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Abstract

Large external data sources may be available to augment studies that collect data to address a 

specific research objective. In this article we consider the problem of building regression models 

for prediction based on individual-level data from an “internal” study while incorporating 

summary information from an “external” big data source. We extend the work of Chatterjee et al 

(2016a) by introducing an adaptive empirical Bayes shrinkage estimator that uses the external 

summary-level information and the internal data to trade bias with variance for protection against 

departures in the conditional probability distribution of the outcome given a set of covariates 

between the two populations. We use simulation studies and a real data application using external 

summary information from the Prostate Cancer Prevention Trial to assess the performance of the 

proposed methods in contrast to maximum likelihood estimation and the constrained maximum 

likelihood (CML) method developed by Chatterjee et al (2016a). Our simulation studies show that 

the CML method can be biased and inefficient when the assumption of a transportable covariate 

distribution between the external and internal populations is violated, and our empirical Bayes 

estimator provides protection against bias and loss of efficiency.
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1 Introduction

Large external data sources, e.g. health care and claims databases, registries and various 

consortia of individual studies, are becoming available to investigators for research purposes. 

These data sources are appealing due to their large sample sizes; however, they often do not 

contain the same detailed information as an individual-level study carefully designed to 

address a specific research aim of interest. Combining information from large external 

studies with information from a smaller but more detailed study can improve efficiency in 

estimation and prediction. Methods that only require summary-level information from the 

external data source are appealing in that they do not require sharing of the external data and 

may be publicly available. In this article we consider the problem of building regression 
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models based on individual-level data from an “internal” study while incorporating 

summary-level information from an “external” big data source. Improving efficiency of 

model parameter estimates and prediction are the main goals of this article.

There is substantial literature describing methods to combine external and internal 

information when external individual-level data are available. For example, many authors 

(Deville and Sarndal (1992); Robins et al (1994); Wu and Sitter (2001); Wu (2003); Lumley 

et al (2011)) use optimal calibration equations to improve efficiency of parameter estimates 

within various classes of unbiased estimators. In special cases where it can be assumed that 

the covariate information in the external data source can be summarized into discrete strata, 

a number of researchers have proposed semi-parametric maximum likelihood methods 

(Breslow and Holubkov (1997); Scott and Wild (1997); Lawless et al (1999)). However, as 

noted in Chatterjee et al (2016a), the external data set may often include combinations of 

many variables and summarizing this information into strata can be subjective and 

inefficient.

Chatterjee et al (2016a) addressed these issues by developing a semi- parametric maximum 

likelihood estimation method that assumes the external information is summarized by a 

finite set of parameters rather than a discrete set of strata defined by the study variables. 

Their framework allows arbitrary types of covariates and arbitrary types of regression 

models. In addition, they showed via simulation studies that their constrained maximum 

likelihood (CML) method can achieve major efficiency gains over generalized regression 

(GR) calibration estimators such as those proposed in Chen and Chen (2000). However, as 

indicated in Chatterjee et al (2016b); Patel and Dominici (2016); Han and Lawless (2016); 

Louis and Keiding (2016); Haneuse and Rivera (2016); Mefford et al (2016), many 

estimators considered in the existing literature of survey sampling, two-phase sampling, 

empirical likelihood methodology and their proposed CML method assumes that the entire 

probability distribution (outcome and covariates) is transportable between the two 

populations, i.e., the joint probability distributions are the same in both populations. 

Ignoring differences in the covariate distributions in the internal and external populations 

can yield substantially biased parameter estimates and a loss of efficiency. To address this 

issue, Chatterjee et al (2016a) introduce synthetic maximum likelihood, which requires that 

an external reference sample is available for unbiased estimation of the covariate distribution 

for the external population. When such a reference is not available, which is likely to be the 

case in practice, we propose an Empirical Bayes estimation procedure that shrinks the 

parameter estimates of the full model fitted to the internal data via maximum likelihood 

towards the CML estimates, which borrows information from the external data source, using 

weights, that in a sense, quantify available evidence against the assumption of a 

transportable conditional probability distribution of the outcome given a set of covariates.

More recently, Grill et al (2017) compared different approaches for incorporating new 

information into existing risk prediction models. Methods considered included the CML and 

various updating methods based on Bayes’ Theorem and likelihood ratio approaches whose 

performance depends on restrictions such as rare disease prevalence and/or independence 

between risk predictors and newly collected markers. Based on their studies, they 

recommended the use of CML or a likelihood ratio joint estimation method for prediction 
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model updating, but note the appeal of CML because it does not require specification of the 

conditional distribution of the new marker given the risk predictors. Thus, we focus on 

maximum likelihood and CML as comparators to our proposed EB methods.

Our paper is organized as follows. We introduce empirical Bayes (EB) estimators in Section 

2.2, and carry out simulation studies in Section 3. In Section 4, we present a motivating data 

application involving external summary-level information obtained from an online risk 

prediction calculator resulting from the Prostate Cancer Prevention Trial Thompson et al 

(2006), an internal data set including novel biomarkers and a validation data set obtained 

from men scheduled for a diagnostic prostate biopsy at community clinics throughout the 

United States as described in Tomlins et al (2016). We compare the performance of our EB 

estimators with maximum likelihood and CML when significant differences exist in the 

covariate distributions between the two data sources. Concluding remarks are made in 

Section 4.

2 Methods

2.1 Model Definition

Let Y be an outcome variable of interest and X be a set of covariates. We assume a model 

gθ(y | x) has been built from an “external” big data set and the individual-level data from the 

external data set are not available. Data on Y, X, and a new set of covariates Z are available 

from an “internal” study to build a model of the form f β(y | x, z) . Henceforth, 

f β(y | x, z) and gθ(y | x) will be referred to as the “full” and “reduced” models respectively. We 

assume f β(y | x, z) is correctly specified, but the external model gθ(y | x) need not be.

2.2 Empirical Bayes Shrinkage Estimator of Model Parameters

Let Y i, Xi, Zi : i = 1, …, N  denote a random sample of subjects from an internal population, 

and let F(X, Z) denote the joint distribution function of (X, Z). The CML estimation method 

introduced in Chatterjee et al (2016a) gives β that maximizes

log Lβ, F + λT∫ μβ(X, Z; θ)dF(X, Z) (1)

with respect to (β, λ, F) where 

Lβ, F = ∏i = 1
N f β Y i | Xi, Zi dF Xi, Zi , μβ(X, Z; θ) = ∫ Y U(Y | X, θ) f β(Y | X, Z)dY , U(Y | X, θ) =

∂log gθ(Y | X) / ∂θ

 is the 

score function associated with the reduced model, and λ is a vector of Lagrange multipliers 

with the same dimension as θ. The value of θ is given to us externally, and is fixed at this 

value in μβ(X, Z; θ) . Thus, the proposed method can be thought of as a function 

ψ :ℝp ℝp + K that takes an input θ  and outputs an estimate β ≡ ψ(θ ) of β where p is the 

number of parameters in the reduced model and p + K is the number of parameters in the 

full model. Under various conditions noted in Chatterjee et al (2016a), the CML estimator is 
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asymptotically more efficient than the maximum likelihood estimator based only on the 

internal data.

An implicit assumption of the CML method is that the entire probability distribution pr(y, x, 
z) is transportable between the internal and external populations. Since Z is only observed in 

the internal study, this assumption cannot be checked directly via the external summary-level 

information and the internal study data. However, evidence against the transportability of 

pr(y, x) provides evidence against the transportability of pr(y, x, z). Let θI and θE denote the 

limiting parameter values of the reduced model in the internal and external populations 

respectively. When pr(y, x) is transportable so is pr(y | x), and we expect the difference 

between θ I and θE to be small for sufficiently large internal sample size n where θ I and θE

are the maximum likelihood estimates of θI and θE. Similar to Mukherjee and Chatterjee 

(2008), when one is not certain about the assumption of transportability, one may posit a 

stochastic framework for the underlying true parameter θ N θ0, A  for some covariance 

matrix A. A first order Taylor’s expansion of ψ(θ) about θ0 gives

ψ(θ) ≈ ψ θ0 + ∇T θ − θ0 (2)

where ∇T is the gradient matrix of ψ(θ) with dimension (p + K) × p evaluated at θ = θ0

yielding a prior distribution N ψ θ0 , ∇TA∇ on ψ(θ) . Let ΣI be the asymptotic variance of 

ψ θ I . Then an approximation to the Bayes estimate of ψ(θ) for a fixed A is given by

∇TA∇ ΣI + ∇TA∇ −1ψ θ I + ΣI ΣI + ∇TA∇ −1ψ θ0 . (3)

The components in (3) are estimated as follows. Under the assumption that the external 

population is representative of the target population of interest, θ0 is estimated via θE . From 

Result 1 below, ψ θ I  is equal to βI, the maximum likelihood estimate of the parameters in 

the full model fitted to the internal data which has an asymptotic normal distribution 

N β0, ΣI . We estimate ΣI via its maximum likelihood estimate ΣI , A is estimated via 

θ I − θE θ I −θE)T and the columns of ∇T are estimated numerically via 

h−1 ψ θE + Δl −ψ θE where h = 10−6, Δl is a vector with h in the lth component and zero 

otherwise, and l = 1, …, p . Thus, our EB shrinkage estimator of the full model parameters, 

denoted βEB, is given as

βEB = ∇TA∇ ΣI + ∇TA∇
−1

ψ θ I + ΣI ΣI + ∇TA∇
−1

ψ θE . (4)
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Result 1 Let θ I denote the maximum likelihood estimate of θ using the internal data. Then 

ψ θ I = β, the maximum likelihood estimate of β.

Proof. The semi-parametric likelihood Lβ, F = ∏i = 1
N f β Y i | Xi, Zi dF Xi, Zi  is to be 

maximized under the constraint ∫ μβ(X, Z; θ)dF(X, Z) = 0 where 

μβ(X, Z; θ) = ∫ Y U(Y | X, θ) f β(Y | X, Z)dY . By definition, θ I is the value of θ that maximizes 

L(θ) = ∏i = 1
N f θ Y i | Xi . Then U Y | X, θ I = 0 and μβ X, Z; θ I = 0 forcing the constraint to be 

satisfied for any value β that maximizes Lβ, F .

2.3 Empirical Bayes Shrinkage of Model Predictions

In Section 2.2 we proposed an empirical Bayes shrinkage estimator for the full model 

parameters. We now propose three different shrinkage approaches for prediction in sections 

2.3.1, 2.3.2 and 2.3.3. We assume the full and reduced models are generalized linear models 

(GLMs) defined by

g E Y i Xi, Zi = Xi
TβX + Zi

TβZ (5)

and

g E Y i Xi = Xi
TθX (6)

where g is some link function. Let WT denote a newly collected subject-specific covariate 

row vector with observed data on variables X and Z.

2.3.1 Predictions via Direct Use of EB Model Parameter Estimates—The EB 

full model parameter estimates defined by (4) can be used to construct predictions for the 

newly observed subject covariate vector e.g. YEB = g−1 WTβEB .A quick inspection of this 

definition will show that YEB (or simply EB) is the inverse-link function of

WT∇TA∇ ΣI + ∇TA∇
−1

ψ θ I + WT ΣI ΣI + ∇TA∇
−1

ψ θE (7)

which modifies the weights of ψ θ I and ψ θE  in (4) by left-multiplication of the row vector 

WT. An alternative approach is to sandwich the components of the weights in (4) by WTW 
as presented in Section 2.3.3.

2.3.2 Empirical Bayes Shrinkage Estimator of Model Predictions—Rather than 

shrink estimates of the full model parameters, one can shrink estimates of the linear 

predictor of the full model fitted to the two data sources via
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ϕ2 WT ΣI W + ϕ2 −1
WTψ θ I + WT ΣI W WT ΣI W + ϕ2 −1

WTψ θE (8)

where ϕ = WTψ θ I − WTψ θE . We note that when the link function g is the identity 

function, (8) is identical to shrinking the predictions Y I = WTψ θ I and YE = WTψ θE . Thus, 

(8) may be useful when the reduced model parameter estimates resulting from the external 

data are unavailable and predicted outcomes are available. The inverse-link of (8) defines 

our empirical Bayes shrinkage estimator YEBP1 (or simply EBP1) and is motivated by 

assuming a prior distribution N WTψ θ0 , v on WTψ(θ) where v is a scalar. The Bayes 

estimate of WTψ(θ) for a fixed value v, estimated via ϕ2, is given by

v σI
2 + v −1WTψ(θ) + σI

2 σI
2 + v −1WTψ θ0 (9)

where σI
2 is the asymptotic variance of WTψ θ I .

2.3.3 Alternate Empirical Bayes Shrinkage Estimator of Model Predictions—

From the Taylor’s expansion in (2), we approximate WTψ(θ) via

WTψ(θ) ≈ WTψ θ0 + WT∇T θ − θ0 (10)

yielding a prior distribution N WTψ θ0 , WT∇TA∇W on WTψ(θ) . Then an approximation to 

the Bayes estimate of WTψ(θ) is given by

WT∇TA∇W WTΓW
−1

WTψ θI + WT ΣI W WTΓW
−1

WTψ θ0

yielding a shrinkage prediction estimate as the inverse-link of

WT∇TA∇W WTΓW −1WTψ θ I + WT ΣI W WTΓW −1WTψ θE , (11)

denoted by YEBP2 (or simply EBP2), where Γ = ΣI + ∇TA∇ and Γ = ΣI + ∇TA∇ .

2.3.4 Comments Regarding the Empirical Bayes Estimators—Starting with the 

identity ∇TA∇ + ΣI = ∇TA∇ + ΣI and multiplying on the right by ΣI + ∇T A∇
−1

, we 

get the equation ∇TA∇ ΣI + ∇TA∇
−1

+ ΣI ΣI + ∇TA∇
−1

= I where I is the identity 

matrix. Thus, the matrix weights in expression (4) sum to the identity matrix and so can be 
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thought of as a matrix generalization of a weighted scalar sum. For sufficiently large sample 

sizes, when pr(y, x, z) is transportable, θ I − θE will approximately equal the zero vector, and 

hence A will approximately equal the zero matrix. This is a motivation behind our estimators 

because as seen in (4), when A equals the zero matrix, the weight in front of the maximum 

likelihood estimator is the zero matrix, and the weight in front of the CML estimator is the 

identity matrix. When the transportability of pr(y, x) is violated, we would expect θ I − θE to 

be away from zero inflating the matrix weight associated with the maximum likelihood 

estimator. Thus, our empirical Bayes estimator (4) can be thought of as an estimator that 

tends to shrink towards the maximum like-lihood estimator when transportability is violated 

and tends to shrink towards the CML estimator when transportability is not violated. Similar 

observations can be made with the other empirical Bayes estimators.

3 Simulation Study

We carry out simulation studies in the standard linear and logistic regression settings to 

study operating characteristics of our proposed EB estimators in contrast to maximum 

likelihood and the CML estimator proposed in Chatterjee et al (2016a). In both regression 

settings, we consider four different specifications of the joint distributions of (X, Z)T directly 

or indirectly through the conditional distribution of X Z and the marginal distribution of X in 

the external and internal populations. The motivation behind these settings (I, II, III and IV) 

is to assume the model f β(y | x, z) is correctly specified in both the internal and external 

populations, but the covariate distributions of (X, Z) need not be the same in both 

populations. Details of the different settings are explicitly summarized in Table 1. The full 

models of interest are

g E Y i Xi, Zi = β0 + β1Xi + β2Zi (12)

and

g E Y i Xi, Zi = β0 + β1Xi + β2Zi + β3XiZi (13)

where g is the identity link function in the normal linear regression setting and the logit-link 

function in the logistic regression setting. The reduced model of interest has the form

g E Y i Xi = θ0 + θ1Xi . (14)

These models are motivated by the scenario when a new predictor Z (and possibly an 

interaction) is included in the full model of the internal study. In our simulation studies, the 

sample sizes of the internal studies are 1000, and the sample sizes of the large external 

studies are 100000.

Estes et al. Page 7

Stat Biosci. Author manuscript; available in PMC 2019 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In each setting, we generate data under full models (12) and (13) given a set of parameters 

and then obtain the values of external parameters by fitting the reduced model (14) to a very 

large dataset. In the normal linear regression settings, we define (β0, β1, β2) = (6, 4, 4) in 

(12) and (β0, β1, β2, β3) = (6, 4, 4, 2) in (13). In the logistic regression settings, (β0, β1, β2) 

= (−1, −.5, .5) in (12) and (β0, β1, β2, β3) = (−1, −.5, .5, .25) in (13). The operating 

characteristics of interest are estimated bias, standard deviation and mean squared error 

defined by R−1∑r = 1
R γ r − γ0 , (R − 1)−1∑r = 1

R γ r − γ
2 1/2

and R−1∑r = 1
R γ r − γ0

2,

respectively, where R = 1000 is the number of simulation runs, γ = ∑r = 1
R γ r, and γ  is an 

estimate of the true value γ0 . In this context, γ0 is a placeholder for β0,β1, β2, or β3 and γ is a 

placeholder for the estimate of γ0 . resulting from either maximum likelihood, our empirical 

Bayes estimator defined in (4), or the CML estimator.

To evaluate estimation accuracy of the conditional mean of Y given (X, Z) via maximum 

likelihood, our empirical Bayes estimators, and the CML estimator, we randomly drew a 

covariate vector from both the external and internal populations, denoted by WE and WI 

respectively (includes 1 for the intercept), and calculate the average squared deviation from 

the estimated and true conditional means. In the cases of maximum likelihood and 

constrained maximum likelihood, the estimated conditional mean is obtained via the inverse 

link of the product of the covariate row vectors (WE and WI) and the parameter estimates 

(maximum likelihood or constrained maximum likelihood). With respect to our empirical 

Bayes estimators, we use YEB, YEBP1 and YEBP2 as defined in Section 2.3 to estimate the 

conditional mean. More specifically, the quantities used for estimation accuracy were 

defined by R−1∑r = 1
R ME, r − g−1 WE, r

T β
2
 and R−1∑r = 1

n MI, r − g−1 WI, r
T β

2
 over R = 

1000 simulation runs where ME, r and MI, r denote estimates of the condition mean of Y 

given (X, Z) in the external and internal populations respectively resulting from maximum 

likelihood, our empirical Bayes estimators, and the CML estimator in the rth simulation run.

3.1 Simulation Results

The results of our simulation settings with full model (12) and reduced model (14) are 

summarized in Table 2 and Table 3 of the main text, which will be the main focus in our 

commentary below. Across all simulation settings, the CML estimator results in substantial 

reduction in standard deviation of the estimates of (β0, β1) in comparison to the maximum 

likelihood estimates and EB estimates. For example, the standard deviations of the 

maximum likelihood, EB and CML estimates of (β0, β1) in linear regression setting I are (.

192, .199), (.154, .161) and (.104, .115) respectively. In logistic regression setting I, the 

standard deviations of the maximum likelihood, EB and CML estimates of (β0, β1) are (.

074, .081), (.056, .064) and (.021, .032) respectively. Consequently, the CML estimator 

results in substantial reduction in mean squared error (MSE) of (β0, β1) in comparison to the 

maximum likelihood estimates and EB estimates. The mean squared error of the maximum 

likelihood, EB and CML estimates of (β0, β1) in linear regression setting I are (.037, .039), (.

024, .026) and (.011, .013) respectively. In logistic regression setting I, the mean squared 

error of the maximum likelihood, EB and CML estimates of (β0, β1) are (.005, .007), (.003, .
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004) and (.001, .001) respectively. Thus, when the covariate distribution of (X, Z) is 

transportable between the external and internal populations (Setting I), we see efficiency 

gains in the EB and CML estimates of (β0, β1) (EB: ~ 36% and 34% reduction in MSE, 

CML: ~ 70% and 66% reduction in MSE) with respect to the maximum likelihood estimates 

in linear regression framework. In logistic regression setting I, we found efficiency gains of 

approximately 41% and 37% for the EB estimators and 87% and 78% for the CML 

estimators. As expected, the EB and CML estimators did not acheive efficiency gains in 

estimation of β2 with respect to maximum likelihood; however, as noted in our simulations 

studies, bias can be induced in β2 particularly in Settings II and IV.

Although the CML estimator can result in substantial efficiency gains, the CML estimator 

can result in severe loss of efficiency when the assumption of a transportable covariate 

distribution is violated as seen in Settings II and IV. In our simulation studies, we find that 

our EB estimators provide protection against severe loss of efficiency. For example, in the 

linear regression settings, the mean squared error of the CML estimates of β0 and β1 in 

settings II and IV respectively are approximately 13.6 and 12.3 times higher than the 

corresponding MSEs reported for the maximum likelihood estimates. However, the MSEs of 

the corresponding EB estimates were approximately 1.1 and 1.1 times the MSEs for the 

maximum likelihood estimates of β0 and β1 respectively (Tables 2 and 3).

Substantial bias in estimation can be problematic for prediction. Let FI(X, Z) and FE (X, Z) 

denote the covariate distribution functions of (X, Z) in the internal and external populations 

respectively, and let XI, r, ZI, r FI(X, Z) and XE, r, ZE, r FE(X, Z) for r = 1, …, R and R = 1000.

Random covariate row vectors from the internal and external populations are defined by 

WI, i = 1, XI, i, ZI, i and WE, i = 1, XE, i, ZE, i  respectively. We consider absolute estimation 

error defined by ME, r − g−1 WE, r
T β and | MI, r − g−1 WI, r

T β | where ME, r and MI, r denote 

estimates of the condition mean of Y given (X, Z) in the external and internal populations 

respectively resulting from maximum likelihood, our empirical Bayes estimators, and the 

CML estimator in the rth simulation run.. Box plots of absolute estimation errors are 

displayed in Figure 1 (linear regression) and Figure 2 (logistic regression). Figure 1 is 

comprised of Setting I (a), Setting II (b) and (c), Setting III (d) and (e) and Setting IV (f) and 

(g). Figures (a), (b), (d) and (f) corresponds to XE, r, ZE, r FE(X, Z) and (c), (e) and (g) 

correspond to XI, r, ZI, r FI(X, Z) .

The quartiles of absolute estimation errors in Figure 1 (a) corresponding to EB, EBP1, EBP2 

and CML indicate that absolute estimation error is reduced (with respect to maximum 

likelihood) using EB, EBP1, EBP2 or CML estimators when the covariate distributions are 

the same in the internal and external populations, i.e. FI(X, Z) = FE(X, Z) . However, the 

largest reduction in absolute estimation error is achieved in this setting with CML. We note 

similar findings in Figures 1 (d) and (e) corresponding to Setting III in which the covariate 

distributions of (X, Z) differ between the internal and external populations only through the 

marginal distribution of X. When the covariate distributions of (X, Z) differ between the 

internal and external populations through the marginal distribution of Z (Figures 1 (b) and 

(c)) or the conditional distribution Z | X (Figures 1 (f) and (g)) absolute estimation error is 
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substantially increased using CML, but mildly increased using our EB estimators indicating 

protection against heterogeneity in the population distributions. Figure 2 displays the 

quartiles of absolute estimation errors resulting from Settings I, II, III, and IV in the logistic 

regression framework. Results noted above in the normal linear regression framework are 

also observed in the logistic regression framework.

In Web Table 5, we tabulate proportions of the 1,000 simulation runs for which absolute 

estimation error resulting from CML or EB was less than absolute estimation error resulting 

from maximum likelihood or CML in each of the regression settings I, II, III and IV. For 

example, in Setting I, we found that EB resulted in smaller absolute estimation error in 71% 

and 75% of our simulation runs relative to maximum likelihood in the standard linear and 

standard logistic regression frameworks respectively. In settings II and IV, our EB estimator 

results in smaller absolute estimation error in 93% and 79% of the simulation runs relative to 

CML in the linear regression framework and roughly 91% and 74% in the logistic regression 

framework respectively.

To evaluate the impact of a newly collected covariate Z and the inclusion of an interaction 

term XZ in the full model, we carried out our simulation studies again using the full model 

(13) and the reduced model (14). We summarize the results in Web Table 1 and Web Table 2. 

Although our findings are similar to our findings above, we found that the CML estimator is 

seriously biased in Settings II, III and IV. These results suggest that the inclusion of the 

interaction term XZ plays a role in the bias induced in our simulation settings.

4 Data Application

The Prostate Cancer Prevention Trial (PCPT) Risk Calculator 1.0 (PCPTrc 1.0) was 

developed based upon 5519 men in the placebo group of the PCPT Thompson et al (2006) 

for individualized risk assessment of prostate cancer (PCa) using race (african american, 

caucasian, hispanic, other), age, PSA level (ng/ml), family history of PCa (yes, no), DRE 

(abnormal, normal, not performed), and prior prostate biopsy (never, past negative, past 

positive) as predictors. In 2016, Tomlins et al (2016) demonstrated improved prediction of 

high-grade PCa using the additional PCa specific biomarkers TMPRSS2:ERG and PCA3 as 

additional predictors. Since individual-level patient data from the 5519 were not available, 

Tomlins et al (2016) incorporated summary-level information into their models by using 

scaled PCPTrc 1.0 scores as predictors e.g.

g E Y i T i = γ0 + γ1 * scorei + γ2 * lpcs3i + γ4 * lt2ergi (15)

where scorei denotes 100 times the PCPTrc 1.0 score, lPCS3i denotes the base 2 logarithm 

of one plus the PCA3 score, lt2ergi denotes the base 2 logarithm of one plus the 

TMPRSS2:ERG score, Yi denotes the binary indicator of high risk PCa defined by a 

Gleason score greater than 6 for subject i and Ti is the design row vector (scorei, lpcs3i, 

lt2ergi). Their conclusions were based on comparisons of area under the curve (AUC) 

statistics calculated from (15) fitted to a validation set of 1225 men schedule for a diagnostic 

prostate biopsy at community clinics throughout the United States. In their analysis, they 
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used a training cohort of 711 patients scheduled for a diagnostic prostate biopsy and 

prospectively collected post-digital rectal exam (DRE) urine for the assessment of 

TMPRSS2:ERG and PCA3.

Alternatively, one can incorporate external information from the PCPTrc 1.0 using the 

empirical Bayes estimators proposed in Section 2.2. The implementation is done as follows. 

The reduced model used in the calculation of PCPTrc is

g E Y i Xi = θ0 + θ1 * lpsai + θ2 * agei + θ3 * drei + θ4 * priorbiopi + θ5 * aai (16)

where lpsai denotes the natural logarithm of PSA, agei denotes subject age, drei is a binary 

indicator of a digital rectal exam, priorbiopi is a binary indicator of prior negative biopsy, aai 

is a binary indicator of african american race and Xi is the design row vector (lpsai, agei, 

drei, priorbiopi, aai) for subject i. The external parameter estimates of θE = θ0, …, θ5
T in 

Thompson et al (2006) are θE = ( − 6.2461, 1.2927, 0.0306, 1.0008, − 0.3634, 0.9604) The full 

model fitted to the training data is given as

g E Y i Xi, Zi = β0 + β1 * lpsai + β2 * agei + β3 * drei + β4 * priorbiopi +
β5 * aai + β6 * 1t2ergi + β7 * lpca3i

(17)

where Zi is the covariate row vector (lt2ergi, lpca3i). Model (17) is fitted to the training data 

set via maximum likelihood (LR), the CML estimate is obtained via ψ θE , the empirical 

Bayes estimates (EB, EBP1 and EBP2) are calculated as defined in (4), (7) and (11) and 

Model (15) is fitted to the training data set to obtain estimates (TOM) proposed in Tomlins 

et al (2016).

We compared predicted outcomes from the internal, validation and combined (internal + 

validation) data sets resulting from the six proposed methods (LR, EB, EBP1, EBP2, CML, 

TOM) and the PCPTrc. Sum of squared errors (SSE) and area under the receiver-operator 

curves (AUC) are used to quantify accuracy of prediction and classification respectively. 

Results are displayed in Table 4. SSE of the CML estimates were 6.1% less (157.211 vs. 

167.436) than the SSE of the maximum likelihood estimates in the validation set; however, 

we found a 14.9% increase (119.828 vs. 104.326) in SSE calculated from the internal data 

set and a 1.9% increase (277.039 vs. 271.762) in SSE calculated from the combined data 

sets in comparison to maximum likelihood. An explaining factor of these observations are 

the notable differences in the covariate distributions among the external, internal and 

validation data sets (Web Table 3) i.e. the covariate distributions are not transportable 

between populations. Specifically, all individuals in the external data set were 55 years of 

age or older in contrast to 74% and 78% in the internal and validation data sets respectively. 

Additionally, 95.6% of individuals in the external data set were white compared to 80% and 

41.8% in the internal and validation data sets respectively. Finally, rates of high grade PCa 

(outcome variable) were 4.7%, 27.0% and 18.3% in the external, internal and validation sets 

respectively.
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Although there are notable differences among the covariate distributions, our empirical 

Bayes estimates EB, EBP1, and EBP2 offers protection against increasing prediction error 

with respect to maximum likelihood. For example, Table 4 indicates that SSE for the EB 

estimates ranged from 104.333 to 104.850 in the internal data set, 164.405 to 167.063 in the 

validation data set and 269.256 to 271.396 in the combined data sets compared to 104.326, 

167.436 and 271.762 resulting from maximum likelihood respectively. In other words, our 

EB estimates offer a mild reduction in SSE in the validation and combined data set with 

respect to maximum likelihood even though the covariate distributions are very different 

among the three data sets. In contrast, the CML estimates results in a substantial increase 

(14.9%) in SSE in the internal data set, a moderate decrease (6.1%) in SSE in the validation 

data set and a mild increase in SSE (1.0%) in the combined data set relative to maximum 

likelihood.

Table 4 displays calculated AUC statistics resulting from the six different prediction models. 

In all three data sets, AUC resulting from maximum likelihood and our EB estimates were 

nearly identical, but very mild reductions occurred in AUC resulting from CML when 

compared to maximum likelihood in all three data sets. Web Figure 3 displays receiver-

operator curves resulting from the six different procedures applied to the internal, validation 

and combined data sets. In the internal and combined data sets, we see some deviations 

between the receiver-operator curves corresponding to CML and TOM, and the alternative 

methods, near the center of the curves indicating slight changes in classification (sensitivity 

and specificity). While there does not appear to be notable differences among the AUC 

statistics, there are notable differences in prediction at the individual-level which is lost in 

the AUC statistics.

Web Table 4 displays the full and reduced model parameter estimates resulting from 

maximum likelihood as well as the prediction model parameter estimates resulting from EB 

and CML. The reduced model parameter estimates resulting from maximum likelihood fitted 

to the internal data and the external data are (−4.740, 0.958, 0.034, 1.139, −1.154, 0.460) 

and (−6.2461, 1.2927, 0.0306, 1.0008, −0.3634, 0.9604) respectively. Notably, the intercept 

estimates are very different. A contributing explanatory factor is the proportion of high grade 

PCa in the external and internal data sets which are observed to be 4.7% and 27.0% 

respectively (Web Table 3). Thus, the EB estimator will adapt by shrinking towards the 

maximum likelihood estimates whereas the CML estimator will move towards the external 

estimates. Consequently, the CML parameter estimates generally result in predicted 

outcomes closer to 0 relative to LR. For example, 52% and 54% of the predicted outcome 

values in the internal and validation data sets respectively are predicted below .10 when 

using CML compared to 25% and 26% when using LR. Thus, CML will require a much 

lower value c used in a decision rule to classify predicted outcomes as indications of disease 

than LR e.g. when c = .3, a predicted outcome of .35 will be classified as an indication of 

disease since .35 > .3. In fact, the classification value c that minimizes the Euclidean 

distance between the point (0,1) and the ROC curves resulting from CML and LR applied to 

the validation data set are .1108 and .3457 respectively. Web Figures 4 (internal data set) and 

5 (validation data set) displays scatterplot matrices of predicted outcomes resulting from EB, 

CML, TOM and PCPTrc. Notable deviations from a diagonal line are seen in each of the 
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plots indicating that predicted outcomes at the individual-level are very different in both the 

internal and validation data sources.

5 Discussion

In this paper, we extended the constrained maximum likelihood estimator proposed in 

Chatterjee et al (2016a) to an adaptive estimator that shrinks towards the maximum 

likelihood estimate when the external summary-level information and internal data provides 

evidence against the assumption of transportability, and shrinks towards the CML estimate 

otherwise. Furthermore, this paper is the first to do a comparative study of methods 

shrinking prediction directly using summary-level information. Our simulation studies 

indicates that our empirical Bayes estimators can yield efficiency gains when the covariate 

distributions are the same in both the internal and external populations as well as provides 

protection against bias and loss of efficiency when the external summary-level information 

and internal data gives evidence of differences in the covariate distributions. A bootstrap 

procedure can be easily implemented to approximate the standard errors of our EB 

estimator, since computationally, all estimators are quickly obtained via a simple Newton-

Raphson procedure. In Web Table 6, we show that the bootstrap standard errors approximate 

the Monte Carlo standard deviations in both the linear and logistic regression setting. 

Although the transportability of (Y, X, Z) is not directly testable since information on Z in 

the external population is not available, our method uses available evidence against the 

assumption of a transportable covariate distribution by focusing on the conditional 

distribution of Y given X in both the internal and external populations.

It is important when borrowing information from external data sources that the researcher 

carefully evaluates the target population of interest, and whether or not there is evidence 

supporting heterogeneity in the distributions of covariates between populations which can 

make establishing a well defined and valid population of interest challenging. We suspect it 

will often be the case in practice (as seen in our data application) that internal and external 

data sources may exhibit heterogeneity, in which case, the researcher will need to carefully 

decide whether or not the external population, internal population or a broader population 

encapsulating both the internal and external populations is the target population of interest.

In our data application, we found that incorporating external information using CML 

reduced prediction error in the validation data but largely increased prediction error in the 

internal data set and modestly increased prediction error in the combined data sources. 

However, our EB estimators provided protection against increasing prediction error. Our 

simulation studies suggest that EBP1 and EBP2 achieves slight gains in estimation error 

over EB when the assumption of transportability holds, but at the cost of protection when the 

assumption does not hold. We therefore recommend, in the case that the external 

information is viewed to be completely auxiliary, and the internal data is a random sample 

from the target population, to use our EB estimator. In the event that only predicted 

outcomes from the external data source are available along with some measure of 

uncertainty, then EBP1 and EBP2 would be the candidates of choice since it would not be 

possible to use the EB estimator in this case. Our simulation studies suggest that EBP2 

achieves slight gains in estimation error over EBP1 when the assumption of transportability 
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holds, but at the cost of protection when the assumption does not hold. We therefore 

recommend EBP1 over EBP2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 

Box plots of absolute estimation error defined by (a),(b),(d),(f) ME, r − WE, r
T β| and (a),(c),

(e),(g) MI, r − WI, r
T β  based on r = 1,...,1000 simulation runs in the standard linear regression 

settings I (a), II (b and c), III (d and e), IV (f and g) specified in Table 1 with full model (12) 

and reduced model (14) where WE, r
T  is a covariate vector drawn from the external 

population, WI, r
T  is drawn from the internal population, ME, r and MI, rare estimates of the 

conditional mean of Y given (X, Z) in the external and internal populations respectively 
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resulting from maximum likelihood (LR), our empirical Bayes estimators EB, EBP1, and 

EBP2 or the constrained maximum likelihood estimator CML.
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Fig. 2. 

Box plots of absolute estimation error defined by (a),(b),(d),(f) ME, r − g−1 WE, r
T β  and (a),

(c),(e),(g) MI, r − g−1 WI, r
T β  based on r = 1,...,1000 simulation runs in the standard logistic 

regression settings I (a), II (b and c), III (d and e), IV (f and g) specified in Table 1 with full 

model (12) and reduced model (14) where WE, r
T  is a covariate vector drawn from the 

external population, WI, r
T  is drawn from the internal population, ME, r and MI, r are estimates 

of the conditional mean of Y given (X, Z) in the external and internal populations 
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respectively resulting from maximum likelihood (LR), our empirical Bayes estimators EB, 

EBP1, and EBP2 or the constrained maximum likelihood estimator CML.
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Table 1

Distributions specified in our simulation settings.

Linear Regression

Setting Population Distribution

  I External
Internal

(X,Z) ~ N{(0, 0), [1, .3; .3, 1]}
(X,Z) ~ N{(0, 0), [1, .3; .3, 1]}

  II External
Internal

(X,Z) ~ N{(0, .25), [1, .3; .3, 1]}
(X,Z) ~ N{(0, 0), [1, .3; .3, 1]}

  III External
Internal

X ~ N(.25, 1), Z | X ~ N(−1 + .5X, 1)
X ~ N(0,1), Z | X ~ N(−1 + .5X, 1)

  IV External
Internal

X ~ N(0,1), Z | X ~ N(−1 + .5X, 1)
X ~ N(0,1), Z | X ~ N(−1 + .25X, 1)

Logistic Regression

Setting Population Distribution

  I External
Internal

(X, Z) ~ N{(0, 0), [1, .3; .3, 1]}
(X,Z) ~ N{(0, 0), [1, .3; .3, 1]}

  II External
Internal

(X, Z) ~ N{(0, .5), [1, .3; .3, 1]}
(X,Z) ~ N{(0, 0), [1, .3; .3, 1]}

  III External
Internal

X ~ N(.5,1), Z | X ~ N(−1+ X, 1)
X ~ N(0,1), Z | X ~ N(−1+ X, 1)

  IV External
Internal

X ~ N(0,1), Z | X ~ N(−1+ X, 1)
X ~ N(0,1), Z | X ~ N(−1 + .5X, 1)
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Table 2

Simulation results. Estimated bias, standard deviation (SD) and mean squared error (MSE) of parameter 

estimates in linear regression settings I, II, III and IV specified in Table 1 with full model (12) and reduced 

model (14) based on 1000 simulation runs. LR denotes the maximum likelihood estimates of (12) fitted to the 

internal data, EB denotes our empirical Bayes estimator defined in (4) and CML denotes the constrained 

maximum likelihood estimator proposed in Chatterjee at al. (2016).

BIAS SD MSE

Setting Method β0 β1 β2 β0 β1 β2 β0 β1 β2

LR .002 .001 .006 .192 .199 .198 .037 .039 .039

I EB .001 .005 .004 .154 .161 .198 .024 .026 .039

CML .000 .007 .012 .104 .115 .198 .011 .013 .039

LR −.001 .005 .003 .192 .194 .195 .037 .038 .038

II EB .054 .018 −.049 .195 .184 .197 .041 .034 .041

CML .700 −.036 .064 .106 .119 .196 .501 .015 .043

LR −.015 −.011 .012 .267 .209 .191 .072 .044 .037

III EB −.016 −.009 .010 .242 .176 .191 .059 .031 .037

CML −.027 −.009 .017 .222 .142 .191 .050 .020 .037

LR −.013 .007 .003 .273 .197 .195 .075 .039 .038

IV EB .041 .079 −.050 .267 .193 .197 .073 .043 .041

CML −.064 .681 .062 .229 .127 .198 .056 .480 .043
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Table 3

Simulation results. Estimated bias, standard deviation (SD) and mean squared error (MSE) of parameter 

estimates in the logistic regression settings I, II, III and IV specified in Table 1 with full model (12) and 

reduced model (14) based on 1000 simulation runs. LR denotes the maximum likelihood estimates of (12) 

fitted to the internal data, EB denotes our empirical Bayes estimator defined in (4) and CML denotes the 

constrained maximum likelihood estimator proposed in Chatterjee at al. (2016).

BIAS SD MSE

Setting Method β0 β1 β2 β0 β1 β2 β0 β1 β2

LR −.001 −.002 .007 .074 .081 .080 .005 .007 .006

I EB −.005 −.006 .007 .056 .064 .080 .003 .004 .006

CML −.017 −.019 .007 .021 .032 .080 .001 .001 .006

LR −.004 −.004 −.002 .075 .079 .079 .006 .006 .006

II EB .016 −.003 −.002 .078 .074 .079 .006 .005 .006

CML .236 .009 −.002 .021 .032 .079 .056 .001 .006

LR .001 −.004 .006 .104 .116 .085 .011 .013 .007

III EB .002 −.003 .006 .089 .103 .085 .008 .011 .007

CML .002 −.002 .006 .064 .085 .085 .004 .007 .007

LR .003 −.012 .007 .101 .094 .083 .010 .009 .007

IV EB .002 .011 .007 .096 .097 .083 .009 .010 .007

CML −.009 .235 .008 .062 .049 .083 .004 .057 .007
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Table 4

Sum of squared errors (SSE) and area under the receiver-operator curve (AUC) in the internal, validation and 

both data sets using standard logistic regression (LR), empirical Bayes estimates EB, EBP1 and EBP2 defined 

in Section 2.3, constrained maximum likelihood (CML), the prediction model proposed in Tomlins et al. 

(2016) (TOM) and the Prostate Cancer Prevention Trial Risk Calculator (PCPTrc).

Internal Validation Int+ Val

Method SSE AUC SSE AUC SSE AUC

LR 104.326 0.799 167.436 0.786 271.762 0.787

EB 104.333 0.799 167.063 0.786 271.396 0.787

EBP1 104.850 0.797 164.405 0.786 269.256 0.787

EBP2 104.769 0.797 164.803 0.785 269.571 0.786

CML 119.828 0.783 157.211 0.782 277.039 0.781

TOM 108.737 0.780 165.865 0.776 274.603 0.775

PCPTrc 133.545 0.687 170.040 0.707 303.586 0.698
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