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1  | INTRODUCTION

Tumour necrosis factor alpha (TNFα), a member of the TNF super-
family, was reported to be mainly produced by macrophages and 
capable of replicating the ability of endotoxin in inducing haem-
orrhagic tumour necrosis.1 A number of studies demonstrated it 
as a potent inflammatory cytokine inducing complex immune re-
sponses2 and also performing anti-cancer effects. TNFα was the 
first cytokine to be employed for cancer treatment. It exerts anti-
tumour activity through complex mechanisms of induction of in-
flammatory and immune responses, tumour cell apoptosis/necrosis 

and extensive thrombosis and destruction of tumour vasculature.3 
By now, many studies have been conducted to evaluate the anti-
cancer efficacy of TNFα in various tumour types and some are even 
put into clinical trials.

The other modulator interferon gamma (IFNγ), which is a cytokine, 
belongs to a type II interferon group and plays critical roles in both 
host defence and immune regulation. Mature forms of natural human 
or murine IFNγ comprise of glycosylated polypeptides of 143 and 134 
amino acids, respectively and homodimerize to form a non-covalently 
linked 50 kDa protein. The understanding of cell biology and physiol-
ogy of IFNγ started from the initial description of its anti-viral activities 
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produced by phytohaemagglutinin-activated human leucocytes.4 The 
later discovery that patients with deficiency in IFNγ production or 
signalling are highly susceptible to rare mycobacterial infections high-
lighted the importance of IFNγ in preventing infectious diseases.5 IFNγ 
is now clearly depicted to exert its effects by binding to distinct high 
affinity receptors of IFNGR1 and IFNGR2 and subsequently activate 
a specific signal transduction pathway termed JAK-STAT pathway 
to regulate transcription of IFNγ-inducible genes mediating specific 
IFNγ-dependent cellular responses6 of apoptosis etc. Studies then fo-
cused on a critical role of endogenously produced IFNγ in promoting 
host responses to tumours, which then evoked many interests on its 
anti-cancer function and clinical application. Despite the overwhelm-
ing evidence indicating the anti-tumour activity of IFNγ, there are 
still some studies revealing its pro-tumourigenic activities based on 
the cellular, microenvironment and/or molecular context.7 Therefore, 
the anti-cancer therapeutic application of IFNγ should be carefully 
evaluated.

Despite the promising anti-cancer potential of the two cytokines, 
their clinical application is still hindered by severe toxicity after sys-
temic administration. Many strategies have been investigated to re-
duce their systemic toxicity.8 Fusion proteins consisting of a cytokine 
and a recombinant peptide are regarded as a novel class of “armed” 
antibodies acting as delivery vehicles and increasing the therapeutic 
index of pro-inflammatory cytokines.9 So far, various ligands targeting 
tumour-associated antigens have been employed to combine with cy-
tokines as fusion proteins, which help for the specific accumulation of 
cytokines at tumour sites. But the tumour-targeting and therapeutic 
effects have variable outcomes and should be evaluated from case to 
case. For example, some pro-inflammatory cytokines as IL-2, IL-12 and 
TNFα that fused to L19 (specific to spliced EDB domains) or F8 (spe-
cific to spliced EDA domains) exhibited impressive anti-cancer activity 
with selective uptake at the tumour site, while IL-7, IL-17, IL-15 and IL-
18 showed limitations either in tumour-targeting or therapy.10-12 Our 
review here will mainly discuss the anti-cancer mechanisms of TNFα 
and IFNγ and their selective delivery systems and potential clinical 
application in cancer therapy.

2  | THE ANTI- ­CANCER ACTIVITY OF TNFα

Tumour necrosis factor alpha consists of 3 non-covalently linked 
TNFα monomers, ~17.5 kDa each, which forms a compact bell-shaped 
homotrimer.13,14 The soluble homotrimeric TNFα can be released via 
proteolytic cleavage by a metalloprotease, the TNFα converting en-
zyme. TNFα was reported to bind to 2 receptors, TNFR1 and TNFR2, 
where TNFR1 is constitutively expressed in most tissues and consid-
ered as a death receptor, and TNFR2 is mainly expressed in cells of 
the immune system.15 Upon TNFα binding, TNFRs form homotrimers 
which cause conformational changes to the receptors with a series 
of intracellular events leading to the activation of 3 major signalling 
cascades, namely the nuclear factor kappa B (NF-κB) pathway, the 
mitogen-activated protein kinase (MAPK) pathway and the induction 
of death signalling.8

Tumour necrosis factor alpha plays a paradoxical role in cancer 
biology in which its induction of cancer cell death or survival de-
pends on the cellular context. TNFα was initially isolated from the 
sera of mice treated with bacterial endotoxin and it was found to be 
able to replicate the ability of endotoxin in inducing haemorrhagic 
tumour necrosis. After that, numerous studies were conducted to 
investigate its clinical applications especially in cancer therapy. It 
has been discovered that TNFα can lead to massive haemorrhagic 
necrosis of transplanted tumours.2 Although TNFα shows potent 
anti-tumour activity in various animal cancer models, this cytokine 
unselectively binds not only to tumour cells and endothelial cells, 
but also to normal cells and blood vessels, to produce non-specific 
damage to various cell types. This could cause severe toxicity after 
systemic administration, even at doses far below the therapeutic 
window. Various phase I and phase II clinical trials were conducted in 
the 1980s and 1990s for systemic treatment of recombinant human 
TNFα (rhTNFα), using TNFα either as a single agent or in combination 
with other cytokines, chemotherapy or radiotherapy. However, the 
results were disappointing due to significant toxicities and very lim-
ited beneficial outcome.16 The main clinical trials and toxicities asso-
ciated with systemic administration with TNFα have been reviewed 
previously.16 The common dose limiting side effects include hypo-
tension, rigors, phlebitis, thrombocytopenia, leucopenia and hepa-
totoxicity. Other general symptoms include fever, fatigue, nausea/
vomiting, malaise and weakness, headache, chest tightness, low back 
pain, diarrhoea and shortness of breath.16-20 For the above reason, 
the clinical use of TNFα is now confined to isolated limb perfusion 
(ILP) in combination with melphalan for soft tissue sarcoma and mel-
anoma. Many efforts have been paid to augment the anti-tumour 
effect of TNFα while to reduce its systematic toxicity, including pas-
sive targeting by PEGylation, cell-based therapy, gene therapy with 
inducible or tissue-specific promoters, shielding or encapsulation 
of TNFα, antibody-TNFα conjugate, vascular targeting TNFα cou-
pled to tumour-homing peptides and TNFα mutants.8,21,22 Lately, it 
is reported that systemic administration of TNF-expressing tumour 
cells can reduce the growth of both primary tumours and metastatic 
colonies in immunocompetent mice by homing to tumours, locally 
releasing TNFα, damaging neovascular endothelia and inducing mas-
sive cancer call apoptosis.23 At the same time, it can minimize the 
common side effects. However, more pre-clinical and clinical studies 
are needed to fully assess the safety and efficacy of this approach.

3  | TNFα  AND TUMOUR ANGIOGENESIS

As early as the 1990s, TNFα has been reported to exert synergic 
anti-tumour effects when combined with other chemotherapeutic 
drugs. Such synergism is mainly based on the alteration of endothe-
lial barrier function, reduction of tumour interstitial pressure and 
finally improvement of drug delivery to the tumours.24,25 It has also 
been proposed that the anti-tumour activity of TNFα depends on in-
direct mechanisms of selective obstruction and damage of tumour-
associated blood vessels and activation of immune responses rather 
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than having toxic effects directly on tumour cells.26-29 Studies then 
found out that isolated limb or hepatic perfusion with high dose 
of TNFα in combination with melphalan (a chemotherapeutic drug) 
produced high complete response rates in patients with melanoma 
or sarcoma of the extremities,30,31 as well as regression of bulky 
hepatic cancer confined to the liver.32 The micro- and macro-
vasculature in tumours was observed to be extensively damaged 
after isolated perfusion to limbs with TNFα in combination with 
IFNγ and melphalan.33

However, as we mentioned above, TNFα showed non-specificity 
in cancer therapy, which hampered its systemic administration. 
Therefore, specially homing TNFα to tumour vessels could be a pow-
erful anti-tumour strategy. By in vivo phage ligand capable of homing 
to tumour vessels and is first explored to fuse with TNFα to effectively 
homing TNFα to tumours. By coupling TNFα to CNGRC as a compound 
of NGR-TNF, it can deliver pictogram doses of TNFα into tumours, 
which indeed successfully hyper-concentrated TNFα at tumours and 
enhanced the immunotherapeutic properties of TNFα.14 Studies inves-
tigating the structure-activity and receptor-binding of NGR-TNF fu-
sion proteins showed that NGR peptide did not influence and prevent 
folding, oligomerization, and the interaction between TNFα with TNFα 
receptors.14 Studies were then conducted in the in vivo murine tumour 
models showing that compared to TNFα, low doses of NGR-TNF could 
greatly inhibit tumour growth and enhance chemotherapeutic efficacy 
of doxorubicin and melphalan,34 indicating that the conjugation with 
NGR did not influence the biological effect of TNFα in vivo. Besides 
the direct inhibition of tumour growth by NGR-TNF, many efforts were 
paid to explore its capacity to improve response to chemotherapy by 
altering tumour vasculature and tumour microenvironment. Since TNFα 
itself could alter endothelial barrier function and synergistically improve 
drug concentration in tumours, one study in 2006 aimed at evaluating 
the biological effects of NGR-TNF on tumour vasculature at low doses 
in lymphoma-bearing mice.35 This study demonstrated an increase in 
vascular permeability after NGR-TNF treatment. However, two hours 
after NGR-TNF treatment, there was a decrease in tumour hypoxia and 
an increase in labelling index of the S-phase marker bromodeoxyru-
ridine, which could lead to increased tumour growth. However, after 
1 day of treatment, the in vivo tumour growth decreased, implying that 
other potentially long-lasting effects of NGR-TNF did occur. This study 
underlines the importance of timing for the combined treatment of 
NGR-TNF with other therapeutic agents.

By targeting tumour vessels, NGR-TNF was proven to exert syner-
gistic anti-tumour effects with melphalan, doxorubicin, cisplatin, gem-
citabine and paclitaxel in RMA lymphoma-bearing mice.36 Similar to 
TNFα, a primary mechanism for NGR-TNF to produce synergic effects 
with chemotherapeutic drugs was related to disassembly of endothe-
lial VE-cadherin-dependent adherence junctions and alteration of en-
dothelial barrier function in tumours, increase of tumour perfusion and 
reduction of interstitial pressure. Currently, NGR-TNF, either alone or 
in combination with chemotherapy, has been tested in various clinical 
studies in cancer patients.37,38

Tumours can develop new strategies to impair effector T lympho-
cyte function39 and cause hypoxic microenvironment to form new 

vessels that are disorganized, tortuous and more leaky than the nor-
mal ones. NGR-TNF, on other hand, even at low doses, was identified 
to upregulate endothelial cell adhesion molecules in tumour vessels 
and enhance the local production of immunomodulating cytokines in 
tumour-bearing mice, thereby favouring the extravasation of immune 
cells and improving therapeutic activity of immunotherapy.40

In addition to NGR-TNF, other tumour vessel homing derivatives 
of TNFα, such as fusion protein with ACDCRGDCFCG or CisoDGRC 
peptides (both ligands of αv integrins)41 or with the single chain Fv Ab 
L19,42 can be exploited to produce synergic effects with chemothera-
peutic drugs and enhance immune response in tumours. One example 
is the RGD peptide which can recognize various αβ integrins het-
erodimers.43 Interestingly, the αvβ3 heterodimer is overexpressed in 
blood vessels in tumours. Therefore, this receptor could be exploited 
as a pharmacological target to deliver cytokines to tumour blood ves-
sels.44,45 Subnanogram doses of RGD-TNFα prepared by recombinant 
DNA technology were sufficient to enhance anti-tumour effects in 
combination with melphalan in subcutaneous murine B16F1 melano-
mas and RMA-T lymphomas. However, the trimetric RGD-TNFα fusion 
protein hardly folded in a homogeneous manner due to 4 Cys residues 
involved in the structure of RGD peptide.46 In this regard, NGR-TNFα 
was preferentially chosen for clinical study. Another peptide named 
RGR selected by phage display in pancreatic tumours showed spe-
cial affinity to angiogenic vessels in insulinomas.47 It has been used 
as a carrier to deliver therapeutic proteins, such as TNFα and IFNγ to 
the targeted site for cancer therapy. Johansson et al48 demonstrated 
that intratumoural low-dose of RGR-TNFα (2 μg over 2 weeks) caused 
initial vessel activation and stabilization, enhanced vascular function-
ality, decreased vascular leakiness and T-cell infiltration mediated by 
CD8+effector cells. Recently, our group has found a tumour vascular-
homing peptide TCP-1 (a 9-amino acid cyclic peptide) based on an in 
vivo phage library screening against an orthotopic colorectal cancer 
developed in mice.49 This peptide can specifically recognize the neo-
vasculature of the colorectal tumour but not normal tissues in differ-
ent organs. Our study showed that TCP-1/TNFα could synergize with 
5-FU to inhibit orthotopic colorectal cancer growth. TCP-1/TNFα nor-
malized tumour blood vessels, increased the absorption of 5-FU into 
the tumour and also facilitated the infiltration of immune cells into the 
neoplasm.50 Thus, TCP-1/TNFα could be a novel agent targeting col-
orectal cancer tumour vessels and improve drug delivery and immune 
response in tumours.

4  | THE ANTI- ­CANCER ACTIVITY OF IFNγ

Angiogenesis is a basic process in promoting tumour growth. 
Numerous studies so far have focused on the angiogenic process, 
in an attempt to explore new strategies against tumour growth. 
Angiogenesis has been revealed to be a highly regulated process 
involving the balance between pro- and anti-angiogenic factors and 
the interaction between the immune and endothelial cells. Vascular 
endothelial growth factor (VEGF) is an important pro-angiogenic 
molecule in the tumour microenvironment, whose upregulation has 
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been shown to contribute to tumour-associated angiogenesis, and 
tumour-associated macrophages (TAMs) are one of the main sources 
of VEGF.51 It has been found that IFNγ can reduce the expression 
of mouse-VEGF, inhibit tumour angiogensis52 and induce blood ves-
sel destruction and necrosis.53 Study also revealed that IFNγ could 
promote monocytes/macrophages infiltrating into tumour tissues and 
inhibit them to differentiate into TAMs.52 Therefore, IFNγ reduced an-
giogenesis by inhibiting TAM differentiation and VEGF expression in 
the tumour microenvironment.

As early as 1992, it was reported that the administration of recom-
binant IFNγ and a synthetic lipid A subunit analogue (GLA-60) could in-
hibit tumour-associated angiogenesis synergistically in C57BL/6 mice, 
perhaps partially depending on the induction of endogenous TNFα.54 
Other mechanisms have also been proposed for IFNγ to inhibit tumour 
angiogenesis. For example, IFNγ can induce non-haematopoietic cells 
to secrete interferon-inducible protein 10(IP-10), leading to blockade 
of tumour angiogenesis and inhibition of tumour growth.55 Specially 
targeting cancer-associated fibroblasts by IFNγ to inhibit fibroblasts-
induced tube formation of H5V endothelial cells was reported to 
inhibit tumour vascularization.56

Besides anti-angiogenesis effect, IFNγ could exert its anti-cancer 
effect by inducing chemokine and cytokine secretion in the tumour 
microenvironment, as well as upregulating MHC class I and II to stim-
ulate anti-tumour immunity. Studies in recurring superficial transitional 
bladder carcinoma57 and ovarian cancers58 demonstrated significant in-
creases of T cells infiltrating into the neoplasm after administration of 
IFNγ, which favoured a good prognosis in cancer patients. Moreover, 
IFNγ itself has direct anti-proliferative activity on ovarian cancer cells by 
inducing tumour cell growth arrest and apoptosis59 and could achieve 
an increased complete/partial response. Several clinical trials have 
been conducted for IFNγ. It is proven that IFNγ when used as an ad-
juvant therapy, could prolong the survival in ovarian cancer patients.60 
Also intraperitoneally given, IFNγ has been shown to achieve surgically 
documented responses by intraperitoneal treatment in the second-line 
therapy of ovarian cancer.61 Moreover, when administered intravesically, 
IFNγ was found to be effective against bladder tumour recurrence.57 In 
spite of the encouraging result in the above clinical trials, a lack of ben-
eficial effect was seen in metastatic renal-cell carcinoma,62 advanced 
colon cancer63 or small-cell lung cancer,64 advanced measurable pan-
creatic adenocarcinoma and also advanced breast cancer.65 Thus, the 
anti-cancer effect is only on certain kinds of cancer if not for all cancers.

Similar to TNFα, systematic administration of IFNγ also faces 
the same problem of systemic toxicity and low anti-cancer efficacy. 
The clinical anti-cancer effects of IFNγ are summarized in Table 1. 
The most common adverse effects are “flu-like,” such as fever, head-
ache, chills or fatigue. Other common side effects include diarrhoea, 
nausea, vomiting and anorexia. Reversible and transient increases 
in hepatic transaminase and decrease in granulocyte and leucocyte 
counts were also seen.65,67,69,82-84 Fusion proteins of IFNγ with NGR 
to form IFNγ-NGR could successfully target IFNγ to tumour vessels. 
However, excessive stimulation of IFNγ receptors by frequent admin-
istration of low doses of IFNγ-NGR could activate counter-regulatory 
mechanisms and inhibit ongoing anti-tumour response.41 It was St
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found that repeated treatment of IFNγ-NGR increases dindoleamine 
2,3-dioxygenase (IDO) and caused excessive stimulation of trypto-
phan catabolism and inhibited anti-tumour immunity.85 Combination 
of IFNγ-NGR with IDO inhibitors was then reported to overcome re-
sistance of IFNγ-NGR in nu/nu mice bearing RMA lymphoma.85 F8 
antibody was another ligand specially targeting EDA domain of fi-
bronectin, a tumour-associated antigen expressed in the vasculature 
and stroma of almost all tumour types. Fusion conjugate of F8 to IFNγ 
retained the biological activity of both the antibody and the cytokine 
moiety in vitro,9 and showed dose-dependent activity with a clear su-
periority over untargeted recombinant IFNγ.9 Platelet-derived growth 
factor-beta receptor (PDGFbR)-binding carrier (pPB-HSA) has been 
used as fusing peptide to specially target IFNγ to stromal fibroblasts 
and pericytes (2 components of tumour stroma).The pPB-HSA-IFNγ 
conjugate successfully activated IFNγ-signalling (pSTAT1α), inhibited 
the activation and migration of NIH3T3 fibroblasts and hampered 
fibroblasts-induced tube formation of H5V endothelial cells.56 This 
provides new types of drugs to target tumour stromal cells in cancer 
therapy.

5  | CO-­ADMINISTRATION OF TNFα  AND 
IFNγ  IN ANTI- ­CANCER THERAPY

Both TNFα and IFNγ demonstrated inspiring anti-cancer effects in in 
vitro and in vivo studies. However, both of them when administrated 
alone presented limited therapeutic responses in clinics. Numerous 
studies were then conducted to focus on the synergic anti-cancer ef-
fects of both TNFα and IFNγ, especially in the induction of cellular 
apoptosis. As early as 1988, recombinant TNFα and IFNγ have already 
been reported to induce synergic anti-proliferative effects on human 
pancreatic tumour cell lines.86 TNFα combined with IFNγ could accel-
erate NF-κB-mediated apoptosis through enhancement of fas expres-
sion in colon cancer cells.87 Such effect was also depicted in ewing 
tumour cells.88 Nitric Oxide expression and activation of PI3-kinase-
dependent signalling cascade were also involved in mediating the syn-
ergistic pro-apoptotic effects of TNFα and IFNγ.89 Kim et al90 found 
out that IFNγ sensitizes MIN6N8 insulinoma cells to TNFα-induced 
apoptosis by inhibiting NF-κB-mediated XIAP upregulation. Kulkarni 
et al91 then reported that IFNγ can sensitize the human salivary gland 

F IGURE  1 The anti-tumour effect of TNFα and IFNγ alone and in combination. The soluble homotrimeric TNFα released by metalloprotease 
bind to death receptor TNFR1 and immune system receptor TNFR2,which can activate 3 signalling cascades including NF-κB, MAPK and death 
signalling. The tumour-homing TNFα has significant anti-tumour effect. NGR-TNF can enhance TNFα delivery and immunotherapeutic effect 
without influencing the biological effect of TNFα in vivo. At the same time, it can also synergize with chemotherapeutic drug. Another peptide 
RGD can also recognize the tumour blood vessel and RGD-TNFα has synergistic anti-tumour effect with chemotherapeutic drug. Besides, TCP-
1/TNFα increased the absorption of drug and immune response in tumours. The 2 receptors IFNGR1/IFNGR2 of IFNγ can activate JAK-STAT 
pathway to regulate cell apoptosis. Study indicated that IFNγ could reduce the mouse-VEGF and promote monocytes/macrophages infiltrating 
and chemokine/cytokine secretion to inhibit tumour growth. IFNγ-NGR could target IFNγ to tumour vessels. Combination of IFNγ-NGR with 
IDO inhibitors could overcome resistance of IFNγ-NGR caused by excessive stimulation of tryptophan catabolism. The pPB-HSA-IFNγ also 
successfully activated IFNγ-signalling, inhibited the activation and migration of fibroblasts and hampered fibroblasts-induced tube formation of 
endothelial cells. TNFα combined with IFNγ has been shown to have synergic anti-tumour effect via various pathways. Lately, targeted delivery 
of TCP-1/TNFα and TCP-1/IFNγ to tumour blood vessel has been demonstrated to significantly inhibit orthotopic colorectal tumour growth 
without significant systematic toxicity
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cell line, HSG, to TNFα-induced activation of dual apoptotic pathways. 
Hairy cell leukaemia was reported to extremely sensitive to IFNγ, and 
further studies decoded that exposure of hairy cells (HCs) to IFNγ re-
sulted in a marked increase of TNFα secretion, which was then solidly 
identified to be attributable to suppression of IAP (inhibitors of apop-
tosis), a protein known to be regulated by the cytoprotective NF-κB-
dependent arm of TNFα signalling.92 Synergistic activation of JNK/
MAPK induced by TNFα and IFNγ to activate apoptosis was observed 
in pancreatic β-cells via the p53 and ROS pathway.93

There are many other mechanisms underlying the synergism between 
TNFα and IFNγ besides the synergic apoptosis-inducing effects. Studies 
hypothesized that although TNFα and IFNγ were not required by cyto-
lytic effect on CD8+ T cells (CTLs) for perforin-mediated killing of antigen-
expressing tumour cells, tumour antigen-specific CTLs must secrete TNFα 
and IFNγ for the destruction of tumour stroma.94 Moreover, TNFα and 
IFNγ produced by NK cells could induce target cell cytolysis through 
upregulation of ICAM-1.95 Lately, TNFα and IFNγ were reported to co-
operate together to induce senescence in numerous murine and human 
cancers by induction of permanent growth arrest in G1/G0, activation of 
p16INK4a, and downstream Rb hypophosphorylation at serine 795.96

Malignant tumours evolve along multistage programs of establish-
ing a tumour stroma, neoangiogenesis and reprogramming of cell me-
tabolism, finally leading to the expression of tumour-associated antigens 
(TAA).97 This evolving process mainly depends on innate immune cells to 
induce aberrant vessel growth and adaptive immune response against 
TAA, which play important roles in the transition of premalignant dys-
plasia into carcinoma and further cancer progression.98,99 Many focuses 
have been put on CTL to develop tumour immune therapy, and later a 
more efficient IFNγ-producing CD4+ cell (Th1) was recognized to pre-
vent transplant tumours growth and development by regulating multi-
stage carcinogenesis through cytokine signals. Both tumour necrosis 
factor p55 receptor (TNFR1) signalling and IFNγ signalling were found to 
be essential for dominant anti-tumour effects of Tag-specific Th1 cells. 
Absence of either TNFR1 signalling or IFNγ signalling determined Tag-
specific Th1 cells to induce tumour dormancy or promote multistage 
carcinogenesis,97 which was another solid evidence supporting the co-
operative effects of TNFα and IFNγ in anti-tumour treatment. Our re-
cent study using tumour vasculature homing peptide TCP-1 showed that 
targeted combination therapy with TCP-1/TNFα and TCP-1/IFNγ could 
remarkably inhibit orthotopic colorectal tumour growth by inducing 
tumour necrosis without causing significant systematic toxicity.100 The 
anti-tumour effects of TNFα and IFNγ either using alone or in combina-
tion are summarized in Figure 1. Our result emphasizes the therapeu-
tic potential of co-administration of targeted TNFα and IFNγ for cancer 
treatment and the utility of TCP-1 peptide as a tumour-targeting agent 
in colorectal cancer. Comprehensive toxicity study is still needed before 
further application of this combination of treatment for type of cancer.

6  | CONCLUSION

Tumour necrosis factor alpha and IFNγ are now affirmed as pro-
inflammatory cytokines and also produce effective anti-tumour 

effects. Their clinical application was limited due to the toxicity and 
counter-regulatory mechanisms. Such limitations could partially be 
overcome by fusion of TNFα and IFNγ to peptides or antibodies tar-
geting tumour epithelial, endothelial or stromal cells.13,101 An alterna-
tive strategy of targeted delivery of TNFα by TNF-expressing cancer 
cells has lately been demonstrated. The safety issues in clinical con-
text await further assessment.23 The multifunctional properties of 
TNFα and IFNγ and the newly discovered targeted delivery strategies 
may well result in a more optimistic clinical applications of these 2 
cytokines in cancer treatment in a foreseeable future.
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