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Abstract

Adiponectin inhibits hepatic stellate cell (HSC) activation and subsequent development of liver 

fibrosis via multiple mechanisms. Phosphatase and tensin homolog deletion 10 (PTEN) plays a 

crucial role in suppression of HSC activation, but its regulation by adiponectin is not fully 

understood. Here, we investigated the effect of adiponectin on PTEN in LX-2 cells, a human cell 

line and examined the underlying molecular mechanisms involved in adiponectin-mediated 

upregulation of PTEN activity during fibrosis. PTEN expression was found to be significantly 

reduced in the livers of mice treated with CCl4, whereas its expression was rescued by adiponectin 

treatment. The DNA methylation proteins DNMT1, DNMT3A, and DNMT3B are all highly 

expressed in activated primary HSCs compared to quiescent HSCs, and thus represent additional 

regulatory targets during liver fibrogenesis. Expression of DNMT proteins was significantly 

induced in the presence of fibrotic stimuli; however, only DNMT3B expression was reduced in the 

presence of adiponectin. Adiponectin-induced suppression of DNMT3B was found to be mediated 

by enhanced miR-29b expression. Furthermore, PTEN expression was significantly increased by 

overexpression of miR-29b, whereas its expression was markedly reduced by a miR-29b inhibitor 

in LX-2 cells. These findings suggest that adiponectin-induced upregulation of miR-29b can 

suppress DNMT3B transcription in LX-2 cells, thus resulting in reduced methylation of PTEN 

CpG islands and ultimately suppressing the PI3K/AKT pathway. Together, these data suggest a 

possible new explanation for the inhibitory effect of adiponectin on HSC activation and liver 

fibrogenesis.
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1. Introduction

Hepatic fibrosis is a reversible wound-healing process characterized by excessive deposition 

of extracellular matrix (ECM) proteins, especially fibrillar collagen [1,2]. Fibrosis is a 

consequence of chronic injury associated with alcoholic liver disease (ALD), non-alcoholic 

fatty liver disease (NAFLD) as well as chronic viral diseases such as hepatitis C viral 

infection [3,4]. Hepatic stellate cells (HSCs) are the primary players in hepatic fibrosis 

development and progression [5]. When activated, HSCs transdifferentiate into α-smooth 

muscle actin (α-SMA) expressing myofibroblast-like cells, which are the major matrix-

producing cells involved in hepatic fibrosis [1]. We and others have recently demonstrated 

that adiponectin, a 30 kDa adipocytokine primarily secreted by white adipose tissue (WAT), 

has anti-fibrotic properties both in vivo and in vitro [6–10]. Adiponectin signaling occurs via 

its two cognate receptors: adiponectin receptor 1 and 2 [11,12]. However, the molecular 

mechanism responsible for anti-fibrotic effects induced by adiponectin remained 

unexplored.

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a dual 

phosphatase, and its major function is to dephosphorylate phosphatidylinositol 3, 4, 

5‑triphosphate (PIP3) to phosphatidylinositol 4, 5‑bisphosphate [13]. Decreased PTEN 

expression has been reported in fibrotic diseases of the lungs, heart, skin as well as liver [14–

18]. Specifically, deletion of the Pten gene in mice results in excess deposition of type I 

collagen, while PTEN overexpression can reverse chemical-induced liver fibrosis [19]. 

PTEN activity and expression is controlled by several mechanisms including 

phosphorylation, acetylation, oxidation, ubiquitination, non-coding RNAs, and DNA 

methylation [20–22]. For instance, aberrant PTEN promoter methylation is demonstrated in 

CCl4-induced liver fibrosis [23]. DNA methylation is mainly carried out by three highly 

conserved enzymes, DNMT1, DNMT3A, and DNMT3B [24].

Recent studies indicate that aberrant microRNA (miRNA) expression is correlated with liver 

fibrosis [25,26]. miRNAs are a class of endogenous small non-coding RNAs that are 

typically 18–22 nucleotides in length [25]. These miRNAs typically work as 

posttranscriptional regulators of gene expression by binding with a portion of the 3′-

untranslated-region (3′-UTR) of target mRNAs resulting in degradation or inhibition of the 

target mRNAs and thus initiation of translation [27]. miRNAs play critical roles in 

developmental and cellular processes such as growth, differentiation, apoptosis, and 

oncogenesis [28].

In the setting of liver fibrosis, miR-19, miR-29, and let-7 overexpression reduce α-SMA and 

collagen type I expression [29–31]. Additionally, miR-33a and miR-181b inhibitors reduce 

collagen type I and α-SMA expression in HSCs [21,32]. Moreover, published reports 

demonstrate that PTEN expression is tightly regulated by miR-29b in addition to DNMT3B 

[33]. However, how adiponectin modulates PTEN promoter methylation and miR-29b 

expression has not yet been fully described. Here, we hypothesized that adiponectin may 

play a role as an upstream regulator of PTEN expression via either DNMTs, miR-29b, or 

both. Hence this study aimed to investigate the molecular mechanisms underlying 
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adiponectin-mediated increased PTEN expression as a novel pathway in targeting liver 

fibrosis.

2. Materials and methods

2.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM), trypsin-EDTA, and penicillin-streptomycin 

were all purchased from Invitrogen® (Carlsbad, CA). Fetal bovine serum (FBS) was 

purchased from Atlanta Biologicals, GA. Recombinant TGFβ1 was purchased from R&D 

systems (Minneapolis, MN). Recombinant high molecular weight (HMW) human 

adiponectin was purchased from Biovendor (Candler, NC). Antibodies p-AKT, AKT, PTEN, 

DNMT1, DNMT3A and DNMT3B were purchased from Cell Signaling (Danvers, MA). 

CCl4 and antibodies against α-SMA and anti-β-actin were obtained from Sigma-Aldrich (St. 

Louis, MO). Collagen type I antibody was purchased from Abcam (Cambridge, MA).

2.2. Animals and CCl4-induced liver fibrosis in mice

Eight-week -old male C57BL/6 J mice were purchased from Jackson Laboratories for 

animal studies (Bar Harbor Maine; Stock no. 000664). Animals were cared for in 

accordance to protocols approved by the Animal Care and Use Committee of Emory 

University. All animals were housed in a temperature-controlled environment with a 12:12 h 

light/ dark cycle. Animals were fed ad libitum with Purina Laboratory Chow (Ralston 

Purina, St. Louis, MO) and water. The study included three groups of mice: (I) Control mice 

that received olive oil by gavage and saline injections; (II) mice gavaged with CCl4 and 

injected with a recombinant deficient adenovirus vector carrying E. coli β-galactosidase 

gene (Ad-LacZ); and (III) mice gavaged with CCl4 and administered the recombinant 

deficient adenoviral vector carrying the human full-length adiponectin cDNA under the 

regulation of the CMV promoter (Ad-Adipo). Mice weighing 22–25 g were gavaged with 

olive oil as control or CCl4 (1:1 ratio CCl4 to oil; 2 ml/kg for both groups) thrice weekly for 

6 weeks. Mice were given viral particle via tail vein injection (Ad-LacZ or Ad-Adipo (1 × 

109 viral particles)) every third day for two weeks following 4 weeks of CCl4 gavage. Saline 

was injected via tail vein in the control group. We measured serum adiponectin 

concentration following Ad-Adipo injection as previously described [7] (mouse adiponectin 

ELISA kit; Millipore, Billerica, MA, USA). Human adiponectin (NM_004797) containing 

adenovirus (Ad-Adipo) and Ad-LacZ were propagated in AD293 cells (Stratagene, La Jolla, 

CA). Adenoviruses were concentrated and purified with an Adeno-X virus purification kit 

(Clonetech Laboratories, Mountain View, CA), and viral titers were determined with Adeno-

XMT rapid titer kit (Clonetech Laboratories).

2.3. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST)

Serum ALT and AST levels were determined with an ALT and AST activity assay kit as per 

manufacturer’s instruction (Sigma-Aldrich, St. Louis, MO).

2.4. Picrosirius red staining and quantification

Formalin-fixed, paraffin-embedded liver sections (5 μm) were deparaffinized and washed 

with double distilled water. Deparaffinized sections were incubated for 60 min with Sirius 
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red solution (Abcam, Cambridge, MA) followed by brief rinses with acetic acid (0.05%). 

Sections were dehydrated by washing with absolute alcohol. Sections were observed under a 

light microscope (Axioplan2; Carl Zeiss, Hallbergmoos, Germany). The collagen staining 

was quantified by using Image J software (NIH, Bethesda).

2.5. RNA extraction and qRT-PCR analysis

Total RNA was extracted from liver tissue or LX-2 cells using the RNeasy Mini Kit (Qiagen, 

Valencia, CA), and one microgram of total RNA was reverse transcribed to cDNA using the 

Bio-Rad’s iScript™ cDNA synthesis kit according to the manufacturer’s instructions. Gene 

expression was measured with real-time PCR using IQ™ SYBR® Green Supermix (Bio-

Rad) according to standard protocol. All human and mouse primers were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). The following primers were used in this study: mouse 

PTEN (NM_008960): forward 5′-TGGATTCGACTTAGACTTGACCT-3′ and re-verse 5′-

GCGGTGTCATAATGTCTCTCAG-3′; mouse DNMT1 (NM_001199433) forward 5′-

CCGTGGCTACGAGGAGAAC-3′ and re-verse 5′-CCGTGGCTACGAGGAGAAC-3′; 

mouse DNMT3A (NM_007872) forward 5′-GATGAGCCTGAGTATGAGGATGG-3′ and 

reverse 5′-CAAG ACACAATTCGGCCTGG-3′; mouse DNMT3B (NM_001122997) 

forward 5′-CGTTAATGGGAACTTCAGTGACC-3′ and reverse 5′-CTGCGTGTAAT 

TCAGAAGGCT-3′; mouse Acta2 (NM_007392) forward 5′-CCCAGACA 

TCAGGGAGTAATGG-3′ and reverse 5′-TCTATCGGATACTTCAGCG TCA-3′; human 

PTEN (NM_000314) Forward 5′-TGGATTCGACTTAGA CTTGACCT-3′ and reverse 5′-

GGTGGGTTATGGTCTTCAAAAGG-3′. To detect the expression of miR-29b (Accession 

MIMAT0000100) 5′-CGC TAGCACCATTTGAAATCAG-3′, RT PCR was performed 

using the Quanta bio microRNA assay (Beverly, MA) according to user manual. The assays 

were performed in triplicate using the Mastercycler® eprealplex (Eppendorf®), with internal 

controls (18 s) for the expression of mRNA and U6 for miR-29b. The cycle threshold (Ct) 

values were normalized to reference gene 18 s/U6 and fold changes in expression were 

calculated using the 2−∆∆Ct method.

2.5.1. Isolation of rat hepatic stellate cells—Primary rat HSCs were isolated from 

Male Sprague-Dawley® rats as previously described [7].

2.6. Cell lines

Human LX-2 cells, an immortalized human-derived cell line was a kind gift from Dr. Scott 

Friedman (Mount Sinai Hospital, New York).

2.7. Transient transfection of miRNA inhibitors and mimics

LX-2 cells were seeded in 6-wells plate (2 × 105 cells/well) for overnight and then 

transfected with a miR-29b inhibitor (Cat. HSTUD0436 Sigma), miR-29b mimic (Cat. 

HMI0436, Sigma) and respective controls (Sigma) for 24 h using the Lipofectamine™ 

RNAiMAX transfection reagent per manufacturer’s instructions (Invitrogen, Carlsbad, CA).
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2.8. Cell proliferation assay

Cells were plated at a density of 1 × 105 per well in 96-well plates and incubated at 37 °C 

with 5% CO2 in a humidified incubator. After 24 h, cells were incubated with 100 μl of 

CellTiter 96® AQueous One Solution reagent (Promega Corporation, Madison, WI, USA) 

for an additional 4 h at 37 °C with 5% CO2 in a humidified incubator. The absorbance at 490 

nm was measured on a BioTek Synergy™ 2 plate reader (BioTek Instruments, Inc., 

Winooski, VT, USA).

2.9. Western blot assay

Protein concentration was quantified using a bicinchoninic acid (BCA) protein assay kit 

(ThermoFisher, Waltham, MA) and boiled in 1× Lamellae buffer (Bio-Rad) for 5 min in a 

heat block. Ten to thirty micrograms of total protein was subjected to sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred to 0.45 μm 

nitrocellulose membrane. The membranes were incubated with 5% non-fat dry milk 

followed by incubation with the primary antibody (1:1000) in 5% BSA for overnight at 4 °C. 

The membranes were washed with Tris-buffered saline tween followed by incubation with 

horse-radish peroxide-conjugated secondary antibody (1:5000) for 1 h at room temperature. 

Protein bands were visualized using a HyGLO™ Chemiluminescent HRP Antibody 

Detection Reagent (Denville Scientific, NJ) and exposed to X-ray film (Kodak, Rochester, 

NY). Densitometric analysis of resolved proteins was performed to quantify protein band 

intensity with AlphaEaseFC™ Software, version 4.0.1 (Alpha Innotech, San Leandro, CA).

2.10. Genomic DNA isolation and methylation-specific polymerase chain assay (MS-PCR)

Genomic DNA was isolated using QIAGEN Genomic DNA purification kit (QAIGEN, 

Valencia, CA). For bisulfite treatment, EZ DNA methylation™ kit was used. Briefly, a total 

of 500 ng genomic DNA (50 μl) was incubated with 100 μl of CT conversion buffer 

followed by incubation in a thermal cycler at 50 °C for 12 h. The DNA was purified by 

using Zymo-spin™ IC column and eluted in 10 μl of elution buffer according to the user 

manual. After DNA purification, the methylated genomic DNA was subjected to PCR 

amplification. An MS-PCR assay was performed in a total volume of 20 μl by using 

SeqAMP DNA poly-merase (Takara, Mountain View, CA) as per user manual. The oligo-

nucleotide sequences used for the MSP were: mouse PTEN U forward: 5′-

TTGGAGTATTGATTAAGGTGG-3′; mouse PTEN U reverse: 5′-CAAT 

ATATCCACAACTCACTCCC-3′; mouse PTEN M forward: 5′-TTCGGAGT 

ATCGATTAAGGC-3′; mouse PTEN M reverse: 5′-AATATATCCGCGACT CGCTC-3′; 

human PTEN U forward: 5′-AATTGATTTGGAGTTTGAGG-3′; human PTEN U reverse: 

5′-AAAACTCTCAACCAAACATACTAAAC ATA-3′; human PTEN M forward: 5′-

GAATCGATTTGGAGTTCGAG-3′; human PTEN M reverse: 

CTCAACCGAACGTACTAAACGTAA-3′. The PCR product was resolved on a 1.4% 

agarose gel.

2.11. Production of shRNA lentiviral particle and LX-2 cells transduction

Bacterial stocks plasmids encoding sh-DNMT3B, sh-PTEN (Cat. #TRCN0000437183 and 

TRCN0000002747), non-targeting shRNA (pLKO.1), PCD/NL-BH4 packaging and pLTR-
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G envelop plasmids were purchased from Sigma-Aldrich (St. Louis, MO). Production of 

shRNA lentivirus and transduction of cell lines were carried out as described previously 

[34]. LX-2 cells were transduced with concentrated and purified lentiviral particles (MOI = 

5) in the presence of polybrene (5 μg/ml). The infected cells were cultured in complete 

growth medium for 72 h, and stable clones were selected with puromycin dihydrochloride 

(10 μg/ml). Survived colonies were pooled and expanded in complete cell culture medium 

containing puromycin (2 μg/ml) for further experiment.

2.12. Statistical analyses

All data are expressed as the mean ± standard error (SE) from 3 to 4 separate experiments. 

The differences between groups were analyzed using a two-tailed Student t-test when only 

two groups were analyzed or analysis of variance (ANOVA) when there were more than two 

groups were analyzed. The statistical analyses were conducted using the Excel (Microsoft 

office 2015), Graph-Pad Prism software version 5.04 (GraphPad® Software, San Diego 

CA). A P value < 0.05 was considered as statistically significant differences.

3. Results

Adiponectin attenuates liver fibrosis in CCl4-treated mice and modulates PTEN expression 

in WT mice.

In order to examine the role of adiponectin in PTEN expression, we utilized eight-week-old 

WT C57BL/6 J mice treated with CCl4 for 6 weeks to induce liver fibrosis. We also 

administered recombinant-deficient adenovirus carrying cDNA of adiponectin (Ad-Adipo), 

and control adenovirus (Ad-LacZ) at week 4 for 2 weeks. Adiponectin levels were 

monitored by serum ELISA. Adiponectin delivery significantly increased serum adiponectin 

(Saline 9.8 ± 2.7 μg/ml; CCl4 + Ad-LacZ 8.8 ± 3.4 μg/ml; CCl4 + Ad-Adipo 18.2 ± 3.8 μg/

ml). Carbon tetrachloride (CCl4) gavaged mice resulted in prominent liver injury including 

hepatocyte ballooning, steatosis, necrosis, and irregular liver lobule structure relative to 

normal liver (Fig. 1A). However, adiponectin treatment improved the pathological changes 

in livers as assessed by H&E and Sirius red staining (Fig. 1A, B). Fig. 1C–D shows that 

adiponectin treatment resulted in both reduction of serum transaminase levels and hepatic 

hydroxyproline content. PTEN mRNA and protein expression were significantly reduced 

(~0.5 fold compared to control) in the fibrotic liver, whereas combined adiponectin and CCl4 

treatment increased PTEN expression to levels comparable to control mice (Fig. 2A, B, C, 

D, E). These data indicate that adiponectin treatment enhanced PTEN expression and 

reduced liver fibrosis.

3.1. Adiponectin treatment promotes PTEN expression in LX-2 cells

Because HSCs are primary regulators/mediators of liver fibrogenesis [35,36], we questioned 

whether adiponectin treatment upregulates PTEN expression specifically within this cellular 

subset. To address this hypothesis, we used a well-characterized immortalized human HSC 

cell line (LX-2). As anticipated, TGFβ1 (5 ng/ml) significantly decreased PTEN expression 

in vitro (Fig. 3A; 0.53 ± 0.12 fold change vs control) while co-treatment with high 

molecular weight recombinant adiponectin (10 μg/ml) prevented this effect (Fig. 3A; 1.20 
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± 0.11 fold change vs 0.53 ± 0.12 TGFβ1 treated cells). Moreover, adiponectin treatment 

also attenuated TGFβ1-induced α-SMA and collagen I (Fig. 3A, B). However, while 

adiponectin treatment alone resulted in an increasing trend in PTEN expression, this 

observation failed to reach statistical significance (Fig. 3A, B). Next, we employed sh-RNA-

mediated knockdown of PTEN (nearly 50% PTEN knockdown compared to scrambled sh-

RNA pLKO.1) and treated the cells with TGFβ1 for 30 min, followed by Western blot 

analysis. TGFβ1 treatment induced AKT phosphorylation in control sh-pLKO.1-treated cells 

(Fig. 4A; 2.51 ± 0.12 fold change vs control) while AKT was phosphorylated in PTEN 

knockdown LX-2 cells in both the presence and absence of TGFβ1 (Fig. 4A; ~ > 2 fold 

change in sh-PTEN knockdown cells with or without TGFβ1 vs sh-pLKO.1 control). Since 

AKT phosphorylation is directly linked to cell survival and activation of α-SMA in HSCs 

[37–39]. We performed cell proliferation assays to determine whether knockdown of PTEN 

induced cell proliferation in LX-2 cells. We found that knockdown of PTEN promotes LX-2 

cell proliferation compared to sh-pLKO.1 (Fig. 4C; 1.72 ± 0.18 mean optical density vs sh-

pLKO.1 1.13 ± 0.12).

3.2. Adiponectin treatment attenuates DNMT3B expression and PTEN promoter 
methylation in vivo and in vitro

Previous studies have shown that PTEN promoter methylation can directly reduce PTEN 

expression in HSCs [20,22,31]. We examined DNMT expression in mouse liver by Western 

blot and qRT-PCR, and found that DNMT1, DNMT3A, and DNMT3B expression was 

significantly increased in CCl4-treated fibrotic liver (Fig. 5A; ~4 fold change vs controls). 

Adiponectin treatment, however, caused a significant reduction of DNMT3B expression in 

liver lysate (Fig. 5A, B, C; protein expression 1.26 ± 0.28 in CCl4 + Ad-adipo fold change 

vs 8.62 ± 0.95 CCl4 + Ad-LacZ; mRNA expression 2.66 ± 1.08 in CCl4 + Ad-adipo fold 

change vs 8.62 ± 0.95 CCl4 + Ad-LacZ). As anticipated, CCl4-treatment induced PTEN 

promoter methylation, and adiponectin treatment reduced PTEN methylation to levels 

comparable to control mice (Fig. 5D). Similarly, in vitro data suggest that only DNMT3B 

expression was significantly reduced in the presence of adiponectin (Fig. 6A, B). 

Adiponectin treatment reduced PTEN promoter methylation in LX-2 cells (Fig. 6C). 

Culture-activated primary rat HSCs were also found to highly express all forms of DNMTs 

compared to freshly isolated, quiescent HSCs (Fig. 7).

3.3. DNMT3B knockdown promotes PTEN expression in LX-2 cells

Our data indicate that TGFβ1-induced DNMT3B upregulation was significantly reduced by 

adiponectin; hence, we performed knockdown studies of DNMT3B via sh-RNA-mediated 

lentiviral vector (Fig. 8A, B; 0.17 ± 0.09 fold change DNMT3B expression in sh-DNMT3B 

vs sh-pLKO.1). The sh-RNA mediated DNMT3B knockdown significantly induced PTEN 

expression compared to sh-pLKO.1 (Fig. 8A; 1.39 + 0.10 fold change vs sh-pLKO.1). 

Interestingly, TGFβ1 failed to induce collagen type I and α-SMA expression in DNMT3B 

knockdown LX-2 cells compared to pLKO.1 LX-2 cells (Fig. 8A, B).

3.4. Adiponectin regulates miR-29b expression in LX-2 cells

MicroRNA 29b (miR-29b) is a direct regulator of DNMT3B expression [40,41]. We 

assessed the expression of miR-29b in LX-2 cells with or without adiponectin treatment. 
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The results revealed that expression of miR-29b significantly increased in adiponectin-

treated LX-2 cells compared to control (Fig. 9A; 3.70 ± 0.31 fold change vs control). We 

further investigated the effects of miR-29b inhibitors and mimic on DNMT3B and PTEN 

expression in LX-2 cells. Transfection with a miR-29b inhibitor significantly induced 

DNMT3B (Fig. 9B, D; 2.72 ± 0.12 fold change vs control) and α-SMA protein expression 

in LX-2 cells compared to the controls (Fig. 9B, D; 2.95 ± 0.22 fold change vs control), 

whereas PTEN expression was markedly reduced (Fig. 9B, D; 0.45 ± 0.07 fold change vs 

control). Conversely, transfection with a miR-29b mimic significantly up-regulated PTEN 

expression in LX-2 cells compared to controls (Fig. 9C, E; 1.73 ± 0.17 fold change vs 

control), whereas DNMT3B (Fig. 9C, E; 0.51 ± 0.07 fold change vs control) and α-SMA 

were reduced (Fig. 9C, E; 0.36 ± 0.06 fold change vs control). These results suggest that 

adiponectin treatment upregulates miR-29b expression and in turn prevent DNMT3B 

expression in LX-2 cells. Ultimately, this process prevents PTEN downregulation and 

prohibits the fibrogenic response.

4. Discussion

Targeting specific molecules to combat liver fibrosis is a growing challenge in translational 

medicine. Significant progress has been made to elucidate molecular mechanisms related to 

liver fibrosis, and we now have a far better understanding of liver myofibroblast biology. 

While the anti-fibrotic properties of adiponectin have been well-characterized in preclinical 

settings [6,7,42,43], recombinant adiponectin therapy is not practical to administer to 

humans. Here, we investigated the potential role of adiponectin as an activator of PTEN 

expression that could reverse hepatic fibrosis. We report the following new observations: (i) 

Adiponectin treatment inhibits DNMT3B expression in vivo and in vitro; (ii) Adiponectin 

treatment reduced PTEN promoter methylation; (iii) Knockdown of PTEN results in hyper-

activation of α-SMA: a key marker for HSCs activation; (iv) Knockdown of DNMT3B 

reduced α-SMA and collagen expression in HSCs; and (v) Adiponectin stimulation induced 

miR-29b and this increased PTEN expression. Together, our results provide a molecular 

explanation for a novel pathway that attenuates liver fibrosis through modulation of PTEN 

expression (Fig. 10).

The role of PTEN in liver fibrosis has been well documented [19,31,44,45]. PTEN can 

dephosphorylate PIP3 to PIP2, which can antagonize the PI3kinase signaling pathway. 

Reduced PTEN expression leads to PIP3 accumulation resulting in activation of PI3kinase 

followed by phosphorylation of AKT. AKT is a pro-cell survival protein that is well 

documented for its role in HSC proliferation and migration [13,46]. A recent report suggests 

that PTEN overexpression by adenovirus in the CCl4-induced rat liver fibrosis model 

reduced serum ALT and AST while decreasing collagen deposition in the liver [47]. Here, 

we report that adiponectin can prevent the loss of PTEN during CCl4-induced liver fibrosis 

and in activated HSCs. In contrast to our observations, adiponectin treatment transiently 

reduced PTEN expression in human bone marrow-derived stromal cells (hBMSC), indeed 

adiponectin-treatment partially induced PTEN expression in hBMSC after 2 h of treatment 

[48]. A possible explanation for this discrepancy could be that adiponectin PTEN expression 

in a time-dependent manner. PTEN expression can be regulated through several mechanisms 

such as promoter methylation, gene mutation, and via post-translational modifications 
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including phosphorylation at its C-terminus. In the current study, we saw no changes in 

PTEN phosphorylation status in the presence or absence of adiponectin (data not shown); 

however, adiponectin treatment did alter the status of PTEN promoter methylation both in 

vivo and in vitro.

We and others have previously shown that adiponectin exerts its beneficial effects on liver 

fibrosis via several signaling pathways including the phosphorylation of 5′ adenosine 

monophosphate-activated protein kinase (AMPK), focal adhesion kinase (FAK), Sirtuin 1 

(SIRT1), protein tyrosine phosphatase 1B (PTP1B), suppressor of cytokine signaling-3 

(SOCS-3), and the peroxisome proliferator-activated receptor- (PPARα) [7,8,49,50]. 

Recently published studies have clarified the role of miRNAs in liver fibrosis [29,30,44]. 

Not surprisingly, miRNAs have been shown to play both an anti-fibrogenic and a 

profibrogenic role depending on the genes targeted and the nature of the stimulus [20–

22,31,32]. Here, we showed that adiponectin up-regulates miR-29b expression in LX-2 cells. 

Moreover, overexpression of miRNA-29b increased PTEN levels in LX-2 cells; conversely, 

the miR-29b inhibitor suppressed PTEN expression. DNMT3B levels were increased LX-2 

cells transfected with a miR-29b inhibitor, whereas DNMT3B expression was reduced in 

LX-2 transfected with a miR-29b mimic RNA. Our data suggest the presence of a novel 

adiponectin/miR-29B/DNMT3B/PTEN signaling pathway. It has been recently reported that 

miR-29b/142–5p overexpression inhibits DNMTs expression in biliary atresia and 

contributes to pathogenesis by regulating interferon γ (IFN γ) [51]. Moreover, miR-29b 

overexpression results in decreased overall gene methylation and overexpression of IFN γ 
[51].

In conclusion, these studies provide novel insights for another molecular mechanism 

whereby adiponectin plays a very important role in attenuation of liver fibrosis via 

upregulation of miR-29b expression in LX-2 cells. Targeting activated HSCs is an emerging 

strategy for the prevention of liver fibrosis, which could lead to new anti-fibrotic treatment 

strategies that could eventually come to the clinic.
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Fig. 1. 
Adiponectin delivery attenuates liver fibrosis in CCl4-treated WT mice. (A) Representative 

photomicrographs of H&E (left panel) and Sirius red (right panel) stained liver sections 

from three different groups (n = 4 in each group). (B) Quantification of Sirius red staining of 

sections in Fig. 1A (right panel) from all experimental mice (n = 4 in each group). (C) 

Serum transaminases. (D) Hepatic hydroxyproline. Data are presented as means ± SE. 

*P˂0.05 compared to the saline group, #P˂0.05 compared to the CCl4 + Ad-LacZ group.
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Fig. 2. 
Adiponectin delivery upregulates PTEN expression in CCl4-treated WT mice. (A, B) The 

mRNA levels of PTEN and α-SMA from all saline; CCl4 + Ad-LacZ and CCl4 + Ad-Adipo 

mouse livers were analyzed by qRT-PCR. (C) Western blot analysis of PTEN and α-SMA 

from mouse livers. (D, E) Densitometry analysis of PTEN and α-SMA expression 

normalized to β-actin. (n = 4 in each group). Data are presented as means ± SE. *P˂0.05 

compared to the saline group, #P˂0.05 compared to the CCl4 + Ad-LacZ group.
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Fig. 3. 
Adiponectin up-regulates PTEN expression in LX-2 cells. (A) LX-2 cells were treated either 

with vehicle (CT), TGFβ1, adiponectin, adiponectin and TGFβ1 together for 24 h and 

performed Western blot analysis. (B) Densitometry analysis of the intensity of PTEN, 

collagen, and α-SMA normalized to β-actin. Data are means ± SE of 4 independent 

experiments. *P˂0.05 vs control, #P˂0.05 vs TGFβ1 treated cells, ns = not s significantly 

deference compared to control.
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Fig. 4. 
PTEN knockdown induced AKT phosphorylation and α-SMA expression in LX-2 cells. (A) 

sh-pLKO.1 or sh-PTEN cells were treated with TGFβ1 for 30 min followed by Western blot 

analysis. (B) Densitometry analysis of intensity of p-AKT normalized to total AKT. PTEN 

and α-SMA expression normalized to β-actin. Data are means ± SE of 3 in-dependent 

experiments. (C) Mean optical density of sh-PLKO.1 and sh-PTEN measured by cell titter 

one solution (MTS) assay. *P˂0.05 vs untreated sh-pLKO.1.

Kumar et al. Page 16

Biochim Biophys Acta Mol Basis Dis. Author manuscript; available in PMC 2019 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Adiponectin delivery attenuates CCl4-induced DNMT3B expression and reduces PTEN 

promoter methylation in mouse liver. (A) Western blot analysis of DNMT1, DNMT3A, and 

DNMT3B. (B) Densitometry analysis of DNMT1, DNMT3A, and DNMT3B normalized to 

β-actin. (C) The mRNA levels of DMNT1, DNMT3A and DNMT3B from all saline, CCl4 + 

Ad-LacZ and CCl4 + Ad-Adipo mouse livers, respectively, were analyzed by qRT-PCR. (D) 

Equal amounts of bisulfite treated DNA subjected to PCR followed by agarose gel (1.4% 

w/v) electrophoresis. Representative image of the methylated (M) and unmethylated (U) 

state of PTEN promoter in liver tissue of experimental groups. The PCR product size is 

~190 bp. Data are presented as means ± SE. *P˂0.05 compared to the saline group, #P˂0.05 

compared to the CCl4 + Ad-LacZ group, ns = not significantly difference between CCl4 + 

Ad-LacZ and CCl4 + Ad-Adipo group.
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Fig. 6. 
Adiponectin treatment reduced TGFβ1-induced DNMT3B expression and reduces PTEN 

promoter methylation LX-2 cells. (A) Western blot analysis of DNMT1, DNMT3A and 

DNMT3B in LX-2 cells. (B) Densitometry analysis of DNMT1, DNMT3A and DNMT3B 

normalized to β-actin. (C) Representative image of the methylated (M) and unmethylated 

(U) state of PTEN promoter in LX-2 cells. Data are means ± SE of 4 independent 

experiments. *P˂0.05 compared to control, #P˂0.05 compared to TGFβ1 treated cells, ns = 

no statistically significantly difference compared to control, 1ns = not - significantly 

difference between compared to TGFβ1 treated cells.
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Fig. 7. 
DNMTs expression in primary rat HSCs. DNMT1, DNMT3A and DNMT3B expression in 

freshly isolated HSCs (quiescent) and HSCs cultured on plastics for seven days (activated).
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Fig. 8. 
Knockdown of DNMT3B upregulates PTEN expression in LX-2 cells. (A) sh-pLKO.1 or sh-

DNMT3B cells were treated with TGFβ1 for 24 h followed by Western blot analysis. (B) 

Densitometry analysis of the intensity of collagen I, α-SMA, PTEN, and DNMT3B 

expression normalized to β-actin. Data are means ± SE of 3 independent experiments. 

*P˂0.05 vs untreated sh-pLKO.1, #P˂0.05 vs sh-pLKO.1 treated with TGFβ1.
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Fig. 9. 
miR-29b regulates PTEN and DNMT3B expressions in LX-2 cells. (A) LX-2 cells were 

treated with adiponectin for 24 h and qRT-PCR was performed to measure miR-29b 

expression in LX-2 cells. (B, C) LX-2 cells were transfected with miR-29b inhibitor or 

mimic miR-29b and respective controls and performed Western blot analysis. (D, E) 

Densitometry analysis of the intensity of (B, C) PTEN, α-SMA, and DNMT3B expression 

normalized to β-actin. Data are means ± SE of 3 independent experiments. *P˂0.05 vs 

Control.
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Fig. 10. 
Adiponectin-mediated signaling pathway in HSCs. Adiponectin binds with adiponectin 

receptors (RI, R2) and induces phosphorylation of AMPK via APPL1. Adiponectin 

treatment induces expression of miR-29b, which leads to reduced expression of DNMT3B. 

The resulting reduction in DNA methylation causes upregulation of PTEN expression. 

Arrow-headed indicates activation, whereas bar-headed lines indicate inhibition. *novel 

findings of the current study.
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