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Abstract

Pharmacodynamic drug-drug interactions (DDIs) occur when the pharmacological effect of one 

drug is altered by that of another drug in a combination regimen. DDIs often are classified as 

synergistic, additive, or antagonistic in nature, albeit these terms are frequently misused. Within a 

complex pathophysiological system, the mechanism of interaction may occur at the same target or 

through alternate pathways. Quantitative evaluation of pharmacodynamic DDIs by employing 

modeling and simulation approaches is needed to identify and optimize safe and effective 

combination therapy regimens. This review investigates the opportunities and challenges in 

pharmacodynamic DDI studies, and highlights examples of quantitative methods for evaluating 

pharmacodynamic DDIs, with a particular emphasis on the use of mechanism-based modeling and 

simulation in DDI studies. Advancements in both experimental and computational techniques will 

enable the application of better, model-informed assessments of pharmacodynamic DDIs in drug 

discovery, development, and therapeutics.
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Introduction

Drug-drug interactions (DDIs) occur when one drug alters the activity of another drug. Drug 

interactions may be both pharmacokinetic (PK) and pharmacodynamic (PD) in nature. In a 

recent assessment of DDIs from a de-identified electronic medical records system, 

prescribed pharmacotherapy regimens contained an average of 6.58 medications that had the 

potential to cause an average of 2.68 drug-drug interactions1. In contrast to PK interactions, 

which result from one drug altering the absorption, distribution, metabolism or elimination 

(ADME) of another, PD DDIs arise when the pharmacological effect of one drug is affected 

by that of another. PD DDIs are typically categorized as synergistic, additive, or 

antagonistic, although these terms are often used inappropriately. The definition of additivity 

is that the overall effect caused by a drug combination is the sum of the pharmacological 
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effects of each individual agent in the combination. Synergy occurs when the overall effect 

of the drug combination is greater than additive, and antagonism occurs when the drug 

combination effect is less than additive. PD DDIs can be beneficial and employed 

deliberately, or adverse and unintended. For example, in cancer chemotherapy regimens, 

folinic acid is used in combination with 5-fluorouracil (5-FU) to enhance 5-FU inhibition of 

thymidylate synthase, resulting in synergistic cytotoxicity against cancer cells2. In a 

contrasting example, combining angiotensin converting enzyme (ACE) inhibitors with 

thiazide diuretics for hypertension may cause excessive diuresis and hypotension3.

Compared to the relatively well-defined guidance for the evaluation of PK DDIs in drug 

development4, PD DDIs studies lack a formal paradigm for evaluation. This situation results 

partly from the fact that most PD DDI investigations are limited to high-throughput in vitro 
screening studies. They are less commonly tested in vivo, in animal models or clinical trials, 

in which complex, pathophysiological, systems-level interactions can occur. The lack of 

definitive investigation for PD DDIs in complex systems creates knowledge gaps and 

residual uncertainties as to the translational impact of PD DDIs identified during drug 

discovery and development. Mechanism-based- and quantitative systems pharmacology 

(QSP) modeling can be used to predict and design novel combinatorial regimens and to 

assess the clinical significance of PD interactions. Despite a lack of formal guidance, there is 

an increasing need for PD DDI studies employing enhanced mathematical modeling 

strategies to assist interpretation of data, guidance of future research, and clinical and 

regulatory decision making.

The need for pharmacodynamic drug-drug interaction studies

Combination therapies are used widely in areas such as infectious disease, cancer, and 

cardiovascular diseases. One successful example is the highly active antiretroviral therapy 

(HAART) combination treatment that is often prescribed to patients with human 

immunodeficiency virus (HIV) or Acquired Immuno-Deficiency Syndrome. HAART 

regimens were designed to achieve substantial suppression of viral load by 

pharmacologically inhibiting virus entry, reverse transcription, integration, gene 

transcription, and replication, and these multiple objectives were achieved using different 

classes of drugs5. In this example, PD DDI studies can elucidate how the different drugs 

affect the virus-host interactions alone and in combination, demonstrate how mathematical 

models can be used to optimize current regimens6,7 and assist in the design of new 

combination therapies to decrease mortality from HIV infection. Another example of the 

utility of PD interaction studies is the design of sequential regimens for cell cycle-dependent 

anti-cancer drugs. The sequence in which exposure to multiple chemotherapy drugs occurs 

can be important for achieving enhanced killing of cancer cells and/or reducing drug-

induced toxicity8. In one example, ex vivo studies have shown that when leukocytes 

obtained from patients treated with a taxane (paclitaxel or docetaxel) were subsequently 

incubated in vitro with a platinum agent (cisplatin), both cellular accumulation of cisplatin 

and the formation of platinum-DNA adducts decreased in these cells9. Moreover, clinical 

studies showed that patients experienced less hematopoietic toxicity when treated with 

paclitaxel/carboplatin compared to carboplatin alone8,10. However, tumor response rates 

were also lower in non-small-cell lung cancer patients receiving docetaxel before 
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carboplatin, compared to the reverse schedule11. No differences were found in the clearance 

of carboplatin or docetaxel with either administration schedule11. A possible explanation of 

these observations is that the platinum agents induce strong S-phase arrest and cytotoxicity, 

whereas the taxanes induce arrest in M-phase. By reducing the intracellular concentration of 

cisplatin, the taxane pre-treatment would reduce platinum-DNA adduct formation, and also 

reduce the toxicity of the platinum-DNA adducts when the cancer cells transition out of S-

phase into an M-phase block, and fail to exit mitosis in that cell cycle9. Another interesting 

example is that concurrent paclitaxel/carboplatin exposure, in contrast to sequential taxane/

platinum exposure, was found to enhance the formation of carboplatin-DNA adducts in 

bladder urothelial carcinoma cells12. Mechanism-based PD DDI studies, coupled with 

PK/PD modeling, could provide consistent mechanistic explanations for apparently 

contradictory findings obtained from different temporal drug regimen designs applied in 

different biological systems.

Mathematical modeling and simulation in PD DDI studies provides a quantitative 

framework to evaluate the design of therapeutic combinations or dosing regimens. With this 

strategy, the contribution of each drug in a combination can be quantified, e.g., by estimating 

the potency of individual drugs, and then the information on single drug effects can be used 

to determine whether a combination or temporally-optimized regimen adds clinical value. 

The characteristics of a pharmacodynamic DDI can be represented quantitatively in a model 

by including an empirical parameter that compares the observed magnitude of effect of a 

combination to the effect expected if the interaction were purely additive. With appropriate 

mechanistic, pathophysiological system models, the sources of DDIs can be investigated at 

the level of biological signaling and response pathways to provide greater insight into the 

mechanism(s) of PD interaction.

Challenges in PD DDI studies

One of the primary challenges in the assessment of PD DDIs is a lack of knowledge of the 

detailed mechanism(s) of action and exposure-response relationships for each drug 

individually. For example, after more than a century of use, the exact mechanisms of action 

for aspirin are still being identified13. Traditional chemotherapeutic agents that are not 

molecularly targeted to specific effector pathways tend to be promiscuous; they often exhibit 

non-specific pharmacological effects, which further complicates the prediction of PD DDIs 

based on first principles. However, ‘omics technologies combined with bioinformatics hold 

the potential for providing new insights into mechanisms of drug action, and PD DDI studies 

at a detailed molecular level can reveal new targets or pathways underlying the effects of 

established drugs14–16.

Biological systems are highly regulated networks that are rich in redundancies and feedback 

loops. DDIs may result from direct action of each agent at a pharmacological target, or the 

effect of one drug could be altered by another drug through interaction at any node within 

the larger network. Therefore, a consideration of the complexity of the biological or 

pathophysiological system is necessary to understand PD DDIs. For example, a solid tumor 

consists of malignant cancer cells that are often heterogeneous in their genetic mutational 

burden and activity of signal transduction pathways, and the tumor cells are enveloped in the 
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surrounding tumor microenvironment, which includes blood and lymphatic vessels, 

infiltrating immune cells, supporting stromal cells, and the extracellular matrix. All of these 

components interact with each other; the tumor-associated cellular components engage in 

autocrine and paracrine signaling networks, and interact with the extracellular matrix 

exerting its effects on tumor and stromal cell behavior17,18. In one example, a sequential 

regimen consisting of sustained EGFR inhibition by erlotinib, followed by the DNA-

damaging agent doxorubicin, sensitized a subset of triple-negative breast cancer cells to 

genotoxic drugs through rewiring of oncogenic signaling pathways19. However, 

simultaneous co-administration did not. One reasonable strategy for designing therapeutic 

combinations having enhanced efficacy would combine a chemotherapeutic agent with drugs 

that target the tumor microenvironment. Examples already investigated include drug 

combinations of angiogenesis inhibitors20 or immuno-oncology agents21 combined with 

chemotherapy. Signaling crosstalk within the tumor microenvironment is important for 

tumor progression, metastasis, and response to treatments17,18. However, the operant 

mechanisms of tumor-microenvironment crosstalk are not well elucidated, owing, in part, to 

limited experimental methods for quantifying the spatiotemporal dynamics of inter- and 

intracellular signaling networks in each cell type, i.e., for determining how the 

concentrations of molecular components change as a function of time and cellular location. 

Single-cell technologies may provide an improved platform for exploring mechanisms of 

cell-cell communication and provide clues as to the existence of important signaling 

networks affecting concentration- and time-dependent responses in cell populations22. 

Improved characterization of the complex interplay between drugs and biological systems 

will help identify new targets of beneficial PD DDI and inspire novel combinatorial 

regimens.

Although knowledge of beneficial PD DDIs could be used to optimize therapeutic outcomes, 

they are tested infrequently in animal models and clinical trials. The practical considerations 

in the design and evaluation of DDIs empirically include both feasibility and cost. Even in 

preclinical studies, such studies typically require assessment of multiple dose levels for each 

drug, alone and in different combination ratios23. Additionally, the evaluation of PD DDIs 

often relies on target- or mechanism-based PD biomarker(s) that reflect the mechanisms of 

action and intended activities of the drugs. Unlike diagnostic, prognostic, or predictive 

biomarkers, a target-based biomarker may not be indicative of clinically meaningful 

effects24,25. This limits the utility of some biomarkers in clinical research, and can result in a 

lack of reliable measurements for evaluating PD DDIs. In general, both target- and 

mechanism-based PD biomarkers are important for decision making, particularly for early 

clinical development of targeted cancer therapies. For example, in a phase II study of 

patients with metastatic colorectal cancer, phosphorylated EGFR (Epidermal Growth Factor 

Receptor) and phosphorylated ERK (Extracellular Signal-Regulated Kinase) in tumor tissues 

served as PD biomarkers, and the trial observed that they were reduced significantly in 

response to erlotinib, an EGFR tyrosine kinase inhibitor26. A typical clinical question is 

whether a new combination is better than the current standard of care, and studies of this 

nature often do not address directly the existence or nature of any underlying PD DDIs. 

However, the evaluation of PD DDIs ought not to be overlooked in clinical drug 

development, because greater insight into mechanisms of drug action could be used to 
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design drug combinations having improved efficacy and/or reduced toxicity. Coupling 

mechanism-based models and appropriate quantitative translational techniques with the 

investigation of clinically meaningful PD response biomarkers is an approach that could 

reduce the numbers of animals, patients, or reduce treatment cohorts required in PD DDI 

drug combination studies, so that they become cost-effective for investigation.

Quantification methods for PD DDIs

A broad spectrum of mathematical modeling approaches has been used to understand PD 

DDIs (Figure 1). Empirical models are more common for in vitro screening, and receptor 

binding models can be used to determine whether interactions are synergistic, additive, or 

antagonistic. Such empirical assessments are used less frequently when PD evaluations 

transition to animal and clinical studies. At the in vitro-in vivo interface, conceptual- and 

physiologically-based PK/PD models play a greater role in characterizing the responses to 

combination regimens. Notably, quantitative systems pharmacology models can be used 

across all phases, scales, and biological systems, and can be used in a complimentary 

manner with both empirical and mechanism-based PK/PD models to provide greater insights 

into the mechanisms of PD DDIs.

Empirical evaluations

PD DDIs are more commonly studied with in vitro screens that seek to identify drug 

combinations having increased efficacy. For example, the NCI ALMANAC (A Large Matrix 

of Anti-Neoplastic Agent Combinations) study screened more than 5000 pairs of 2-drug 

combinations in 60 well-characterized human cancer cell lines27. This study applied a metric 

called the “ComboScore” to evaluate the nature of the interactions. The ComboScore was 

calculated as the sum of the difference between the expected versus observed cell growth 

fractions (Eq 1). The expected growth was assumed to conform to one of two conditions: (i) 

as low as the remaining cell number after cells were exposed to the more cytotoxic drug, or 

(ii) would equal the product of the two unaffected cell growth fractions in response to the 

two cytostatic agents (Eq. 3).

ComboScorei
AB = ∑p, q Predi

ApBq − Obsi
ApBq Eq 1

Obsi
ApBq = 100 ×

T1
ApBq − T0
T1

0 − T0
Eq 2
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Predi
ApBq =

min (Obsi
Ap, Obsi

Bq), if Obsi
Ap ≤ 0 or Obsi

Bq ≤ 0

1
100 Obsi

Ap × Obsi
Bq otherwise

Eq 3

Obsl = min Obsi, 100 Eq 4

with Predi
ApBq representing the expected growth fraction of the ith cell line exposed to the pth 

concentration of drug A and qth concentration of drug B; Obsi
ApBq represents the observed 

growth fraction under the same conditions; T0 is the time zero endpoint measurement of 

total cell number; T1
ApBq represents the endpoint measurement after 2-day drug exposure; T1

0

represents the endpoint measurement for the untreated control group after 2 days; Obsi
Ap and 

Obsi
Bq represent the observed growth fractions when exposed to drug A or drug B 

individually, and each is capped at 100 so that the effect of apparent drug stimulation of 

growth is neglected. A positive ComboScore indicates greater-than-additive activity, whereas 

a negative score suggests less-than-additive activity. This comprehensive screening study 

identified 1898 drug pairs having greater-than-additive activity in at least one cell line, and 

concluded that some combinations could be promising for further evaluation in tumor 

xenograft models and clinical trials.

In a fashion similar to the ALMANAC project, numerous in vitro screening studies are 

conducted to evaluate the potential of drugs for stimulation or inhibition of enzyme 

activities, microorganisms, or cancer cells. The first step in conducting a PD DDI study is 

the quantitative assessment of single-agent effects. The Hill or sigmoidal Emax function is 

used widely to characterize the dose- or concentration-response curve for each drug 

individually. For example, the expression of an inhibitory Hill equation is:

R = R0 × 1 −
Imax × Cγ

Cγ + IC50
γ , Eq 5

with R as the outcome (e.g., the number of live cells remaining in response to a cytotoxic 

drug), R0 is the outcome in the control group, C is the drug concentration, Imax represents 

the inhibition capacity of the drug, which ranges from 0 to 1, IC50 is the drug concentration 

producing 50% of Imax, and γ is the Hill coefficient that governs the steepness of the 

concentration-response curve. The fraction of unaffected cells remaining after drug exposure 

(fu), compared to a vehicle control group, is a typical endpoint measured in cell proliferation 

assays. It can be derived as:
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f u = R
R0

= 1 −
Imax × Cγ

Cγ + IC50
γ = 1 −

Imax × C
IC50

γ

C
IC50

γ
+ 1

. Eq 6

After quantitative characterization of single-drug effects, the second step is to evaluate the 

drugs in combination. There exist various approaches to this assessment; the fundamental 

process is to compare the outcome of a reference treatment with the null hypothesis, 

expecting no interaction, (i.e., additive interaction). The most widely accepted functions to 

define “no interaction” are Loewe additivity28 and Bliss independence29. These two methods 

differ in their underlying assumptions, and there is no consensus as to which reference 

method is superior overall. Loewe additivity assumes the drugs have similar mechanisms of 

action, or compete for the same binding site30. As such, this method is recommended when 

two drugs share the same Imax and γ, and differ only in their IC50 values (i.e., have parallel 

concentration-response curves)31. The prediction of the unaffected cell growth fraction from 

Loewe additivity can be expressed as:

f u, 1 + 2 = 1 −
Imax ×

C1
IC50, 1

+
C2

IC50, 2

γ

C1
IC50, 1

+
C2

IC50, 2

γ
+ 1

, Eq 7

with C1 and C2 representing the concentrations of drugs 1 and 2 in a combination that 

achieve 50% of Imax, (i.e., 50% of the inhibition of cell proliferation compared to untreated 

controls), and IC50,1 and IC50,2 represent the concentrations of drugs 1 and 2 as single 

agents that are required to achieve growth inhibition that is 50% of Imax. The combination 

index (CI)27, which can reflect the nature of a DDI, is defined as:

CI =
C1

IC50, 1
+

C2
IC50, 2

, Eq 8

A CI less than 1 indicates synergy, and values larger than 1 suggest antagonism. Loewe 

additivity can be visualized using an isobologram, as shown in Figure 2A. If the 

combination that achieves 50% inhibition is plotted as a point (
C1

IC50, 1
,

C2
IC50, 2

), and this point 

lies below the Loewe additivity line (a straight line that connects (
C1

IC50, 1
, 0) and (0,

C2
IC50, 2

)), 

then the combination is Loewe synergistic. If the point lies above the Loewe additivity line, 

it is antagonistic. In a special case, if C1 and C2 are concentrations of the same drug, then 

Loewe additivity predicts that the response to the combination of C1 and C2 equals the 

response to this drug at the concentration of C1 + C2.
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Bliss independence assumes independent mechanisms of drug action, or a non-competitive 

interaction32, such that the combined outcome equals the product of the outcome from each 

drug alone. It is expressed as:

f u, 1 + 2 = f u, 1 × f u, 2 = 1 −
Imax, 1 ×

C1
IC50, 1

γ1

C1
IC50, 1

γ1
+ 1

× 1 −
Imax, 2 ×

C2
IC50, 2

γ2

C2
IC50, 2

γ2
+ 1

. Eq 9

and when Imax,1 = Imax,2 = 1 then

f u, 1 + 2 = 1 −

C1
IC50, 1

γ1
+

C2
IC50, 2

γ2
+

C1
IC50, 1

γ1
×

C2
IC50, 2

γ2

1 +
C1

IC50, 1

γ1
+

C2
IC50, 2

γ2
+

C1
IC50, 1

γ1
×

C2
IC50, 2

γ2
. Eq 10

Thus, the CI for Bliss independence is:

CIBl =
C1

IC50, 1

γ1
+

C2
IC50, 2

γ2
+

C1
IC50, 1

γ1
×

C2
IC50, 2

γ2
. Eq 11

If the observed unaffected growth fraction (e.g., the number of proliferating cells after 

treatment compared to untreated control) is less than the predicted unaffected fraction fu,1+2, 

then the interaction is considered Bliss synergistic. If the observed unaffected fraction is 

greater than predicted, the interaction is antagonistic. The Bliss independence method can be 

applied to drugs that have non-parallel concentration-response curves (e.g., different Imax 

and/or γ values). In contrast to the straight Loewe additivity line, when the Bliss 

independence line is plotted on an isobologram, it may have various shapes depending on 

the values of γ1 and γ2
33. Two examples of Bliss independent combinations on an 

isobologram are shown in Figure 2B (with Imax,1 = Imax,2 = 1 and γ1 = γ2 = 1) and in Figure 

2C (with Imax,1 = Imax,2 = 1, γ1 = 0.5 and γ2 = 1). Paradoxically, if C1 and C2 are different 

concentrations of the same drug, then the Bliss independence method may predict an 

outcome in response to the combination of C1 and C2 that is different from the additive case 

of C1 + C2. The general reference model used in the ALMANAC project27 was a modified 

version of the Bliss independence model.

A direct comparison of experimental observations with a prediction based on the assumption 

of no theoretical interaction could yield a conclusion of synergy or antagonism. However, a 

non-interaction prediction relies solely on the single-agent concentration-response curves, 

and neglects all information obtained from observation of the outcomes of combination 

treatments. To utilize data for both single and combined agents, Greco and colleagues 
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proposed a universal response surface approach to fit all data simultaneously33. An 

interaction term (e.g., α or ψ) is introduced to quantify the interaction in the combination 

group(s). This method is flexible and can be used to characterize Loewe additivity, Bliss 

independence, and other interaction models. For example, the application to Loewe 

additivity with parallel concentration-response curves can be expressed as:

1 =
C1

IC50, 1 ×
1 − f u, 1 + 2

Imax + f u, 1 + 2 − 1

1/γ +
C2

IC50, 2 ×
1 − f u, 1 + 2

Imax + f u, 1 + 2 − 1

1/γ

+
αC1C2

IC50, 1IC50, 2 ×
1 − f u, 1 + 2

Imax + f u, 1 + 2 − 1

1/γ ,

Eq 12

in which a positive α value indicates Loewe synergism and a negative value indicates 

antagonism. The extension of the response surface method to Bliss independence or non-

competitive interaction34 can be expressed as:

f u, 1 + 2 = 1 −
Imax, 1 ×

C1
IC50, 1

γ1

C1
IC50, 1

γ1
+ 1

× 1 −
Imax, 2 ×

C2
IC50, 2 × ψ

γ2

C2
IC50, 2 × ψ

γ2
+ 1

, Eq 13

with a ψ value less than 1 indicating Bliss synergism, and a value greater than 1 indicating 

antagonism. An illustration of a synergistic interaction between two drugs identified by the 

response surface method assuming Bliss independence is shown in Figure 3. The principles 

of the response surface method also can be applied to indirect response models35, and 

additional detailed mathematical expressions have been described36. Zhu and colleagues 

used the response surface method in conjunction with an indirect response model of cell 

growth kinetics37 in a study of pancreatic cancer cells exposed to the combination of 

gemcitabine, a cytotoxic agent, and birinapant, a pro-apoptotic SMAC (Second 

Mitochondria-derived Activator of Caspases) mimetic. The analysis identified synergistic 

inhibition of cell growth and synergistic induction of cell death as the drug interaction 

mechanisms.

Another important aspect of PD DDIs is the analysis of temporal interactions between drugs, 

in which the sequential exposure to drugs may elicit a greater or lesser response as compared 

with simultaneous treatment. The response surface method can be extended to compare drug 

interactions in different sequential combination regimens. For example, an additional 

parameter, μ, can be introduced into Eq 13 as:
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f u, 1 + 2 = 1 −
Imax, 1 ×

C1
IC50, 1

γ1

C1
IC50, 1

γ1
+ 1

× 1 −
Imax, 2 ×

C2
IC50, 2 × ψ × μ

γ2

C2
IC50, 2 × ψ × μ

γ2
+ 1

, Eq 14

to characterize the temporal interaction in a sequential dosing regimen compared to 

simultaneous exposure38. A μ value less than 1 indicates a synergistic inhibition when drugs 

are given in a specific order compared to simultaneous exposure. This method was used to 

demonstrate that a sequence of bortezomib exposure for 24 hours, followed by vorinostat for 

an additional 24 hours, resulted in synergistic cytotoxic effects against the U266 human 

multiple myeloma cell line38.

There are numerous other methods available to characterize PD drug interactions in an 

empirical manner. For example, Jilek and colleagues defined “Degree of Independence” (DI) 

as the ratio of the difference between experimental observations and predicted Loewe 

additivity versus the difference between Bliss independence and Loewe additivity. For 

example, DI =
FE − FL
FB − FL

, where F represents the logarithmic measure of inhibition: log [(1 − 

fu) / fu], and E, B, and L represent experimental observation, Bliss independence, and 

Loewe additivity. This approach was applied to analyze combinations of anti-HIV drugs 

from different classes6. Zhao and colleagues derived expressions of “zero-interactivity” for 

different types of nonparallel concentration-response relationships, added the experimental 

uncertainties to form an “Uncertainty Envelope”, and compared the predicted range of this 

reference envelope to observations31. Zimmer and colleagues modified the Bliss 

independence technique by applying a concentration-dependent, Michaelis–Menten-like 

term on the effective concentration of each drug39. Some of these methods sought to provide 

new metrics that included statistical assessments of PD DDI studies31, and others were 

developed to characterize interactions in drug combinations of higher dimensionality than 

pairs of drugs6,39.

A common drawback of empirical methods for evaluating the nature of DDIs is that it is 

difficult to predict whether the interactions identified from studying 2-drug pairs are relevant 

to combinations of 3 or more drugs. For example, Molins and Jusko conducted a 

comprehensive evaluation of interactions among gemcitabine, paclitaxel, and trifluoperazine 

in pancreatic cancer cells, and found that the overall interaction to the 3-drug combination 

ranged from additive to synergistic, despite an apparent antagonism between the paclitaxel 

and trifluoperazine pair40. In another example, Zimmer and colleagues found a hierarchy of 

interactions among antibiotics, and accurately predicted the DDIs in six triplet- and two 

quadruplet combinations39. However, mechanisms of drug interaction(s) may differ among 

2-drug pairs, and this is not considered in the empirical methods. Therefore, it may be 

implausible to search for a universal empirical method to predict DDIs accurately in higher 

dimensional combinations based solely on analysis of drug pairs.
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In order to apply the empirical methods, high-throughput screening often is employed to 

provide rich datasets that capture concentration-response relationships for drugs as single 

agents and combined in different concentration ratios, and this rich data enables robust 

predictions as to the nature of drug interaction. However, when testing the efficacy of drug 

combinations in animal models or in patients, it is not feasible to obtain such rich data. More 

frequently, the clinical question is simply whether a combination is better than a single 

agent. In such situations, the limited data does not allow for robust testing of the nature of 

the drug interaction, nor for making projections of optimal exposures. This represents a 

major shortcoming of empirical modeling of DDIs, and makes the case for alternative 

approaches for DDI investigation that can bridge the preclinical-clinical interface, such as 

mechanism-based and systems pharmacology modeling.

In smaller-scale studies, such as is common in animal-based- or clinical research , the terms 

“additive” and “synergistic” are often misused23. Frequently they are used to describe an 

“enhancement” of effect suggested by a statistically greater response to a drug combination 

as compared to monotherapy. The misuse of “synergy” is especially common in oncology 

studies when tumor volume- or survival responses to a combination are compared to 

monotherapy or standard-of-care. The beneficial effect of a combination regimen can be the 

result of (i) pharmacodynamic interactions that are indeed additive or synergistic, or (ii) 

independent drug action without interactions, in which a patient responds to either drug as a 

single agent, and so the combination provides a greater probability of effective treatment41. 

Independent drug action and patient-to-patient variability in drug responsiveness can explain 

many of the combination benefits in cancer clinical trials and in xenograft models, with 

relatively few exceptions in which the combination therapy benefit exceeds independent 

drug action, and appears to exert additivity or synergy41. The usual analysis approaches for 

analyzing independent drug action include the highest single agent (HSA) method42 or 

Gaddum’s non-interaction43. By definition, these methods assume that the expected 

combination effect is the maximum or the best of the single-agent responses at equivalent 

concentrations. The HSA method is useful when a single drug dose is tested, and the same 

dose is used in the drug combination.

Mechanism-based PK/PD Modeling

Whereas empirical methods are useful for analyzing screening studies and identifying 

promising combinations for future testing, they do not provide insights into the mechanisms 

of action or interaction among drugs in a combination. Therefore, it is difficult to translate 

empirically-identified interactions directly to pre-clinical or clinical settings. In contrast, 

mechanism-based PK/PD models can characterize quantitatively the single-agent- and 

combined effects of drugs upon physiological or pathological systems. Modeling and 

simulations based on a mechanistic PK/PD model offer opportunities to compare different 

dosing regimens in patient populations and subpopulations, translate results across the stages 

of drug research and development, and explain non-intuitive treatment effects observed with 

combination therapies. For example, when ibuprofen was administered daily with aspirin, 

the aspirin-mediated inhibition of platelet aggregation was reported to be blocked44. The 

mechanism of this antagonistic interaction was characterized quantitatively using a nonlinear 

mixed effect (population) model that included the turnover of the drug target 
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cyclooxygenase-1 (COX-1) according to a zero-order rate constant for COX-1 production 

and a first-order process for its degradation (Figure 4)45. In the model, aspirin induces a 

second-order, concentration-dependent, irreversible inhibition of COX-1. Ibuprofen is 

assumed to form a complex with COX-1 through reversible binding. A key mechanism was 

the assumption that the ibuprofen/COX-1 complex is protected from aspirin-induced 

inactivation. Platelet aggregation was modeled as being (i) proportional to total COX-1 

enzyme content and (ii) regulated by ibuprofen. Simulations with the model showed that 

regular co-administration of aspirin and ibuprofen, or administration of ibuprofen 2 hrs 

before aspirin, would compromise the anti-platelet function of aspirin. This mechanism-

based PK/PD model thus provided a quantitative basis for recommending only intermittent 

administration of ibuprofen (or other NSAIDs) in order to preserve the anti-platelet function 

of aspirin.

The treatment of antimicrobial infections is a therapeutic area that relies on multi-drug 

combinations, and mechanism-based PK/PD modeling has been used to optimize 

combinatorial antibiotic regimens. Bulitta and colleagues developed a mechanism-based 

model to describe the anti-bacterial effects of tobramycin, an aminoglycoside antibiotic, on a 

clinical isolate of Pseudomonas aeruginosa46. The bacterial population was defined as a 

mixture of 3 subpopulations having different susceptibilities to the antibiotic. Two 

mechanisms of tobramycin-induced killing were included: (i) immediate killing as a result 

of bacterial outer membrane disruption, and (ii) delayed killing resulting from the synthesis 

of bacterial lethal protein. This model was adapted subsequently for other Gram-negative 

bacteria such as Acinetobacter baumannii47 and used to characterize the synergistic 

interaction between β-lactam antibiotics (imipenem or meropenem) and aminoglycosides 

(tobramycin or gentamicin)48–50. The synergy was concluded to arise from enhanced 

penetration of the β-lactam to its molecular target site as a result of outer membrane 

disruption by the aminoglycosides. A PD DDI model, based on the in vitro evaluation of 

bacterial killing using a hollow-fiber infection model system51, was translated in vivo to a 

murine thigh infection model52 and to patients53 simply by integrating the PK models of the 

antibiotics in those species. Simulations with the PK/PD model suggested that the 

continuous infusion of a high-dose β-lactam combined with an aminoglycoside would 

constitute a promising regimen for optimal bacterial killing without regrowth. Simulations 

with the model were also used to optimize the dosing regimen in patients having altered 

renal clearance and atypical PK profiles54.

PK/PD modeling can be applied successfully to the PD DDIs that occur when a drug 

interacts with both endogenous substances and complex physiological control systems that 

have been perturbed by pathological processes. For example, diabetes medications are given 

in an attempt to normalize glucose concentrations, which can vary significantly owing to 

food intake and the endogenous, disease-altered glucose-insulin system. Silber and 

colleagues developed an integrated model for the glucose-insulin system in both healthy 

volunteers and patients with type 2 diabetes mellitus (T2DM)55, in which plasma glucose 

concentrations are controlled by insulin-mediated changes in glucose production and 

elimination. In the model, insulin secretion is controlled by glucose concentrations in plasma 

and at the absorption site. Using this model along with meal tolerance test data, the primary 

mechanism of action of glibenclamide and its metabolites was identified as increasing 
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insulin secretion56. The model was extended to include glucagon dynamics and to 

characterize the effects of the glucokinase activator LY2599506. In the model, glucagon, 

together with insulin and glucose, regulates hepatic glucose production, and LY2599506 

both inhibits hepatic glucose production and promotes the production of insulin57. The effect 

of exogenous glucose and protein intake (meal ingestion) was also examined after 

LY2599506 administration. Although these models characterized well the short-term effects 

of drugs interacting with the glucose-insulin-glucagon system, the long-term progression of 

T2DM must be managed for effective treatment of the disease. Winter and colleagues 

developed a model to characterize the long-term effects of pioglitazone, metformin, and 

gliclazide on T2DM disease progression58 that included the homeostatic feedback 

relationships between fasting plasma glucose (FPG) and fasting serum insulin (FSI), as well 

as the physiological feed-forward relationship between FPG and glycosylated hemoglobin 

A1c (HbA1c). Simulations with the model showed that β-cell function is decreased 

gradually by long-term treatment with gliclazide, but is increased by pioglitazone. Choy and 

colleagues extended this model to incorporate the effect of body weight on insulin 

sensitivity59, and demonstrated that weight management, with diet and exercise that 

decreased body weight by 4.1 kg, was associated with a 30.1% increase in insulin sensitivity. 

These pharmacodynamic models for T2DM highlight the importance of using suitable 

mathematical frameworks to represent the mechanisms of drug interactions with complex 

physiological/pathological systems.

Similar to diabetes, cancer is a complex system pathophysiology consisting of malignant 

cells, the tumor microenvironment (including the vasculature and lymphatic systems), the 

immune system, supporting stromal cells, the extracellular matrix, and complex 

communications among these components17. Targeting multiple elements in the tumor 

microenvironment is a strategy for combination cancer therapy, as well as an emerging field 

for DDI studies. Several mechanism-based PK/PD models have been developed to 

investigate combination treatment strategies in such pathophysiological systems. For 

example, Hahnfeldt and colleagues proposed a mathematical model to describe the dynamics 

of tumor growth under angiogenic control60, using a lung cancer xenograft model system 

treated with the angiogenic inhibitors endostatin, angiostatin, and TNP-470. In the model, 

the maximal tumor volume (V) is limited by the vascular carrying capacity (K):

dV
dt = − λ1 × V × log V

K
dK
dt = f (V , K, t)

, Eq 15

where λ1 is the first-order tumor growth rate constant, and K is determined by the tumor 

angiogenic effect, the existing vasculature, and exogenous angiogenesis inhibitors. When 

tumor volume V is less than capacity K, dV
dt  is greater than 0, the tumor grows. Conversely, 

when V is greater than K, the tumor shrinks. Hutchinson and colleagues modified this model 

to investigate the temporal characteristics of vessel normalization after bevacizumab or 

vanucizumab treatment in a breast cancer xenograft model61 . Simulations showed that the 
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effects of chemotherapy were enhanced greatly if chemotherapy was administered during a 

discrete time window of vessel normalization. Imbs and colleagues used this model to 

predict successfully that a regimen having a 3-day gap between bevacizumab treatment and 

pemetrexed-cisplatin administration would result in better tumor control compared to a 

regimen having an 8-day-gap62. These proof-of-concept cases demonstrate the utility of 

quantitative PK/PD DDI models of tumor-microenvironment interaction to optimize dosing 

regimens.

Tumor-microenvironment crosstalk also plays a role in drug resistance63. Picco and 

colleagues investigated intrinsic- and environment-mediated drug resistance (EMDR) in 

BRAF-mutated melanoma xenografts, and proposed a mathematical model that 

characterized the DDI between a stroma-targeted FAK (focal adhesion kinase) inhibitor and 

a tumor-targeted BRAF inhibitor (BRAFi)64. The model features two subpopulations of 

tumor cells that are either sensitive or resistant to the BRAFi, and two subpopulations of 

stromal cells that are either normal or activated. In the model, the activated stroma induces 

EMDR by stimulating the proliferation of resistant tumor cells. The BRAFi inhibits the 

proliferation of drug-sensitive tumor cells, and also stimulates stromal activation. The FAKi 

counters these effects by inhibiting the EMDR effect. Tumor growth data from both cell 

culture- and xenograft studies were obtained to identify the contribution of intrinsic- vs. 

environment-mediated drug resistance pathways. Simulations based on the model suggested 

that the optimal drug regimen would be to administer the BRAFi with a 1-day-on/2-day-off 

schedule, whereas the FAKi should be administered continuously. A binary function was 

used in this example to model the effect of both the BRAF and FAK inhibitors. However, 

this function could be replaced by one representing the duration over which drug 

concentrations remained above effective concentrations, which could be identified 

experimentally from dose-response relationships and PK information.

Tumor-immune system interactions have garnered increasing attention because immuno-

oncology therapies, such as adoptive T cell transfer and immune checkpoint inhibitors, show 

promising anti-cancer treatment effects65. Kirschner and Panett applied a mathematical 

model to characterize the dynamic interactions between tumor cells (T) and immune-effector 

cells (E), along with the influence of the cytokine interleukin-2 (IL-2, IL)66. The effector 

cells in the model represent activated immune cells, such as cytotoxic T-cells and natural 

killer cells that are recruited by tumor antigenicity (represented by c, below, which is 

proportional to the tumor mass) and are stimulated to proliferate by IL-2. The stimulation by 

IL-2 was described by a saturable process having a maximum proliferation rate constant of 

p1 and a Michaelis constant g1. Tumor cells are eliminated by the immune effector cells 

according to Michaelis–Menten kinetics, and IL-2 is secreted when the effector cells are 

stimulated by the tumor, also with Michaelis–Menten kinetics.
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Eq 16

In this model, tumor proliferation is described by the logistic function, and the degradation 

of both immune effector cells and IL-2 follow first-order processes. This model establishes a 

quantitative foundation for the assessment of IL-2 treatment influence upon adoptive cell 

transfer. Several other models have been developed to investigate the combination of 

chemotherapy and/or radiotherapy with different types of immunotherapies67–69, and the use 

of mathematical models to explore approaches to overcome the challenges of cancer 

immunotherapy has been reviewed recently70. Owing to the complexity of the immune 

system, many of the models incorporate various immune cell types, along with inter- and 

intracellular signaling pathways in both tumor and immune cells. QSP approaches (below) 

are particularly useful in handling these types of complex dynamic interplay. For example, 

Kosinsky and colleagues developed a QSP model to characterize the synergy between 

radiation and anti-PD-1/PD-L1 therapy, and to optimize the administration sequences and 

schedules of the agents in this combination71.

Quantitative systems pharmacology models

QSP modeling is a relatively new tool in drug discovery and development, and in regulatory 

science72. Through mathematical modeling, QSP models can integrate and recapitulate the 

fundamental interactions in biological systems, simulate drug activity as perturbations of 

those systems, and evaluate drug effects within the context of the properties of the system, 

such as steady states, stability, and limits73. QSP can connect network-based system 

modeling with basic PK/PD principles74, and is enabled by “big data” technologies such as 

genomics, proteomics, and other ‘omics platforms75. QSP approaches can facilitate PD DDI 

studies by mapping the mechanisms of interaction of a combination onto the relevant 

physiological system(s), generating hypothetical combinations to achieve defined outcomes 

through simulations of different target perturbations, and integrating knowledge from 

different scales or informational sources for translational purposes.

Various methods are used by in QSP modeling, ranging from bioinformatics and data mining 

to logic-based- and differential equation-based models for characterizing system-specific 

spatiotemporal dynamics. QSP models for studying PD DDIs often are fit for the purpose of 

designing or optimizing a new drug combination to achieve a desired outcome, or to identify 

the source(s) of an observed PD interaction. For example, a logic-based Boolean network 

model was developed to represent a key signaling network in multiple myeloma cells76 and 

minimal intervention analysis was conducted to identify potential 2- and 3-drug 
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combinations to achieve apoptosis77. This is a “bottom-up” strategy to build models based 

on knowledge of intracellular signal transduction pathways. In an integrated example, Zhu 

and colleagues discovered a synergistic interaction between the SMAC mimetic birinapant 

and the cytotoxic gemcitabine in pancreatic cancer cells37, used bioinformatic analyses of 

quantitative proteomic data78 to identify a drug interaction at the level of DNA damage 

response and repair pathways, and developed a multiscale model to integrate the protein- 

and pathway dynamics with cell cycle progression and cell growth kinetics (Figure 5)15. The 

interaction of birinapant and gemcitabine was attributed to birinapant blocking the 

gemcitabine-induced protein ATM (Ataxia-Telangiectasia Mutated), PP5 (Protein 

Phosphatases 5) and PP2CB (Protein Phosphatases 2A Beta), and also to mediating the 

degradation of cIAP1/2 (Cellular Inhibitor of Apoptosis Protein 1/2) and gemcitabine-

induced FasL (Fas Ligand). The protein expression changes propagated temporally through 

the signaling transduction network so as to perturb the cell cycle and result in apparent 

synergy15,37. Sensitivity analysis suggested that a key protein to inhibit cell growth was 

RFC1 (Replication Factor C Subunit 1), and the model predicted that a sequential regimen of 

24h pre-treatment with gemcitabine first, followed by birinapant exposure, would produce 

considerably greater tumor cell growth inhibition compared to simultaneous drug 

exposure15. This hypothesis was then experimentally validated37.

QSP models have made considerable progress in understanding and predicting PD DDIs. 

However, standards and best practices are critical for model development and validation 

owing to the complexity and flexibility in building QSP models79–81. Currently, there is no 

consensus on systematic approaches for exploring parameter space and increasing 

confidence in model predictions.

Prospectus

Drug discovery and development is evolving from the ‘one-drug/one-target/one-disease 

process’ paradigm toward identifying “sweet spots” or the key nexuses of interaction at 

which to intervene in order to restore pathophysiological systems. By integrating QSP 

analysis with physiologically-based pharmacokinetic (PBPK) models, multiscale modeling 

could predict potential PD DDIs, and, via clinical trial simulations, create testable 

hypotheses as to their potential clinical significance. PD DDI studies can leverage “big data” 

to identify novel targets and/or covariates for drug interactions, evaluate the strength of DDIs 

in patients of different genetic/environment backgrounds, and help select the “right” patients 

for clinical trials. In one example, machine-learning algorithms have been used to predict 

DDIs for adverse reactions by integrating drug phenotypic, therapeutic, chemical, and 

genomic properties82. In a second example, the use of machine-learning, QSP, and PK/PD 

modeling techniques to integrate genomic and transcriptomic data with experimental studies 

of patient-derived, induced pluripotent stem cells (iPSC), which can recapitulate the inter-

individual variabilities in clinical drug responses of their donors, resulted in the 

identification of genomic predictors of adverse drug reactions83. This new paradigm can be 

applied to expand PD DDI studies by utilizing rich information sources such as electronic 

health records, and in this way, patients potentially could be selected based on their 

genomic/transcriptomic/proteomic susceptibility to DDIs before combination therapies are 

administered.
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A PD DDI study can be implemented in clinical settings with proper design and assessment 

methods, and this would address the problem that clinical studies are too costly to be 

designed based upon empirical discovery of potentially beneficial PD DDIs. Adequate 

evidence for clinically-significant PD DDIs should be obtained before a clinical trial. First, 

the hypothesis generation step for candidate combinations would be performed and 

hypotheses tested in silico or with in vitro screening studies. Subsequently, a detailed 

investigation of the mechanism(s) of suspect PD DDIs in the combination would be 

conducted, and PD DDI mechanisms would be represented by a QSP model that has been 

properly calibrated and qualified. PBPK modeling that predicts the physiological 

concentrations of drugs at target site(s) would be integrated with the QSP model to predict in 
vivo exposure-response relationships for each drug individually vs. combined. Regimens 

then would be optimized toward the desired outcome(s) in terms of the dose and schedule 

design, and “proof-of-concept” animal studies could be used for parameter calibration and 

model validation purposes. Translational PK/PD models, based on either PBPK or allometric 

relationships, could be used for projections in humans84. Eventually, the derived model 

could be used to generate clinical simulations that include considerations of model- and 

clinical uncertainties. Employing this paradigm, only one treatment combination (or a small 

number of combinations) that was predicted to result in significantly altered clinical 

endpoints compared to single-drug treatments would require clinical testing. Virtual patient 

populations, generated by simulation using identified covariates and proper parameter 

ranges, could be used to assess inter-patient variability in such QSP models applied to 

clinical studies85.

Summary

Pharmacodynamic DDIs are common in drug combination therapies, and mechanistic 

understanding of PD DDIs can be useful for the rational design of treatment regimens. There 

is a broad spectrum of approaches, as well as a lack of quantitative standards, for the 

evaluation of PD-based DDIs. Empirical methods are suitable for high-throughput screening 

of drug combinations, and useful for generating testable hypotheses as to combinations that 

may produce desired outcomes. Mechanism-based PK/PD modeling and simulation are 

useful for comparing hypothesized combination regimens, and have multi-scale, 

translational potential. QSP models that characterize complex pathophysiological systems in 

considerable detail have applications along the entire spectrum of drug development 

activities, from the prediction of possible beneficial combinations in silico, to the rational 

design and evaluation of preclinical animal experiments and clinical studies. Despite the 

infrequent evaluation of PD DDIs in clinical settings, advances in experimental and 

computational techniques provide precedents and opportunities for PD DDI modeling and 

simulation to guide the development and analysis of clinical trials, and result in improved 

patient response to drug therapies.
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Figure 1. 
Array of mathematical modeling approaches for analyzing PD DDIs in diverse biological 

experimental systems. Empirical models frequently are applied to in vitro screening studies 

to assess the nature of potential PD DDIs. These models are used less frequently for pre-

clinical animal studies and clinical studies, in which mechanism-based PK/PD models 

should be used to best characterize responses to drug combinations and to avoid the need for 

exhaustive PD DDI testing that is required for empirical assessments. Quantitative systems 

pharmacology (QSP) models can be constructed and calibrated across all biological systems 

to investigate the mechanism(s) of PD DDIs in a manner complimentary with empirical and 

mechanism-based models. Integration across biological systems is possible using hybrid 

systems models to understand and predict PD DDIs in humans. PBPK/PD: physiologically-

based PK and/or PD; ODE: ordinary differential equations; PDE: partial differential 

equations.
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Figure 2. 
Examples of isobolograms for assessing PD drug interactions. The x- and y-axis are IC50-

normalized concentrations for a drug pair. Red indicates antagonism, blue indicates synergy, 

and black lines represent Loewe additivity (A), Bliss independence when γ1 = γ2 = 1 (Eq. 

11, B), and Bliss independence when γ1 = 0.5 and γ2 = 1 (Eq. 11, C).
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Figure 3. 
A hypothetical Bliss-independence response surface is shown for the effects of combined 

paclitaxel and birinapant upon the viability of PANC-1 pancreatic cancer cells. The x- and y-

axes represent the concentrations of the two drugs, and the z-axis represents the magnitude 

of cell progression, normalized to untreated control cells, after 72h exposure to both drugs 

concurrently. Red dots are experimental observations above the reference additive surface 

(antagonism); blue dots are observations below the surface (synergism). Blue dots 

predominate over the red, suggesting an overall synergistic interaction that was confirmed 

quantitatively by model analysis. This figure is reproduced with permission of the American 

Society for Biochemistry and Molecular Biology, from Wang et al., 201816; permission 

conveyed through the Copyright Clearance Center, Inc.
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Figure 4. 
Mechanism-based pharmacodynamic model of COX-1 inhibition. Aspirin (asa) induced an 

irreversible, 2nd-order and concentration-dependent loss of free COX-1 enzyme. Ibuprofen 

(ibu) inhibited the COX-1 by the formation of a reversible binding complex. C represents the 

drug concentration. This figure is reprinted by permission from Springer Nature; from Hong 

et al., 200845; permission conveyed through Springer Nature RightsLink Permissions.
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Figure 5. 
Multi-scale network model integrating systems information and gemcitabine- and 

birinapant-mediated effects on signaling pathways, cell cycle distributions (G0/G1-, S-, and 

G2/M-phases), and apoptosis in pancreatic cancer cells. Blue open circles represent 

proliferating and apoptotic cells. Grey circles represent cell cycle stages, and arrow-head 

lines indicate activation or transitions. Bar-head lines indicates inhibition. Squares represent 

the specific intracellular proteins as indicted. Box color denotes the source of the data for the 

figure (red: western blot analysis; yellow: published literature; clear: LC/MS proteomics; 

grey: quantitative data not available). Dashed lines represent hypothesized interactions. This 

figure is reprinted with the permission from John Wiley and Sons; from Zhu et al., 201878.
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