π; yi )T, contains the posterior probabilities for subject i computed with the parameters (Θ, 

π). Alternatively, we could have AC (Y) = V (η, Y), where V (η, Y) denotes a matrix of 

class membership probabilities computed under an incorrect working model with specified 

parameter η.
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To measure how well a procedure AC (Y) predicts class membership, we use a 

discrimination index D, which, given class labels Z = (Z1, … ,Zm), returns a score in [0, 1] 

such that D(Z, AC(Y)) = 1 if AC (Y) has a . in the correct cell for all observations (rows), 

and is less than or equal to one otherwise, and for any D (·, ·) considered, values closer to 

one imply better classification performance. The class separation index (CSI) is defined as

CSI = lim
m ∞

E D(Z, WC(Θ0, π0; Y)) , (9)

provided that the above limit exists. where (Θ0, π0) denote the true parameter values and 

where the expectation is taken over Zi and Yi using the true parameter values.

Turning to finite samples, the realized or empirical discrimination resulting from using 

procedure AC (Y) is D Z, AC (Y) , and the expectation of this quantity is what we define to 

be the expected empirical discrimination (EED), namely

EED = E D(Z, AC(Y)) , (10)

where the expectation in (10) is taken over (Z, Y) for a given sample size m, under the true 

data generating model.

A.2 |  Measures of Discrimination for Multiple Classes

Consider a two-category outcome. If we let Zi ∈ {1, 2} denote the class labels and let pi(c)

denote the reported probability that Zi = c, c = 1, 2, the c-statistic C12 is defined as

C12(Z, p(1), p(2)) = 1
N1N2 i ∈ A1 j ∈ A2

1 pi(1) > p j(1) + 1
21 pi(1) = p j(1) , (11)

where Ac = {i : Zi = c } is the set of subjects with class label c and Nc = i = 1
m 1 Zi = c .

For a C -category outcome (C > 2), the all-pairwise c-statistic (APCC ) is defined as

APCc = C
2

−1

k < j
Ck j(Z, p(k), p( j)),

where Ck j (·) is defined as in (11) and is computed using only subjects from classes k and j.

An alternative multi-class discrimination index is the polytomous discrimination index16 

(PDI). To define the PDI, we first let pi = (pi(1), …, pi(C)) denote the i th subject’s vector of 

predicted probabilities with pi(c) representing the predicted probability that subject i belongs 

to class c. Then, for a C -class model, the PDI is defined to be
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PDIC = 1
CN1⋯NC i1 ∈ A1

⋯
iC ∈ AC c = 1

C
gc(pi1

, …, piC
), (12)

where Ac = {i : Zi = c } is the set of subjects in class c and where gc(pi1
, …, piC

) equals one if 

pic
(c) > pi j

(c) for all j ≠ c, and equals zero if there is a j* ≠ c such that pic
(c) > pi j *

(c). If 

(piC
(c), …, piC

(c)) does not contain a unique maximizer and pic
(c) is one of those tied for the 

maximum value, then one sets gc(pi1
, …, piC

) = 1/t, where t is the number of cases tied with 

pic
(c). Unlike the all-pairwise c-statistic, a method producing predictions at random will 

generate a PDI value near 1/C (where C is the number of classes) rather than 0.5.
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FIGURE 1. 
Mean latent trajectories µc (t ) for the two central simulation scenarios. In Scenario I, 

observations for each subject are made at each of the eight time points ti j = j /4, j = 1, … , 8, 

and in Scenario II, observations for each subject are made at each of the five time points ti j = 

j /4, j = 1, … , 5. For both scenarios, the class-membership proportions are as follows: Class 

1: 50%, Class 2: 25%, Class 3: 15%, and Class 4: 10%.
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FIGURE 2. 
Average absolute empirical bias for the latent trajectories using data simulated under the 

eight simulation settings of the INAR(1)-NB model. For each simulation setting and number 

of subjects, empirical bias is calculated for each of the four latent classes. For each latent 

class, bias is calculated as T−1
j = 1
T |μc(t j) − μc(t j)|, where μc(t j) is the average estimate of µc 

(t j ) (average over simulation replications) and µc (t j ) is the true value of the mean curve at 

time t j. Absolute empirical bias values are plotted versus the class separation index (CSI) of 

the associated simulation settings. The values of the empirical bias were obtained using 200 

replications for each of the eight scenarios and each choice of the number of subjects (either 

m = 200 or m = 2, 000).
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FIGURE 3. 
Coverage proportions (using 95% confidence intervals) for the regression parameters (both 

the intercept and slope) and mixture proportions using data simulated under the eight 

simulation settings of the INAR(1)-NB model. Empirical coverage proportions are plotted 

versus the associated class separation index (CSI) of the associated simulation settings. 

Coverage proportions are shown for simulations with m = 200 subjects and m = 2, 000 

subjects.
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FIGURE 4. 
Average absolute empirical bias for the latent trajectories when fitting an INAR(1)-NB 

model to data simulated under the four settings of the Poisson-Normal model. For each 

simulation setting and number of subjects, empirical bias is calculated for each of the four 

latent classes. Empirical bias for each latent trajectory was computed as described in Figure 

2.
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FIGURE 5. 
Estimated trajectories for the CNLSY data assuming four latent classes. The terms in 

parentheses represent estimated class-membership proportions. The left panel displays the 

estimated trajectories adjusted for the different measurement scales used at different time 

points; these can be thought of as the fitted latent trajectories on the mother-reported BPI 

measurement scale. More specifically, the fitted curves in the left panel do not include the 

time indicators present in equation (8) while the right-hand panel displays the fitted 

trajectories associated with the full model in equation (8).
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FIGURE 6. 
ECNLSY data: estimated class-specific autocorrelation functions and sample autocorrelation 

values (weighted) obtained by using the estimated posterior probabilities of class 

membership to randomly assign each subject to one of the four latent classes. The random 

assignment procedure was repeated 1, 000 times; the displayed autocorrelation values (i.e., 

the points in the figure) represent the average autocorrelation values from these replications. 

The solid lines represent the estimated class-specific estimated AR(1) autocorrelation 

functions from the four-class model.
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TABLE 1

Values of estimates μi j
c  and associated standard errors for each time point ti j = 1, … , 7 and class c = 1, … , 4. 

Standard errors are shown in parentheses. Note that the fitted values μi j
c  shown here correspond to the right-

hand panel of Figure 5. Values of estimates πc and associated standard errors are also shown for each class.

Parameter Class 1 Class 2 Class 3 Class 4

μi1
c 0.84 (0.43) 2.42 (0.56) 4.10 (0.22) 2.06 (0.16)

μi2
c 0.65 (0.48) 2.00 (0.52) 4.01 (0.21) 1.60 (0.23)

μi3
c 0.56 (0.36) 1.79 (0.37) 4.18 (0.22) 1.84 (0.13)

μi4
c 1.24 (1.11) 2.14 (0.58) 6.13 (0.29) 3.06 (0.71)

μi5
c 1.23 (0.65) 2.14 (0.30) 6.75 (0.30) 4.46 (0.61)

μi6
c 0.86 (0.48) 0.64 (0.06) 1.72 (0.17) 2.41 (0.19)

μi7
c 0.91 (0.29) 0.67 (0.07) 1.83 (0.12) 2.09 (0.15)

πc 0.31 (0.06) 0.29 (0.05) 0.24 (0.03) 0.17 (0.10)
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TABLE 2

Weighted cross-tabulation of random class assignment and maternal age at the birth of the child using only 

male subjects, and weighted cross-tabulation of class assignment and of ever being convicted of a crime during 

ages 14 − 18 using only male subjects. The class assignments were obtained by using the estimated posterior 

probabilities to randomly assign each subject to one of the four latent classes. The random assignment 

procedure was repeated 1, 000 times, and the results were averaged. In the top table, we display in parentheses 

class proportions conditional on maternal age while in the bottom table we show conviction proportions 

conditional on class.

Class 1 Class 2 Class 3 Class 4

maternal age < 20 34.2 (0.178) 44.8 (0.233) 40.2 (0.209) 73.1 (0.380)

maternal age ≥ 20 968.7 (0.284) 941.7 (0.276) 581.7 (0.171) 917.6 (0.269)

 

Class 1 Class 2 Class 3 Class 4

ever convicted-yes 18.7 (0.031) 16.5 (0.025) 42.6 (0.105) 102.9 (0.144)

ever convicted-no 588.0 (0.969) 646.8 (0.975) 363.1 (0.895) 609.4 (0.856)
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