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1  | INTRODUC TION

Melanoma is the leading cause of skin cancer-related deaths and 
characterized by high metastatic potentials.1-3 The incidence of mel-
anoma has been increasing in recent years, and is generally higher 
in fair-skinned population.4,5 For early-stage melanoma, surgery re-
mains the mainstay of treatment with a high cure rate.6 However, 
prognosis of advanced melanoma is dismal because of its resistance 
to conventional therapies, including chemotherapy and radiother-
apy.7 Early melanoma detection is therefore the key to improving the 
survival. Nevertheless, the histopathologic diagnosis of melanoma is 
sometimes difficult for dermatopathologists in a subset of cases.8 
Moreover, there is no sensitive and specific biomarker for melanoma 
owing to its unclear molecular pathogenesis.

It has been demonstrated that more than 90% of transcripts from 
the human genome are not translated into proteins.9 These non-
protein coding RNAs are an important class of regulatory molecules 
that play crucial roles in the regulation of gene expression 10 and 
their dysregulation has been implicated in the development of dif-
ferent types of cancer.11,12 Non-coding regulatory RNAs are classi-
fied into two categories depending on their length: small non-coding 
RNA (≤200 bp) and long non-coding RNA (lncRNA, >200 bp).13,14 
LncRNA can modulate gene expression through various mechanisms, 

including chromatin modification, transcriptional activation/repres-
sion, RNA editing/splicing/degradation, microRNA sequestration, 
and translational efficiency regulation.15,16 Historically, lncRNAs 
were dismissed as junk or nonfunctional transcriptional noise.17 
However, emerging evidence has demonstrated that lncRNAs play 
crucial functional roles in tumourigenesis, including melanoma.18

In this review, we summarize the published data on the deregu-
lation and functions of lncRNAs in melanoma. We also discuss their 
potential diagnostic, prognostic and therapeutic applications.

2  | DEREGUL ATED LNCRNA S IN 
MEL ANOMA

2.1 | Hotair

The HOX transcript antisense intergenic RNA (HOTAIR), which was 
named for its location at the antisense strand of the HOXC gene 
cluster, was initially identified to be an overexpressed lncRNA in 
primary and metastatic breast cancer.19 By recruiting polycomb 
repressive complex 2 and histone demethylase complex, HOTAIR 
was found to mediate gene silencing via tri-methylation of lysine 
27 on histone H3 (H3K27me3) and H3K4me2.19 Numerous stud-
ies have shown that HOTAIR expression is upregulated in human 
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cancers, including breast, gastric, hepatocellular, colorectal, pancre-
atic and nasopharyngeal carcinomas,14,20-24 in which overexpression 
of HOTAIR plays an oncogenic role and is associated with cancer 
metastasis and poor prognosis. In melanoma, HOTAIR was consist-
ently overexpressed in lymph-node metastasis as compared with 
primary lesions.25 In addition, knockdown of HOTAIR suppressed 
the motility and invasion of melanoma cells in vitro, accompanied by 
decreased ability to degrade gelatin matrix, indicating that HOTAIR 
might increase melanoma cell invasiveness through promoting ge-
latinase activity. Another study showed that none of the benign 
melanocytic lesions showed the presence of HOTAIR whereas 
the staining of HOTAIR was very weak in primary non-metastatic 
melanomas but very strong in all pairs of primary tissues and cor-
responding metastases. Interestingly, HOTAIR could be detected in 
intratumoural lymphocytes as well as in the serum of a subset of 
metastatic patients.26 Portoso et al. showed that HOTAIR RNA can 
repress transcription in the context, but that this effect is PRC2 in-
dependent.27 Taken together, these data suggested that HOTAIR is 
involved in the metastatic progression of melanoma and may serve 
as a diagnostic marker for metastatic melanoma.

2.2 | Malat1

The metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1), also known as nuclear-enriched transcript 2 (NEAT2),28 
was initially identified as a prognostic marker for lung cancer metas-
tasis.9 Accumulating studies have now demonstrated MALAT1 de-
regulation in different human malignancies.29 It has been shown that 
MALAT1 mainly plays an oncogenic role in tumourigenesis through 
promoting cancer-cell proliferation, migration and invasion.30,31 
MALAT1 expression levels were higher in melanoma as compared 
with adjacent normal tissues.32 Moreover, knockdown of MALAT1 
decreased the migration of melanoma cell line in vitro. A recent 
study also demonstrated that knockdown of MALAT1 promoted 
miR-140 expression and suppressed Slug and ADAM10 expression 
in the uveal melanoma cell line MUM-2C.33 These findings suggest 
that the aberrant upregulation of MALAT1 might contribute to mela-
noma metastasis through promoting cell migration via derepressing 
miR-140-mediated inhibition of Slug and ADAM10.

2.3 | Bancr

BRAF-activated non-coding RNA (BANCR) is a 4-exon transcript 
of 693 bp, whose encoding gene is located on chromosome 9.34,35 
BANCR is involved in a variety of human malignancies, including lung 
carcinoma, colorectal cancer, melanoma, gastric cancer and bladder 
cancer.36-40 Nevertheless, the direction of deregulation of BANCR 
was tissue-specific in which this lncRNA could act as an oncogene or 
tumour-suppressor gene.41 In melanoma, Flockhart and colleagues 
demonstrated that BANCR was recurrently overexpressed.35 
Moreover, knockdown of BANCR decreased melanoma cell migra-
tion and this effect could be rescued by the chemokine CXCL11. 
Another study also showed that BANCR expression was upregulated 

in melanoma cell lines and tissues.42 In addition, its expression level 
was increased with advancing melanoma stages. Knockdown of 
BANCR expression significantly reduced the proliferation of mela-
noma cells through inactivating the extracellular signal–regulated 
kinases 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) components 
of the mitogen-activated protein kinase (MAPK) pathway. Moreover, 
BANCR knockdown suppressed melanoma growth in nude mice. 
Pertinent to clinical practice, patients with high BANCR expression 
in melanoma tissues showed a poorer prognosis and lower survival 
rate. These data indicated overexpression of BANCR contributes to 
the promotion and progression of melanoma.

2.4 | Spry4-it1

SPRY4-IT1 is derived from an intron of the SPRY4 gene localized in 
the chromosomal region 5q31.3, which encodes an endogenous in-
hibitor of the receptor-transduced mitogen-activated protein kinase 
pathway.43 The secondary structure of SPRY4-IT1 contains several 
long hair-pins. It was initially identified to be upregulated in mela-
noma.43 In recent years, emerging studies have demonstrated the 
deregulation and pathogenic roles of SPRY4-IT1 in human cancers, 
including lung cancer, gastric cancer, breast cancer and colorectal 
cancer.44-47 In melanoma, SPRY4-IT1 expression was predominantly 
localized in the cytoplasm.48 Knockdown of SPRY4-IT1 impeded cell 
proliferation and differentiation but promoted apoptosis in mela-
noma cells.43 Differential expression of both SPRY4 and SPRY4-IT1 
was also detected in patient samples of primary in situ, regional 
metastatic, distant metastatic, and nodal metastatic melanoma. A 
subsequent mechanistic study identified lipin 2 as a major binding 
partner of SPRY4-IT1. Lipin 2 is an enzyme that converts phosphati-
date to diacylglycerol. Moreover, knockdown of SPRY4-IT1 not only 
increased the protein expression of lipin 2, but also elevated the lev-
els of diacylglycerol O-acyltransferase 2 that converts diacylglycerol 
to triacylglycerol. Concordantly, SPRY4-IT1 knockdown increased 
the levels of several lipid species, including fatty acyl chains, acyl 
carnitine and triacylglycerol.49 These findings indicated that aber-
rant upregulation of SPRY4-IT1 plays a significant role in the patho-
genesis of melanoma through promoting lipid synthesis.

2.5 | Anril

ANRIL (antisense non-coding RNA in the INK4 locus) is named since 
it is expressed in the opposite direction from the INK4A-ARF-INK4B 
gene cluster.50 ANRIL gene has been reported to be a genetic suscep-
tibility locus shared by coronary heart disease, type 2 diabetes and 
also cancers.51 ANRIL was significantly upregulated in many cancers, 
including gastric cancer, non-small cell lung carcinoma, ovarian can-
cer and gallbladder cancer.52-55 Chromosome 9p21, which harbours 
ANRIL gene, is frequently inactivated in multiple human cancers.56 
Moreover, recurrent fusion transcripts of MTAP and ANRIL can be 
detected in ~25% of melanoma cell lines and tumour tissues.6 In an-
other study, ANRIL was shown to be upregulated whereas INK4A 
and INK4B were downregulated in uveal and cutaneous melanoma 
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tissues and melanoma cell lines. Interestingly, knockdown of ANRIL 
restored INK4A and INK4B expression and inhibited colony forma-
tion and migration in vitro and growth of melanoma xenograft in 
vivo.57 These findings indicate that ANRIL exerts its oncogenic ac-
tion in melanoma probably through regulation of its encoding locus 
that also harbours the tumour suppressors INK4A and INK4B.

2.6 | Llme23

Wu and colleagues identified a previously unreported lncRNA known 
as Llme23 in a human melanoma cell line. This lncRNA was found to 
interact with polypyrimidine tract-binding protein-associated splic-
ing factor (PSF). In addition, Llme23 expression was exclusively 
detected in human melanoma lines.58 Knockdown of Llme23 re-
markably inhibited the malignant phenotypes of melanoma cells and 
deceased expression of the proto-oncogene Rab23. These findings 
suggest that Llme23 might play an oncogenic role in human mela-
noma through direct binding to PSF.

2.7 | Uca1

Urothelial carcinoma associated 1 (UCA1) was initially identified to 
be upregulated in bladder cancer cells.59 UCA1 expression was sig-
nificantly upregulated in melanomas compared with paired adjacent 
normal tissues.32 Moreover, the expression level of UCA1 was signif-
icantly higher in more advanced stages (stages 3-4) melanoma than 
those at early stages (stages 1-2). Knockdown of UCA1 inhibited the 
migration of melanoma cells. A subsequent mechanistic study dem-
onstrated that UCA1 could sponge miR-507 and derepress miR-507-
mediated inhibition of FOXM1 expression in melanoma, leading to 

increased cell proliferation and invasion.60 These findings indicate 
that increased UCA1 expression might contribute to melanoma 
growth and metastasis through the miR-507-FOXM1 axis.

2.8 | Slncr1

SRA-like non-coding RNA1 (SLNCR1) is a novel lncRNA with sig-
nificant sequence similarity to the lncRNA steroid receptor RNA 
activator 1. Schmidt and colleagues reported that SLNCR1 is an 
abundantly-expressed lncRNA associated with worse overall sur-
vival in melanoma patients. Further functional and mechanistic 
characterization demonstrated that SLNCR1 increases melanoma 
invasion by transcriptionally upregulating matrix metalloproteinase 
9 (MMP9) in cooperation with the brain-specific homeobox protein 
3a (Brn3a) and the androgen receptor (AR).61 This study may par-
tially why males have higher incidence of melanoma metastases and 
exhibit an overall lower survival.62

2.9 | Sammson

SAMMSON is a recently annotated lncRNA with its encoding gene 
located on chromosome 3p13–3p14, which also harbours the 
melanoma-specific oncogene MITF.63 Leucci and colleagues dem-
onstrated that SAMMSON was frequently co-amplified with MITF 
and its expression is lineage-specific. Functional assays showed that 
exogenous SAMMSON increased the clonogenic potential of mela-
noma cells whereas SAMMSON knockdown drastically decreased 
melanoma cell viability and sensitized melanoma to MAPK-targeting 
therapeutics. Mechanistically, SAMMSON interacts with p32 to 
increase its mitochondrial localization for regulating mitochondrial 

TABLE  1 Functional characterization of the lncRNAs in melanoma

lncRNAs Expression Functional role Related gene Role References

HOTAIR Up Motility invasion gelatin 
matrix

Oncogene [25, 26]

MALAT1 Up Migration metastasis miR-140 
Slug 
ADAM10

Oncogene [32, 33]

BANCR Up Migration proliferation ERK1/2 
JNK 
MAPK

Oncogene [35, 42]

SPRY-IT1 Up Proliferation differentiation 
apoptosis

lipin 2 Oncogene [43, 48, 49]

ANRIL Up Colony formation migration INK4A  
INK4B

Oncogene [6, 57]

Llme23 Up Malignant phenotypes PSF 
Rab23

Oncogene [58]

UCA1 Up Migration proliferation miR-507 
FOXM1

Oncogene [32, 60]

SLNCR1 Up Invasion MMP9 
Brn3a 
AR

Oncogene [60]

SAMMSON Up Viability oxidative MITF
MAPK

Oncogene [63]
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homeostasis and metabolism. Concordantly, targeting SAMMSON 
decreased oxidative phosphorylation, mitochondrial ribosome 
biogenesis, and respiratory chain complex activity in a cancer-cell-
specific manner.63 These results suggest that SAMMON silencing 
may deliver effective anti-melanoma therapeutic responses (Table 1 
and Figure 1).

3  | CONCLUDING REMARKS AND FUTURE 
PERSPEC TIVES

Melanoma is the most aggressive type of skin cancer with rapid 
metastatic progression. Early diagnosis is crucial for melanoma 
management as advanced melanomas are refractory to conven-
tional treatment and associated with dismal survival outcomes. 
LncRNAs were initially considered to be functionless and there-
fore termed “genomic dark matter”. However, emerging studies 
have revealed their important functions. Although thousands of 
lncRNAs have been identified, only few have been functionally 
characterized. Current research has revealed the importance of 
lncRNA in tumourigenesis. In melanoma, several lncRNAs have 
been demonstrated to be differentially expressed in melanoma 
and function as potent regulators of melanoma progression and 
metastasis. These lncRNAs include HOTAIR, MALAT1, BANCR, 
ANRIL, SPRY-IT1, Llme23, UCA1, SLNCR1 and SAMMSON. 
However, the current knowledge of lncRNAs in terms of their 
deregulation and mechanisms in melanoma is far from complete. 

Moreover, the clinical utilities of lncRNAs remain not fully estab-
lished. Future investigations are therefore needed to clarify the 
upstream and downstream mechanisms as well as clinical implica-
tions of lncRNA deregulation in melanoma.
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