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Abstract
Objectives: To describe the biological characteristics of exosomes and to summarize 
the current status of stem cell-derived exosomes on fracture healing. Meanwhile, fu-
ture challenges, limitations and perspectives are also discussed.
Methods: Search and analyze the related articles in pubmed database through the 
multi-combination of keywords like “stem cells”,”exosomes”,”bone regeneration” and 
“fracture healing”.
Conclusion: Stem cell-derived exosome therapy for fracture healing has been enjoying 
popularity and is drawing increasing attention. This strategy helps to promote prolifera-
tion and migration of cells, as well as osteogenesis and angiogenesis, in the process of 
bone formation. Although the exact mechanisms remain elusive, exosomal miRNAs 
seem to play vital roles. Future studies are required to solve multiple problems before 
clinical application, including comprehensive and thorough understanding of exosomes, 
the exact roles of exosomes in regulating bone formation, and the optimal source, dose 
and frequency of treatment, as well as technical and safety issues. Moreover, studies 
based on fracture models of large animals are could offer guidance and are in demand.

1  | INTRODUCTION

Fractures are common traumatic injuries with an estimated prevalence 
of 16 million in the United States each year. Although bones possess 
excellent regenerative properties and most fractures heal normally, 
approximately 5%-10% of fractures are complicated by delayed heal-
ing or non-union.1–3 These complications lead to prolonged treatment 
time, impaired quality of life and even additional remedial surgeries, 
which exert a heavy burden on the patients and impact heavily on 
society.3,4 In established non-union fractures, surgical intervention 
with autologous bone graft is the gold standard at present due to the 
superior clinical safety and graft biocompatibility compared with allo-
genic or artificial grafts.5–8 Nevertheless, it requires a second surgery 
with associated pain and additional damage to harvest sites. It is also 
limited by the quantity of harvested bone.9,10 Therefore, obtaining 
in-depth knowledge of the fracture healing process and associated 
mechanisms and providing appropriate interventions to accelerate 
bone regeneration is critical to avoid adverse outcomes.

Fracture repair is a complex process, regulated by thousands of 
genes and impacted significantly by cytokines, chemokines, growth 
factors and other molecules.11,12 Initially, a haematoma develops 
following fracture to create a microenvironment that is rich in hor-
mones, growth factors and cytokines. Subsequently, progenitor cells 
and bone marrow stromal cells are induced to recruit, proliferate, mi-
grate and differentiate into osteoblasts and chondrocytes for intram-
embranous ossification and endochondral ossification.13–15 Collagen 
matrices are secreted by chondrocytes and osteoblasts to calcify and 
bridge the fracture site. During endochondral ossification, under the 
regulation of angiogenesis-related genes, angiogenesis is stimulated 
and the circulatory system is restored.16–18 The surrounding matrix 
is digested by chondroclasts under the effect of vascular endothe-
lial growth factor (VEGF) from endothelial cells and then infiltrated 
by blood vessels and osteoblasts.19–22 Finally, bone tissues achieve  
regeneration and return to their original architecture and function.

A variety of currently available approaches have been developed to 
enhance fracture healing, typically including biophysical and biological 
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means.1 Biophysical treatments primarily consist of electromagnetic 
stimulation and low-intensity pulsed ultrasonography, which show un-
certain and controversial effects on fracture healing.23–26 Biological 
strategies primarily indicate the use of osteogenic materials, such as 
bone marrow grafting,27 injection of active substances,28,29 gene modifi-
cation,30–32 stem cell implantation33,34 and tissue engineering.35 Among 
these, stem cell therapy has been shown to be promising for bone 
regeneration as well as for regeneration of various tissues.33,34,36–39 
Nevertheless, the molecular mechanisms are still undefined. Moreover, 
the clinical application of stem cell therapy is still hampered by the 
limited number of donors, invasive harvesting procedures and safety 
hurdles.40,41

With the in-depth understanding of stem cells in tissue regen-
eration, mounting evidence has suggested that the positive effects 
primarily depend on exosomes released from stem cells.42–45 These 
40-100 nm extracellular vesicles from cells are considered important 
players in intercellular communication due to their ability to trans-
fer proteins, genetic information and diverse molecules to target 
cells.43,46–48 Exosomes provide researchers with a novel way to pro-
mote regeneration of various tissues, including bone. The aim of this 
review was to describe the biological characteristics of exosomes and 
to summarize the current status of research on the use of stem cell-
derived exosomes to promote fracture healing.

2  | BIOLOGICAL CHARACTERISTICS OF  
EXOSOMES

To achieve certain physiological functions, cells can release different 
types of extracellular vesicles, including microvesicles, exosomes, mem-
brane fragments and apoptotic bodies. Commonly, these vesicles are 
distinguished from one another with regard to subcellular origin, size, 
content and the formation mechanism (Table 1).46,47,49–52 Exosomes are 
40-100 nm cup-shaped vesicles that are derived from the inward bud-
ding of the endosome membrane and are released into the extracellular 
environment through fusion of multivesicular bodies with the plasma 
membrane. Released exosomes may either fuse directly with the plasma 
membrane of target cells or be endocytosed by target cells.53–57

Exosomes derived from sheep red blood cells were initially de-
scribed by biochemist Rose Johnstone in the 1970s.58 Since then, 
related studies to explore the mysteries of exosomes have been on-
going. Numerous studies have demonstrated that exosomes can be 
generated by various cell types, including dendritic cells,59 epithelial 
cells,60 tumour cells,61 immune cells62 and stem cells,42–45 and they 
can also be detected in biological fluids such as blood plasma,63 sa-
liva,64 urine65 and breast milk.66 Exosomes contain various molecu-
lar constituents from the originating cells, including lipids, proteins, 
mRNA, miRNA and other components.58,67–69 Although exosomal 
components differ substantially on the basis of the specific donor cell 
type, exosomes are generally enriched with proteins, including Alix, 
TSG101, annexin, glycosylphosphatidylinositol-anchored proteins, 
flotillin and tetraspanins (CD9, CD63 and CD81), which can be consid-
ered identifying signatures of an exosome.67–71

As to the roles of exosomes, to remove the unnecessary sub-
stances from parent cells was regarded as the primary function.58,69 
With further studies, exosomes appear to reflect the behaviour of the 
originating cells and are active in diverse aspects of physiology and 
pathophysiology, including immunological regulation, tumour pro-
gression, virus spreading, epithelial activities, neuronal survival and 
so forth. Their functional characteristics are not completely clear to 
this day. It is commonly accepted that exosomes play important roles 
in intercellular communication between cells locally or at a distance 
through receptor-mediated interactions or by delivering their protein, 
lipid and genetic contents.58,59,72–74

3  | REGENERATIVE CAPACITIES OF 
STEM CELL-DERIVED EXOSOMES IN 
VARIOUS TISSUES

In the last few years, stem cell-derived exosomes have gained promi-
nence in regenerative medicine research. Ruenn Chai Lai found that 
stem cell-derived exosomes reduced infarct size in a mouse model of 
myocardial ischaemia/reperfusion injury, highlighting the role of ex-
osomes as mediators of tissue repair.75 Later, this novel treatment was 
further applied to repair injured cardiac tissue, exhibiting a positive 

TABLE  1 Basic characteristics of different extracellular vesicles groups

Exosomes Microvesicles Apoptotic bodies

Size 40-100 nm 100-1000 nm 500-4000 nm

Density 1.13-1.19 g/mL Undescribed 1.16-1.28 g/mL

Morphology Cup-shaped Heterogeneous Heterogeneous

Biogenesis Produced in multivesicular bodies and 
released into the extracellular environment 
through fusion of multivesicular bodies 
with the plasma membrane

Outward budding from the plasma 
membrane

Released when cells become apoptotic and 
formed by blebbing of the plasma 
membrane

Markers Alix, TSG101 GTPases, annexins, flotillins, 
CD9, CD63 and CD81

CD40 ligand, adenosine diphos-
phate ribosylation factor 6, 
several integrins and selectins

Thrombospondin, complement component 
C3b, organelles, DNA fragments and 
histones

Composition Lipids, proteins, mRNA and miRNA Lipids, proteins, mRNA and miRNA Lipids, proteins, mRNA, miRNA and DNA
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effect.75–77 Additionally, stem cell-derived exosomes have also been 
shown to protect against renal injury by stimulating cell proliferation 
and inhibiting apoptosis in a mouse remnant kidney model.78–81 As 
studies progressed, regeneration of a multitude of tissues, including 
cutaneous wound healing,82,83 skeletal muscle regeneration84 and 
limb ischaemia repair,44 has been shown to be accelerated by stem 
cell-derived exosomes.

Accumulating in vivo and in vitro studies have suggested that the 
potential regenerative capacities of stem cell-derived exosomes are 
achieved through activating the native cells, enhancing angiogenesis 
and other indeterminate actions. Thus, based on the promising perfor-
mance in tissue repair, this novel therapy might be a potential method 
for bone regeneration as well.

4  | REGENERATIVE CAPACITY OF STEM  
CELL-DERIVED EXOSOMES IN BONE  
TISSUES

Stem cell implantation has been widely studied for bone regeneration in 
pre-clinical investigations, showing promising prospects.33,34 There is in-
creasing support that transplanted stem cells play important roles in bone 
regeneration, mainly through paracrine signalling effects.43–45 Therefore, 
exosomes, as primary paracrine effectors, have attracted more and more 
attention in the area of promoting fracture healing (Table 2).

Through in vitro investigations, Ji-Feng Xu et al.85 demonstrated 
that exosomes could be generated by undifferentiated BMSCs as well 
as by osteogenic differentiated BMSCs. Furthermore, they analysed 
miRNA profiles and mRNA transcripts of exosomes from osteogenic 
differentiated BMSCs at different time points and consequently ex-
plored the biological pathways involved in related dysregulated exoso-
mal miRNA signatures. As a whole, this report indicated that exosomes 
might exert a vital regulatory function in osteogenic differentiation of 
BMSCs.

Precise and reliable evidence for the osteogenic potential of 
exosomes in regenerative medicine was given in another study from 
Raghuvaran Narayanan et al.86 To clarify the osteogenic potential of 
stem cell-generated exosomes in regenerative medicine, they incu-
bated human marrow-derived stromal cells (HMSCs) with exosomes 
isolated from HMSCs or from osteogenic differentiated HMSCs. Next, 
RNA from the incubated HMSCs was extracted to analyse the expres-
sion levels of genes representative of osteogenic differentiation. It 
turned out that both types of exosomes internalized by HMSCs trig-
gered a very robust and statistically significant upregulation in several 
genes spanning growth factors such as bone morphogenetic protein 
9 (BMP9) and transforming growth factor β1 (TGFβ1), transcription 
factors and ECM molecules. In addition, the researchers performed an 
in vivo investigation by implanting clinical grade collagen membranes 
with HMSCs and exosomes in the back of athymic nude mice for 
4 weeks. The results indicated that the scaffolds containing exosomes 
showed more robust vascularization and calcium phosphate nucle-
ation than the control scaffolds. The expression levels of specific pro-
teins involved in matrix mineralization, vascularization and osteogenic 

differentiation were enhanced as well. Together, the in vitro and in 
vivo experiments showed that exosomes have the potential to induce  
osteogenic differentiation of HMSCs.

Comparable in vitro tests were conducted with human BMSC-
derived exosomes by Yunhao Qin et al.,87 demonstrating the promis-
ing capacity of osteogenic differentiation. In addition, they examined 
whether exosomes had a marginal effect on osteoblast proliferation 
through cell cycle analysis using FACS and cell proliferation analysis 
using MTT assays. Furthermore, in vivo functional tests in SD rats with 
calvarial defects suggested that BMSC-derived exosomes substan-
tially enhanced bone regeneration.

Furuta et al.90 evaluated the role of exosomes in a particular way, 
comparing the healing condition in femur fracture models of wild-type 
mice and another CD92/2 mice that is known to produce reduced 
levels of exosomes. As expected, there was a significant retardation 
of fracture healing in CD92/2 mice and the retardation was rescued 
with accelerated formation of hypertrophic chondrocytes, woven 
bone and vascularization by the subsequent injection of MSC-derived 
exosomes. And not only that, the timing of bone union was also signifi-
cantly shorter in wild-type mice treated with MSC-derived exosomes 
compared with the control groups.

Recent studies in bone tissue engineering combined hiPS-MSC-
Exos with β-TCP scaffolds. Similarly, these studies confirmed the 
active role of exosomes in proliferation, migration and osteogenic dif-
ferentiation of hBMSCs.88,89 Among these studies, the study of Xin Qi 
et al. showed that the application of hiPSC-MSC-Exos promoted bone 
regeneration through enhanced angiogenesis as well as osteogenesis 
in an ovariectomized rat model.88

These investigations revealed that exosome treatment seems to 
enhance the proliferation, migration and differentiation of native cells, 
especially MSCs. In addition, angiogenesis was accelerated. As the res-
ident MSCs are primary cells that differentiate to repair the injury, the 
proliferation and migration abilities of MSCs are critical for bone re-
generation. During bone formation, osteoblasts produce calcium- and 
phosphate-based minerals to form mineralized bone. Thus, the regula-
tion of osteoblast proliferation and the promotion osteogenic differen-
tiation play key roles in skeletal development and bone formation.91,92 
During bone formation, blood vessels not only serve as a source of 
oxygen and nutrients but also supply calcium and phosphate, which 
are the building blocks for mineralization. The timely appearance of 
blood vessels in the fracture callus is a critical step in bone healing.93,94 
Therefore, it can be concluded that MSC-derived exosomes are a  
potential therapy for fracture healing.

5  | POTENTIAL MECHANISMS OF 
STEM CELL-DERIVED EXOSOMES FOR 
FRACTURE HEALING

Application of stem cell-derived exosomes in bone repair and regen-
eration has been reported by a number of studies. According to the 
experimental data, it is a promising measure for enhancing fracture 
healing. Nevertheless, the underlying mechanisms are still uncertain.
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In the study from Ji-Feng Xu et al.,85 the variations in miRNA and 
mRNA in exosomes during BMSC osteogenic differentiation were 
unveiled for the first time. They discovered that let-7a, miR-199b, 
miR-218, miR-148a, miR-135b, miR-203, miR-219, miR-299-5p and 
miR-302b were significantly increased, while miR-221, miR-155, miR-
885-5p, miR-181a and miR-320c were significantly under-expressed. 
Furthermore, with DIANA-mirPath, they suggested that RNA degrada-
tion, the mRNA surveillance pathway, Wnt signalling pathway and RNA 
transport were the most prominent pathways enriched in quantiles 
with differential exosomal miRNA patterns related to osteogenic differ-
entiation. After illuminating the correlation between molecules and sig-
nal alterations in bone formation through existing investigations, they 
inferred that exosomes regulated osteogenic differentiation through 
the modulatory effect of miRNAs on target genes and pathways.

Reports from Yunhao Qin et al.87 and Furuta et al.90 supported the 
role of exosomal miRNA as well. Yunhao Qin et al. analysed the miRNAs 
in BMSC-derived exosomes using RNA sequencing and suggested that 
three osteogenic-related miRNAs, miR-196a, miR-27a and miR-206, 
were highly upregulated. Among, miR-196a was considered the most 
important regulator of exosome-dependent osteogenic effects on the 
basis of Alizarin Red staining, qRT-PCR and miRNA-specific inhibitor 
testing. Meanwhile, they also confirmed that there were other unde-
termined mechanisms in addition to miR-196a. Furuta et al. analysed 
the cytokines and microRNAs in MSC-derived exosomes and specu-
lated that the accelerated fracture healing process by MSC-derived 
exosomes was bound up with exosomal miRNA besides certain cy-
tokines like MCP-1, -3, SDF-1 and angiogenic factors. The differen-
tially expressed miRNA such as miR-21, miR-4532, miR-125b-5p and 
miR-338-3p in MSC-derived exosomes compared with HOS-derived 
exosomes or exosomes-free conditioned medium might contribute to 
the enhanced osteogenesis and angiogenesis.

Jieyuan Zhang et al.89 proposed another possible mechanism. With 
microarray analyses and bioinformatics analyses, they revealed genetic 
alterations and the involved signalling pathways. Among the signalling 
pathways, the phosphatidylinositol 3-kinase (PI3K)-Akt signalling path-
way was considered to play a key role in the exosome-mediated pro-
osteogenesis effects on hBMSCs due to the reported involvement in 
MSC proliferation, migration and osteogenic differentiation. To confirm 
the inference, they further performed an inhibition test of the PI3K/
Akt pathway and discovered significantly decreased levels of early 
osteogenesis-related marker proteins as well as decreased ALP produc-
tion and calcium mineral deposition in hBMSCs. Thus, these results in-
dicated that the enhanced osteogenic differentiation of hBMSCs could 
mainly be ascribed to activation of the PI3K/Akt signalling pathway.

It has been demonstrated that exosomes can act as mediators by 
transferring genetic information (mRNA and miRNAs), proteins and 
other molecules to recipient cells, thereby regulating the bioactivity 
of target cells. Based on the studies mentioned above, Ji-Feng Xu 
analysed alterations in related miRNAs and pathways, hypothesizing 
that the enhanced bone regeneration induced by exosome treatment 
depended on the regulation of multiple miRNAs. However, further in-
vestigation, such as a miRNA suppression test, was not conducted.85 
Yunhao Qin demonstrated that exosomal miR-196a is a critical 

mediator of the expression of osteogenic genes. However, equally 
important was the finding that there were also other indeterminate 
mechanisms that affected this regulation process.87 Furuta et al.90 
discovered that exosomes from MSCs and human osteosarcoma cells 
exhibited efficient and invalid abilities respectively in fracture healing 
process despite they showed many similar highly expressed miRNAs. 
Thus, Furuta et al. considered that the therapeutic effect was ex-
tremely likely attributed to certain stem cell-specific miRNA. Jieyuan 
Zhang suggested that activation of the PI3K/Akt pathway might be 
the crux of the enhanced osteogenesis. Nevertheless, the molecular 
content of hiPS-MSC-exosomes that underlies the activation of the 
PI3K/Akt signalling pathway still requires clarification.89

The potential mechanisms proposed in the investigations men-
tioned above aimed to explain the enhanced osteogenesis. However, 
the authors did not account for the promoted proliferation, migra-
tion and angiogenesis. It is suggested that multiple miRNAs in stem 
cell-derived exosomes could regulate cell cycle progression and 
proliferation (miR-191, miR-222, miR-21 and let-7a) 95,96 and mi-
gration (miR-10b) 96,97 and modulate angiogenesis (miR-129 and 
miR-136).98–101 Thus, the enhanced proliferation, migration and an-
giogenesis might also be attributed to the undetermined exosomal 
miRNA content. Moreover, another obvious possible scenario is that 
other molecules such as proteins, mounted inside the exosome, or on 
its surface, are either delivered to the interior of the recipient cells or 
directly activate the cells by direct exosome-to-cell contact.87,102

6  | ADVANTAGES/FEASIBILITIES OF STEM 
CELL-DERIVED EXOSOME STRATEGIES

The biological characteristics and particular structure of exosomes 
make their use a favourable strategy for tissue regeneration. 
Encapsulation by the lipid bilayer of the exosomal membrane protects 
proteins and miRNAs from degradation in body fluid, contributing to 
their ability to deliver the content across the cell membrane into the 
cytosol of recipient cells.79,103 Compared with biomaterial treatment, 
this novel strategy resolves the problems of immunogenicity and tox-
icity. Exosomes can either intensify or suppress the immune response. 
It has been suggested that stem cell-derived exosomes maintain the 
immune privileged properties of their origins.58,69,103–105 Additionally, 
exosomes are considerably stable and can be preserved for approxi-
mately 6 months in vitro at −20°C without loss of potency.106

7  | LIMITATIONS OF STEM CELL-DERIVED 
EXOSOME THERAPY AND DIRECTIONS OF 
FUTURE STUDIES

Mounting evidence suggests that stem cell-derived exosomes are ca-
pable of promoting fracture healing, providing a potential strategy to 
solve this clinical challenge in the future. However, there are still quite 
a few limitations to be addressed before stem cell-released exosomes 
can be developed into a practical and effective therapeutic.
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In the last two decades, exosomes, as key mediators for intercellu-
lar communication, have been extensively investigated. Nevertheless, 
specific details still require clarification. Early exosomes are initiated 
by budding into multivesicular endosomes (MVEs), which then selec-
tively recruit the cytoplasmic elements, including proteins, RNA and 
lipids, to form intact exosomes. Next, the MVEs move to the cell pe-
riphery, fuse with the cell surface, release from the plasma membrane 
and act on the recipient cells. It is a fairly complex process from forma-
tion to effect, and it is regulated by multiple factors, such as tetraspan-
ins, cholesterol, endosomal sorting complex responsible for transport, 
sphingomyelinase, adhesion molecules and even the released micro-
environment. The related mechanisms are still at an early stage of 
comprehension and require further investigations.69,96

Recent investigations have revealed that specific integrins ex-
pressed on tumour-derived exosomes, distinct from tumour cells, 
could dictate exosome adhesion to specific cell types in particular or-
gans, such as the lungs, liver and brain.107,108 For bone regeneration, 
it is also suggested that DiO-labelled exosomes can be found in the 
perinuclear region of hBMSCs, indicating that hBMSCs are recipient 
cells of hiPS-MSC-Exos.88,89 However, a correlation between specific 
integrins of stem cell-derived exosomes and particular targeting cells 
has not been illustrated. Furthermore, in vivo tests only detect the 
local internalization of exosomes, lacking surveillance of the system-
atic distribution and clearance. Thus, the biosafety of this novel ther-
apy is still to be confirmed.

As to clinical applications, one major challenge is to develop strat-
egies to obtain sufficient amounts of exosomes. Current exosome 
isolation methods such as ultracentrifugation or ultrafiltration provide 
only a low exosome yield.109 In addition, the exact mechanisms of 
the enhanced bone formation after exosome treatment remain elu-
sive. miRNAs are considered one of the major functional components 
of exosomes. The exosome content varies according to the different 
parent cells, culture conditions and even separation methods.87,90,110 
Thus, exosomes from different sources may exhibit diverse effects 
on fracture healing. To intensively analyse the content, including ge-
netic information, proteins and other molecules, within exosomes 
from various origins is conducive to defining the exact mechanisms. 
Meanwhile, it also would contribute to confirming the most effective 
exosomes. Moreover, there is no consensus on dose and frequency of 
exosome treatment to achieve an optimal effect.

8  | CONCLUSION

Stem cell-derived exosome therapy for fracture healing has been en-
joying popularity and is drawing increasing attention. This strategy 
helps to promote proliferation and migration of cells, as well as osteo-
genesis and angiogenesis, in the process of bone formation. Although 
the exact mechanisms remain elusive, exosomal miRNAs seem to play 
vital roles. Future studies are required to solve multiple problems 
before clinical application, including comprehensive and thorough 
understanding of exosomes, the exact roles of exosomes in regulat-
ing bone formation, and the optimal source, dose and frequency of 

treatment, as well as technical and safety issues. Moreover, studies 
based on fracture models of large animals are could offer guidance 
and are in demand.
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