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1  | INTRODUCTION

Nowadays, cancer is one of the major causes of death all over the 
world.1,2 According to mortality data collected by the National Center 
for Health Statistics, it is estimated that 1 688 780 new cancer cases 
and 600 920 cancer deaths will take place in the United States in 
2017.3 In order to fight against cancer effectively, we should make a 
great effort to find more precise diagnostic biomarkers and effective 
therapeutic targets.

Recently, increasing evidence has shown that the non-coding por-
tion of the genome has a crucial functional importance in both nor-
mal physiology and diseases.4-6 Long non-coding RNAs (lncRNAs), a 
group of non-protein-coding RNAs with more than 200 nucleotides 
in length, play a vital role in regulating significant cellular functions, 
including cell proliferation, differentiation, apoptosis, invasion, me-
tabolism, developmental timing and immune responses.7-12 However, 
mutation of lncRNAs will cause cancer initiation and promote the me-
tastasis of malignancy.13-15 For instance, lncRNA metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1) was first found in lung 
cancer metastasis. Many studies had demonstrated that lncRNA 
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Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs with more 
than 200 nucleotides in length, are involved in multiple biological processes, such as 
the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have 
shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in 
human cancers. In this paper, we concentrate on actin filament-associated protein 
1-antisense RNA 1 (AFAP1-AS1), a well-known long non-coding RNA that is overex-
pressed in various tumour tissues and cell lines, including oesophageal cancer, pancre-
atic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular 
carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. 
Moreover, high expression of AFAP1-AS1 was associated with the clinicopathological 
features and cancer progression. In this review, we sum up the current studies on the 
characteristics of AFAP1-AS1 in the biological function and mechanism of human 
cancers.
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MALAT1 was overexpressed in various cancer, and it might act as a 
potential biomarker and therapeutic target in cancer treatment.16-18 
LncRNA MALAT1 might function as an oncogene through controlling 
alternative splicing process in breast cancer, influencing the expres-
sion of N-cadherin and E-cadherin in bladder cancer, combining with 
a multifunctional RNA-binding protein in colorectal cancer (CRC) and 
osteosarcoma.19-22 LncRNA HOX antisense intergenic RNA (HOTAIR) 
induced cancer invasion and metastasis by regulating PRC2 target 
genes in breast cancer and epithelial-mesenchymal transition (EMT) 
programme in gastric cancer (GC).23,24 LncRNA H19 was upregulated 
in GC and associated with miR-675, p53 and Isthmin1 that improved 
cells proliferation, migration and invasion.25-29 Among so many cancer-
related lncRNAs, actin filament-associated protein 1-antisense RNA 1 
(AFAP1-AS1) was initially discovered in oesophageal adenocarcinoma 
in 2013.30 Then, numerous recent studies had focused on lncRNA 
AFAP1-AS1 and demonstrated that it was upregulated in many cancers 
and played an important role in tumour progression. A meta-analysis 
had shown that high expression of AFAP1-AS1 in human cancers was 
closely related to poor clinical outcome such as lymph node metasta-
sis and distant metastasis.31 Hence, we chose it as the main research 
object to summarize its characteristics in the biological function and 
mechanism of human cancers.

2  | IDENTIFICATION OF AFAP1-­AS1

Actin filament-associated protein 1 (formerly AFAP-110), an actin 
cross-linking protein and a cSrc-binding partner, is a member of the 
AFAP family which includes AFAP1, AFAP1 like-1 and AFAP1 like-2/
XB-130.32,33 There are 2 pleckstrin homology domains in AFAP1, and 
one of them involves a protein kinase C-binding site and carboxy-
terminal domains.33,34 On the basis of multimerization associated with 
its leucine zipper and binding to actin filaments through its carboxy-
terminal actin filament-binding domain, AFAP1 can crosslink actin 
filaments.34

Long non-coding RNA AFAP1-AS1 with 6810 bp in length is 
mapped to the 4p16.1 region of human chromosome 4. Moreover, 
AFAP1-AS1 is transcribed from the AFAP1 gene in the antisense di-
rection, containing several overlapping and complementary regions 
among the exons of AFAP1-AS1 and AFAP135 (Figure 1). Antisense 
lncRNAs like AFAP1-AS1 are oriented in an antisense direction regard 

to a protein-coding gene in the opposite strand, and AFAP1-AS1 
can affect the expression of AFAP1.36-39 Further experiments have 
demonstrated that AFAP1-AS1 was overexpressed in cancer tissues 
and cell lines, such as oesophageal cancer, pancreatic ductal adeno-
carcinoma (PDAC), nasopharyngeal carcinoma (NPC) and lung can-
cer. In addition, overexpression of AFAP1-AS1 was closely associated 
with tumour size, lymphatic metastasis, distant metastasis, tumour-
node-metastasis (TNM) stage and poor prognosis of cancer patients. 
Using siRNA to impair the expression of AFAP1-AS1 inhibited cell 
proliferation, migration and invasion and induced cell apoptosis 
through regulating related genes or signalling pathways.30,35,40-58 In 
this review, the related clinicopathological characteristics and mo-
lecular functions of this lncRNA in cancers are presented in Tables 1 
and 2.

3  | AFAP1-­AS1  IN VARIOUS CANCERS

3.1 | Oesophageal cancer

Oesophageal cancer is the eighth most frequent types of cancer and is 
the sixth leading cause of tumour-related death all over the world.59,60 
There are 2 primary histological subtypes of oesophageal cancer, in-
cluding oesophageal adenocarcinoma (OAC) and oesophageal squa-
mous cell carcinoma (OSCC).61,62 OSCC accounts for more than 95% 
of oesophageal cancer.63 OAC is one of the fastest growing cancers 
in the Western world, while OSCC is the main subtype of oesopha-
geal cancer in Asia.3,64 Although different kinds of treatment have 
been developed, including chemotherapy, radiotherapy and surgery, 
the long-term survival rate of oesophageal cancer is still extremely 
low.64,65 Because of the rising morbidity and poor prognosis of oe-
sophageal cancer patients, it is urgent to look for new tumour markers 
and therapeutic targets for early diagnosis and advanced treatment of 
oesophageal cancer patients.

Wu et al30 reported that AFAP1-AS1 was exceedingly hypometh-
ylated and overexpressed in Barrett’s oesophagus and OAC tissues 
and OAC cell lines. Further functional analyses demonstrated that 
AFAP1-AS1 was an oncogene in the oesophagus cancer. Inhibition 
of AFAPA-AS1 by siRNA in OAC cells reduced cell proliferation, col-
ony formation, migration and invasion, increased apoptosis and in-
duced G2/M phase arrest. However, the expression of AFAP1-AS1 
was irrelevant with AFAP1 expression. They drew a conclusion 

F IGURE  1 Long non-coding RNAs (lncRNA) actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1) is mapped to the 4p16.1 
region of human chromosome 4. AFAP1-AS1 is transcribed from AFAP1 gene in the antisense direction, containing several overlapping and 
complementary regions among the exons of AFAP1-AS1 and AFAP1
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that the overexpression of AFAP1-AS1, which exerted functional 
pro-cancerous effects in oesophageal cells, was associated with 
hypomethylation.

Subsequent studies demonstrated that AFAP1-AS1 was increased 
in OSCC, and high expression of AFAP1-AS1 was closely associated 
with tumour size, tumour depth, lymphatic metastasis, distant metas-
tasis and TNM stage. Moreover, those OSCC patients with increased 
AFAP1-AS1 level have shorter progression-free survival and overall 
survival. Overexpression of AFAP1-AS1 will lead to tumour resistance 
to radiotherapy and chemotherapy in OSCC patients who received de-
finitive chemoradiotherapy. Furthermore, knockdown of AFAP1-AS1 
in OSCC cells suppressed cell proliferation and colony formation and 
induced cell apoptosis.40,41 Therefore, AFAP1-AS1 may work as a novel 
prognostic marker and potential therapeutic target for oesophageal 
cancer.

3.2 | Pancreatic ductal adenocarcinoma

Pancreatic ductal adenocarcinoma, one of the most aggressive solid 
malignancies, is the fourth leading cause of cancer-related deaths all 
over the world.66,67 PDAC is characterized by a fatal disease with early 
metastasis and resistance to chemotherapy and radiation therapy.7,68 
Although the study of PDAC has made rapid progress in the last dec-
ades, the 5-year survival rate of PDAC patients is still only around 
5%-7%.69,70 Therefore, it is crucial to identify reliable biomarkers for 
early diagnosis of PDAC patients.

Ye et al42 demonstrated that AFAP1-AS1 was upregulated in PDAC 
tissues and cell lines compared with corresponding normal counter-
parts. Overexpression of AFAP1-AS1 was associated with lymph node 
metastasis, perineural invasion, poor survival, overall survival and 
progression-free survival of PDAC patients. In addition, knockdown of 
AFAP1-AS1 reduced proliferation and induced G2/M phase arrest in 
PDAC cells. Knockdown of AFAP1-AS1 in PDAC cells inhibited migra-
tion and invasion by influencing the expression of EMT-related genes, 
including E-cadherin, N-cadherin, vimentin, Slug and Snail1. As we 
know, EMT is deemed to be the essential process of cancer progression, 
enhancing tumour migration, invasion and metastasis.71-74 During the 
EMT process, epithelial cells lose epithelial status, apico-basal polarity 
and cell-cell adhesion so as to transform into mesenchymal cells.74-

76 In order to distinguish diverse functions, EMT is classified into 3 
types: primary/type 1, secondary/type 2 and tertiary/type 3. Type 1 is 
associated with implantation, embryogenesis and organogenesis. Type 
2 takes part in wound healing, tissue regeneration and organ devel-
opment. Type 3 promotes tumour metastasis.77-79 During cancer pro-
gression and metastasis, the expression of some EMT-related genes 
is changed, such as mesenchymal genes (fibronectin, N-cadherin and 
vimentin) are increased while epithelial genes (E-cadherin and ZO-1) 
are decreased.80,81 Ye et al42 also found that inhibition of AFAP1-AS1 
reduced PDAC cell tumorigenicity in nude mice. However, amplifica-
tion of AFAP1-AS1 produced opposite effects (Figure 2). In conclusion, 
AFAP1-AS1 has potential value as a prognostic biomarker and thera-
peutic target in PDAC.

Cancer types Clinicopathological features References

Oesophageal cancer Tumour size, tumour depth, lymphatic metastasis, 
distant metastasis, TNM stage, poor prognosis, 
shorter progression-free survival and overall 
survival chemoradioresistance

40, 41

Pancreatic ductal 
adenocarcinoma

Lymph node metastasis, perineural invasion, poor 
survival overall survival, progression-free 
survival

42

Nasopharyngeal carcinoma Lymph node metastasis, distant tumour 
metastasis, TNM stage, poor prognosis, EBV 
infection poor overall survival, poor relapse-free 
survival

35, 43, 44

Lung cancer Clinical stage, smoking history, infiltration degree, 
lymph node metastasis, distant metastasis, poor 
prognosis tumour progression, poor survival

46-48

Hepatocellular carcinoma Tumour size, TNM stage, lymph-vascular space 
invasion poor prognosis

49, 50

Ovarian cancer Resistance response, FIGO stage 51

Colorectal cancer Tumour size, TNM stage, distant metastasis, poor 
prognosis poor overall survival and disease-free 
survival

52-54

Biliary tract cancers Tumour size, vascular invasion, TNM stage, poor 
prognosis, poor overall survival

55-57

Gastric cancer Poor survival 58

TNM: tumour-node-metastasis; EBV: Epstein-Barr virus; FIGO: International Federation of Gynecology 
and Obstetrics.

TABLE  1 Overexpression of actin 
filament-associated protein 1-antisense 
RNA 1 (AFAP1-AS1) is associated with 
clinicopathological features
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3.3 | Nasopharyngeal carcinoma

Nasopharyngeal carcinoma, a unique disease to Southeast Asia, 
is associated with the Epstein-Barr virus (EBV).82,83 About 75%-
90% of NPC cases are diagnosed at advanced stages due to the 
non-specific symptoms at an early stage and poor accessibility for 
physical examination.84,85 The main clinical treatment of NPC is ra-
diotherapy over the past few decades, but many patients finally die 
because of recurrence and distant metastasis.86,87 Therefore, it is 
essential to find therapeutic targets and prognostic biomarkers for 
accurate early diagnosis of high-risk populations and evaluation of 
NPC treatment.

Bo et al35 reported that AFAP1-AS1 was upregulated in NPC sam-
ples compared with non-tumour nasopharyngeal epithelial samples, 
and amplification of AFAP1-AS1 was associated with NPC metastasis 
and poor prognosis. Knockdown of AFAP1-AS1 by siRNAs suppressed 
tumour cell migration and invasion. However, AFAP1-AS1 has no ef-
fects on cell viability, cell cycle progression and apoptosis. Knockdown 
of AFAP1-AS1 could increase AFAP1 protein level, induce the loss of 
stress filament integrity and influence the expression of many proteins 

related to small GTPase signalling Rho/Rac pathway in NPC cells. 
Hence, they suspected that AFAP1-AS1 might promote cancer cell 
migration and invasion by interfering with AFAP1 expression, small 
GTPase signalling Rho/Rac pathway and the loss of stress filament 
integrity (Figure 3). They also carried out nude mouse experiments 
and discovered that knockdown of AFAP1-AS1 inhibited NPC cell me-
tastasis to mouse lungs. Based on the previous studies, Tang et al43 
found that the expression of AFAP1-AS1 was positively correlated 
with programmed death 1 (PD-1), an immune escape marker. They 
concluded that AFAP1-AS1 and PD-1 were co-expressed in infiltrat-
ing lymphocytes in NPC tissue and the co-expression predicted poor 
prognosis of NPC. Moreover, overexpression of AFAP1-AS1 or PD-1 
was correlated with distant metastasis at relapse. He et al44 identified 
that 3 circulating lncRNAs (MALAT1, AFAP1-AS1 and AL359062) may 
act as potential biomarkers for NPC, and the three-lncRNA signature 
could contribute to the identification of early NPC patients. Besides, 
high expression of these 3 lncRNAs was closely related to advanced 
NPC tumour node metastasis stages and EBV infection. These findings 
suggest that AFAP1-AS1 may serve as a cancer-promoting gene and a 
potential therapeutic target in NPC.

TABLE  2 Functional characterization of the actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1) in tumours

Cancer types Expression Effects Related gene Role References

Oesophageal cancer Upregulated Hypomethylation  
proliferation colony 
formation, migration, 
invasion, apoptosis, cycle 
arrest

— Oncogene 30, 40, 41

Pancreatic ductal 
adenocarcinoma

Upregulated Proliferation, cycle arrest 
migration, invasion, EMT 
process

E-cadherin, N-cadherin, vimentin, 
Slug, Snail1

Oncogene 42

Nasopharyngeal carcinoma Upregulated Migration, invasion AFAP1 protein, GTPase family, 
Pfn1, Lasp1, PD-1, lncRNA 
MALAT1, lncRNA AL359062

Oncogene 35, 43, 44

Lung cancer Upregulated Proliferation, apoptosis 
migration, invasion

AFAP1 protein, GTPase family, 
Pfn1 Lasp1

Oncogene 45-48

Hepatocellular carcinoma Upregulated Proliferation, migration, 
invasion, apoptosis, cycle 
arrest

PCNA, MMP-9, cyclin D1, Bax, 
RhoA/Rac2, Ki67, Bcl-2

Oncogene 49, 50

Ovarian cancer Upregulated Proliferation, apoptosis Oncogene 51

Colorectal cancer Upregulated EMT process, proliferation, 
cycle arrest 
colony formation 
migration, invasion

E-cadherin, N-cadherin, vimentin, 
fibronectin, MMP-9, AFAP1

Oncogene 52-54

Biliary tract cancers Upregulated EMT process, proliferation 
colony formation, cell cycle 
migration, invasion

Twist1, vimentin, E-cadherin, 
C-myc, cyclin D1, MMP-2, 
MMP-9, AFAP1

Oncogene 55-57

Gastric cancer Upregulated Proliferation 
apoptosis

PTEN/p-AKT, Bcl-2, PARP, 
Caspase 3, Caspase 9, Bax

Oncogene 58

EMT: epithelial-mesenchymal transition; GTP: guanosine triphosphate; Pfn1: profilin 1; Lasp1: LIM and SH3 protein 1; PD-1: programmed death 1; 
MALAT1: metastasis-associated lung adenocarcinoma transcript 1; PCNA: proliferating cell nuclear antigen; MMP: matrix metalloproteinase; Bcl-2: B-cell 
CLL/lymphoma 2 protein; Bax: BCL2-associated X protein; RhoA: ras homologue family member A; Rac2: rac family small GTPase 2; Ki67: Antigen Ki-67; 
C-myc: MYC proto-oncogene, bHLH transcription factor; PTEN: phosphatase and tensin homologue; AKT: AKT serine/threonine kinase 1; PARP: poly-
ADP-ribose polymerase.
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3.4 | Lung cancer

Lung cancer is the leading cause of cancer-related mortality all over 
the world.88,89 According to histopathological presentation, lung can-
cer is divided into 4 primary histological subtypes: small cell lung can-
cer, squamous cell carcinoma (SCC), adenocarcinoma (ADC) and large 

cell carcinoma (LCC).90 SCC, ADC and LCC are collectively called non-
small cell lung cancer (NSCLC) that accounts for almost 80% of lung 
cancer.91 Despite recent progresses of surgical resection, chemora-
diotherapy or target drugs, lung cancer patients have a poor prognosis 
due to metastasis and recurrence.92-94 The 5-year overall survival rate 
of advanced lung cancer patients is less than 15%.95 Hence, it is very 
important to find adequate tumour biomarkers for early diagnosis and 
metastasis identification in lung cancers.

Yu et al45 used microarray gene expression analysis and quan-
titative real-time polymerase chain reaction analysis to identify that 
551 lncRNAs were upregulated in NSCLC tissues, and AFAP1-AS1 
expression changed the most among the upregulated lncRNAs. Deng 
et al46 confirmed the above results. They also found that augmented 
expression of AFAP1-AS1 was closely associated with clinical stage, 
smoking history, infiltration degree, lymph node metastasis, distant 
metastasis and poor prognosis in NSCLC patients. Next, Zeng et al47 
found that AFAP1-AS1 was significantly upregulated in lung cancer, 
and AFAP1-AS1 upregulation was associated with tumour progression 
and poor survival. In vitro experiments demonstrated that knockdown 
of AFAP1-AS1 suppressed tumour cell migration and invasion. Silence 
of AFAP1-AS1 also increased the levels of its antisense protein-coding 
gene, AFAP1, but had no significantly effect on AFAP1 mRNA. In ad-
dition, repression of AFAP1-AS1 influenced some Rho/Rac GTPase 
family members and actin cytokeratin signalling pathway. Therefore, 
they speculated that AFAP1-AS1 might promote migration and inva-
sion in lung cancer by interfering with the expression of AFAP1 and 
some small GTPases (Figure 4). Recently, Zhuang et al48 reported that 
AFAP1-AS1 was overexpressed in ADC and associated with survival 
time. Knockdown of AFAP1-AS1 suppressed cell growth, induced 
apoptosis and inhibited invasion. Taken together, these results suggest 
that AFAP1-AS1 may function as an oncogenic lncRNA and a potential 
prognostic biomarker and therapeutic target in lung cancer.

F IGURE  2 Knockdown of actin filament-associated protein 
1-antisense RNA 1 (AFAP1-AS1) reduced proliferation and induced 
G2/M phase arrest in pancreatic ductal adenocarcinoma (PDAC) 
cells. Knockdown of AFAP1-AS1 in PDAC cells inhibited migration 
and invasion by influencing the expression of epithelial-mesenchymal 
transition (EMT)-related genes (E-cadherin, N-cadherin, vimentin, 
Slug, Snail1)

F IGURE  3 Knockdown of actin filament-associated protein 
1-antisense RNA 1 (AFAP1-AS1) in nasopharyngeal carcinoma (NPC) 
cells suppressed migration and invasion by increasing AFAP1 protein 
levels, inducing the loss of stress filament integrity and influencing 
the expression of many proteins in the small GTPase signalling 
Rho/Rac pathway (RhoA, Rac2, Rab10, Rab11a, Rhogdi and Pfn1 
were significantly upregulated, but RhoC, Rab11b and Lasp1 were 
significantly downregulated)

F IGURE  4 Knockdown of actin filament-associated protein 
1-antisense RNA 1 (AFAP1-AS1) suppressed migration and invasion in 
lung cancer by increasing the levels of AFAP1 and influencing some 
Rho/Rac GTPase Rhogdi proteins and actin-binding proteins (RhoA, 
Rac2, Rab10, Rab11a, Rhogdi and Pfn1 were upregulated, but RhoC, 
Rab11b and Lasp1 were downregulated)
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3.5 | Hepatocellular carcinoma

Hepatocellular carcinoma (HCC), developing on the basis of pre-
existing chronic liver disease and cirrhosis, is the fifth most com-
monly diagnosed cancer and the third leading cause of cancer 
death all around the world.96,97 Unlimited cell growth and invasion 
are the main characteristic of HCC. Because of delayed diagnosis 
and rapid metastasis, the treatment of advanced HCC is still in a 
dilemma, and the 5-year survival rate of HCC patients is only about 
7%.98-100 Lots of experiments have proved that HCC occurs in 
company with genetic or epigenetic mutation.101-103 Therefore, it 
is vital to find novel tumour biomarkers and understand the patho-
genesis of HCC.

Zhang et al49 and Lu et al50 investigated the effects of 
AFAP1-AS1 in HCC. Their findings demonstrated that AFAP1-AS1, 
an independent predictor of overall survival, was apparently up-
regulated in HCC tissues compared with the adjacent non-tumour 
tissues. Overexpression of AFAP1-AS1 was associated with tumour 
size, TNM stage, lymph-vascular space invasion and poor progno-
sis in HCC. Their results suggested that silencing of AFAP1-AS1 im-
paired cell proliferation, migration and invasion through mediating 
some gene expressions related to proliferation and invasion in vitro. 
Moreover, Zhang et al49 reported that silencing of AFAP1-AS1 pro-
moted cell apoptosis and cycle arrest in S phase by upregulating the 
expression of Bax (BCL2-associated X protein) and downregulating 
the expression of cyclin D1. Silencing of AFAP1-AS1 also suppressed 
the activation of RhoA/Rac2 (ras homologue family member A/rac 
family small GTPase 2) signalling to decrease RhoA and Rac2 expres-
sion in HCC cells (Figure 5). Hence, they suspected that AFAP1-AS1 
may accelerate the progression and invasion in HCC by upregulating 
the RhoA/Rac2 signalling. Tumour xenograft studies showed that 
knockdown of AFAP1-AS1 suppressed xenograft tumour growth in 

vivo. The above results suggest that AFAP1-AS1 may play an import-
ant role in HCC development and serve as a therapeutic target of 
HCC.

3.6 | Ovarian cancer

Ovarian cancer (OC) is the third most widespread carcinoma of the 
female reproductive system.104 Despite the advances in surgery, 
diagnostic method and new chemotherapy, OC mortality rate is  
still high because most patients are diagnosed at an advanced 
stage.105-107 Therefore, it is exceedingly important to study its mo-
lecular mechanisms.

Yang et al51 reported that AFAP1-AS1 was overexpressed in OC 
tissue samples and cell lines compared with corresponding normal 
counterparts. They found that high expression of AFAP1-AS1 was 
obviously associated with aggressive clinicopathological parameters 
of OC, including resistance response and International Federation 
of Gynecology and Obstetrics (FIGO) stage. Then, knockdown of 
AFAP1-AS1 suppressed cell proliferation and increased cell apoptosis. 
Therefore, their results indicate that AFAP1-AS1 can serve as a novel 
oncogene and therapeutic target for OC.

3.7 | Colorectal cancer

Colorectal cancer is the third most commonly diagnosed cancer and 
the second leading cause of cancer death worldwide.104,108 Although 
advanced treatments, involving the combination of surgery, radiation 
therapy, chemotherapy and targeted therapy, are utilized to improve 
the prognosis of CRC patients, the recurrence and metastasis of CRC 
are still unavoidable.109,110 The incidence and mortality of CRC will 
reduce by screening CRC from curable early stage, so we need to find 
a novel diagnostic and prognostic indicator for CRC.

Some experimental results proved that AFAP1-AS1 was aberrantly 
overexpressed in CRC tissues and cells lines, and overexpression of 
AFAP1-AS1 predicted poor prognosis of CRC patients.52-54 Wang 
et al52 found that upregulation of AFAP1-AS1 was closely correlated 
with tumour size, TNM stage, distant metastasis, poorer overall sur-
vival and disease-free survival. AFAP1-AS1 inhibition suppressed cell 
proliferation, colony formation, migration and invasion. Moreover, 
suppression of AFAP1-AS1 enhanced G0/G1 cell cycle arrest and the 
protein level of AFAP1 while having no effect on the mRNA level of 
AFAP1.52,53 We suspected that AFAP1-AS1 may affect some transcrip-
tion factors expression related to AFAP1 protein, and AFAP1-AS1 is ir-
relevant with AFAP1 transcription. Han et al53 found that knockdown 
of AFAP1-AS1 inhibited tumour metastasis-associated genes expres-
sion associated with EMT progression. Western blot results showed 
that the expression of E-cadherin was elevated, but the expression 
of N-cadherin, vimentin, fibronectin and matrix metalloproteinase 9 
(MMP-9) was reduced (Figure 6). They confirmed that knockdown of 
AFAP1-AS1 inhibited tumour formation and hepatic metastasis of CRC 
cells in nude mice. In conclusion, these results suggest that AFAP1-AS1 
may act as an oncogene and a promising diagnostic and therapeutic 
target for CRC.

F IGURE  5 Silencing of actin filament-associated protein 
1-antisense RNA 1 (AFAP1-AS1) in hepatocellular carcinoma 
(HCC) cells inhibited proliferation, migration and invasion through 
mediating proliferation- and invasion-related gene expression in 
vitro (PCNA, MMP-9, Ki67 and Bcl-2 was downregulated, but Bax 
was upregulated). Silencing of AFAP1-AS1 induced cell apoptosis and 
cycle arrest in S phase by upregulating the expression of Bax and 
downregulating the expression of cyclin D1. Silencing of AFAP1-AS1 
also suppressed the expression of RhoA and Rac2 to repress the 
progression and invasion in HCC
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3.8 | Biliary tract cancers

Biliary tract cancers (BTC) consist of gallbladder cancer (GBC) and 
cholangiocarcinoma (CCA). GBC accounts for 80%-95% of BTC, while 
CCA makes up the rest. CCA is divided into intrahepatic cholangio-
carcinoma and extrahepatic cholangiocarcinoma.111 CCA is one of the 
most aggressive and lethal tumours, originating from biliary epithelial 
cells lining the bile duct.112 GBC is a highly invasive malignancy neo-
plasm, and the overall 5-year survival of GBC is less than 5%.113,114 It 
is hard to diagnose BTC at an early stage because of non-symptomatic 
manifestation and lack of sensitive biomarkers. Hence, finding early 
diagnostic markers and novel therapeutic targets is urgently needed.

Ma et al55 found that AFAP1-AS1 was significantly elevated in GBC 
tissues and GBC cell lines and associated with tumour sizes and poor 
prognosis. Besides, knockdown of AFAP1-AS1 suppressed cell growth 
and invasion. Further experiments demonstrated that knockdown of 
AFAP1-AS1 impaired the EMT process in GBC cells via downregulating 
the transcription factor Twist1 and vimentin and upregulating the E-
cadherin. These findings showed that AFAP1-AS1 may promote GBC 
cells invasion through accelerating EMT process (Figure 7).

Shi et al56 and Lu et al57 investigated the effects of AFAP1-AS1 in 
CCA at the same time. Their findings demonstrated that AFAP1-AS1 
was overexpressed in CCA tissues and cell lines, and AFAP1-AS1 
overexpression was associated with tumour size, vascular invasion, 
advance TNM stage, poor overall survival and prognosis. In addition, 
AFAP1-AS1 knockdown in vitro suppressed cell proliferation and col-
ony formation, induced G0/G1 cell cycle arrest and inhibited S-G2/M 
transition. Moreover, AFAP1-AS1 knockdown downregulated the ex-
pression of c-Myc (MYC proto-oncogene, bHLH transcription factor) 
and cyclin D1 that plays an important role in cell proliferation. Silence 
of AFAP1-AS1 weakened cell migration and invasion by increasing 
AFAP1 mRNA and protein expression and reducing matrix metallo-
proteinase 2 (MMP-2) and MMP-9 expression in vitro. In addition, 

AFAP1-AS1 inhibition reduced cell stress filament integrity and re-
pressed CCA cell tumour growth and CCA metastasis in vivo (Figure 8). 
Taken together, these results suggest that AFAP1-AS1 produces on-
cogenic effects in BTC and may become an effective diagnostic and 
therapeutic target for BTC.

3.9 | Gastric cancer

Gastric cancer, the fourth most commonly diagnosed cancer, is one 
of the major causes of cancer-related death all over the world.115,116 
Although surgery and chemotherapy for GC have made great pro-
gress, GC patients at an advanced stage remain a poor prognosis, hav-
ing an extremely low 5-year survival rate.117,118 Thus, it is urgent to 
find a new biomarkers for diagnosis and prognosis of GC.

Guo et al58 reported that AFAP1-AS1 was overexpressed in GC 
tissues and cells compared with corresponding normal counterparts. 
AFAP1-AS1 suppression inhibited cell proliferation through modulat-
ing phosphatase and tensin homologue (PTEN)/p-AKT. In addition, 
decreased expression of AFAP1-AS1 could impair the protein level of 
p-AKT (AKT serine/threonine kinase 1) and strengthen the expression 
of PTEN. Moreover, AFAP1-AS1 knockdown promoted cell apoptosis 
through decreasing the protein level of Bcl-2 (B-cell CLL/lymphoma 2 
protein) and increasing the protein level of cleaved PARP (poly-ADP-
ribose polymerase), Caspase 3, Caspase 9 and Bax. In conclusion, their 

F IGURE  6 Actin filament-associated protein 1-antisense RNA 1 
(AFAP1-AS1) knockdown in colorectal cancer (CRC) cells suppressed 
cell proliferation, colony formation, migration and invasion, induced 
G0/G1 cell cycle arrest and improved the protein level of AFAP1. 
Knockdown of AFAP1-AS1 inhibited tumour metastasis-associated 
genes expression in terms of epithelial-mesenchymal transition (EMT; 
the expression of E-cadherin was elevated, but the expression of N-
cadherin, vimentin, fibronectin and MMP-9 was reduced)

F IGURE  7 Knockdown of actin filament-associated protein 
1-antisense RNA 1 (AFAP1-AS1) in gallbladder cancer (GBC) cells 
suppressed cell proliferation and inhibited cell invasion through 
regulating the epithelial-mesenchymal transition (EMT) process. 
Then, AFAP1-AS1 was knockdown and simultaneously induced 
by TGF-β1 treatment in GBC cells influencing EMT process by 
downregulating the transcription factor Twist1 and vimentin and 
upregulating the E-cadherin
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results support that AFAP1-AS1 may play a significant role as an indi-
cator of poor survival and a therapeutic target for GC.

4  | CONCLUSION

Long non-coding RNA AFAP1-AS1 plays an important role in 
cancer development and serves as an oncogenic lncRNA, which 
is overexpressed in all kinds of cancers, including oesophageal 
cancer, PDAC, NPC, lung cancer, HCC, OC, CRC, BTC and GC. 
High expression level of AFAP1-AS1 in tumour tissues is cor-
related with clinicopathological characteristics, such as tumour 
size, lymphatic metastasis, distant metastasis, TNM stage, poor 
prognosis, overall survival and disease-free survival. However, 
the precise concentration and detection method of AFAP1-AS1 in 
the blood of cancer patients and healthy person are still unclear, 
impeding the clinical applications of AFAP1-AS1. In order to carry 
out more deeper research and draw a more accurate conclusion, 
more cancer patients should be involved in the AFAP1-AS1 study. 
Functional experiments demonstrated that AFAP1-AS1 could pro-
mote tumour cell proliferation, migration and invasion and inhibit 
apoptosis. In addition, the involvement of some related genes or 
signalling pathways in the oncogenic function of AFAP1-AS1 has 
been proved, such as EMT-related genes and small GTPase sig-
nalling Rho/Rac pathway, but its particular upstream and down-
stream molecular mechanisms need to be systematically analysed 
in the future. Compared with other well-studied lncRNAs such 
as MALAT1 and H19, the studies of AFAP1-AS1 are not enough. 
So far, none of AFAP1-AS1-related miRNAs or mRNAs was found, 
and AFAP1-AS1 research is still at an early stage. The relation-
ship between AFAP1-AS1 and proteins, miRNAs, mRNAs, ceRNAs 
and other lncRNAs should be better understood and investigated. 

Moreover, what is the role of AFAP1-AS1 in the common patho-
genesis of cancer such as chromosome abnormalities, DNA mod-
ification and histone modification? Previous studies also showed 
that knockdown of AFAP1-AS1 increased the expression of AFAP1 
in some cancers, but the combined actions, specific functions and 
regulatory molecules in tumour progression should be explored 
in great depth.

In conclusion, the recent studies suggest that lncRNA AFAP1-AS1 
produces oncogenic effects in human cancer and may become an ef-
fective diagnostic and therapeutic target for human cancer. With the 
development of AFAP1-AS1 study, lncRNA AFAP1-AS1 may be applied 
in clinical detection and treatment in the future.
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