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Abstract
Cancer-derived exosomes are constitutively produced and secreted into the blood and biofluids of their host patients providing a
liquid biopsy for early detection and diagnosis. Given their ubiquitous nature, cancer exosomes influence biological mechanisms
that are beneficial to the tumor cells where they are produced and the microenvironment in which these tumors exist.
Accumulating evidence suggests that exosomes transport proteins, lipids, DNA, mRNA, miRNA and long non coding RNA
(lncRNA) for the purpose of cell-cell and cell-extracellular communication. These exosomes consistently reflect the status as well
as identity of their cell of origin and as such may conceivably be affecting the ability of a functional immune system to recognize
and eliminate cancer cells. Recognizing and mapping the pathways in which immune suppression is garnered through these
tumor derived exosome (TEX) may lead to treatment strategies in which specific cell membrane proteins or receptors may be
targeted, allowing for immune surveillance to once again help with the treatment of cancer. This Review focuses on how cancer
exosomes interact with immune cells in the blood.
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Introduction

Exosomes are small 30–150 nm sized, extracellular vesicles
(EVs) important in the intercellular communication between
cells [1–4]. They belong to the nanovesicle family and originate
from the intraluminal vesicles of the late endosome, named
multivesicular bodies. The fusion of these multivesicular bod-
ies with the cell membrane results in the release of exosomes
into the extracellular space. Communication can occur both by
transfer of nucleic acids and proteins, or by binding cell-surface
receptors and inducing cell signaling pathways [5, 6]. Both

normal and tumor cells release exosomes, although TEX have
been the subject of a wide range of studies. Exosomes have
been shown to be involved in many aspects of the tumor mi-
croenvironment (TME) including immune suppression [7, 8],
antigen presentation [9–13], a means of acquiring chemother-
apeutic resistance [14–18], as biomarker reservoirs [19–25],
inducers of angiogenesis [26–28], and vehicles of niche prep-
aration for metastasis [29–33] (Fig. 1). However, modes and
mechanisms of uptake are not completely understood. Cells
appear to internalize EVs through several endocytic pathways,
including clathrin- and caveolin-dependent endocytosis,
phagocytosis, and lipid raft–mediated internalization. It is like-
ly that cells utilize multiple routes to take up exosomes, de-
pending on the proteins, glycoproteins, and lipids found on
the surface of the vesicles and the target cell itself [34].
Numerous studies show proficient uptake of exosomes by en-
dothelial cells [35–37], epithelial cells [38], fibroblasts [39],
myeloid precursors in bone marrow [32, 37], mesenchymal
stem cells [37], and other tumor cells [40] (Fig. 2).

Cancer and Exosomes

Cancer cell uptake of exosomes has been well documented
and studies even show that exosomes can preferentially
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associate with cancer cells [41, 42]. Endocytic pathways are
utilized by ovarian cancer cells to internalize exosomes from
the SKOV3 ovarian cancer cell line [43], by glioblastoma cells

[44], and by bladder cancer cells as demonstrated by dose and
time dependent uptake of PKH26 labeled bladder exosomes
[40]. Treatment with heparin can partially block the active and

Fig. 1 Tumor derived exosomes (TEX) function in favor of me-
tastasis, support angiogenesis, confer chemoresistance and pro-
mote immune-suppression and cellular proliferation. Exosomes

from tumor cells were found to release functional biomolecules into
the tumor microenvironment thereby affecting the biology of cancer

Fig. 2 Cancer cells release exosomes which are taken up by other
cancer cells, endothelial cells, epithelial cells, fibroblasts, bone mar-
row myeloid precursor cells, and mesenchymal stem cells. Exosomes

from tumor cells were found to release functional biomolecules (protein,
RNA, miRNA) into many cell types
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specific mechanism of uptake, implicating receptor-mediated
endocytosis involving heparan sulfate proteoglycans (HSPGs)
[40]. HSPGs were also shown to be critical in the internaliza-
tion of glioblastoma exosomes by glioblastoma cells [45].
Other tumor types have demonstrated exosome uptake, such
as colorectal cancer exosomes into lung cancer cells [46] and
breast cancer exosomes into breast cancer cell lines [47, 48],
although mechanisms underlying the uptake were not
addressed.

Diffuse large B cell lymphoma (DLBCL), an aggressive
form of lymphoma representing over 40% of adult lymphoma
patients, has not until recently been investigated. In an attempt
to close the gap in knowledge concerning lymphoma TME
immunosuppression, normal human peripheral blood leuko-
cytes were treated with PKH67-labeled lymphoma exosomes
and monitored for uptake by measuring fluorescence at differ-
ent time points using flow cytometry and fluorescent micros-
copy. Results show that of the four populations examined, B
cells and monocytes demonstrated uptake of PKH67 labeled
lymphoma exosomes, while T cells and NK cells displayed
significantly less uptake [49].

Immune Influence

Macrophages

As exosomes have exhibited multiple forms of influence
within the immune system, immune cells have also been
investigated regarding their ability to interact with
exosomes. Macrophages exhibit specialized capacity for
internalizing exosomes, although they typically reside
within tissue, not in circulation. Their blood counterparts,
monocytes, also appear to have a relatively high level of
exosome internalization. Consequently, numerous investi-
gations have focused on exosomal interactions with these
myeloid-derived cell types. Macrophages have been shown
to internalize exosomes from both normal [50] and malignant
sources [51], with differing effects. Macrophages exposed to
breast cancer exosomes, but not normal exosomes, activated
NF-κB pathways and released pro-inflammatory cytokines
like IL-6 and TNFα, possibly due to TLR2 interacting with
palmitoylated protein ligands on the exosomes [51]. There are
reports of multiple ways macrophages use to interact with
exosomes, such as CD169 (SIGLEC) to bind exosomes ex-
pressing sialic acids, as seen with B cell-derived exosomes
expressing α2, 3-linked sialic acids [52]. Macrophages also
utilize a dynamin-dependent phagocytic pathway to internal-
ize vesicles [6, 53]. Leukemia exosomes were found to be
efficiently internalized via phagocytosis by macrophages,
while non-phagocytic cells such as T cells show few internal-
ized vesicles, with most interaction being with surface-
attached vesicles [6].

Monocytes

Monocytes also utilize phagocytic mechanisms to internalize
exosomes, perhaps relying on tetraspanin targeting, as was
shown by Rana et al. [36] Vesicle internalization by mono-
cytes can induce changes such as production of cytokines like
TNFα, which has important downstream ramifications on T
cells [54]. Likemacrophages and monocytes, other cells of the
myeloid lineage such as neutrophils and dendritic cells (DCs)
have the ability for exosome uptake. As one of the major
infiltrators of the TME, neutrophil interactions with exosomes
have been of interest. Investigations in leukemia demonstrate
communication between tumor cells and neutrophils, transfer-
ring genomic DNAs (gDNAs) of the BCR/ABL hybrid gene
from K562 cells to normal neutrophils [55] and even promot-
ing leukemia tumorigenesis in rats [56].

Dendritic Cells

Early investigations in the exosome field recognized follicular
DCs as interactors with exosomes [57], and even though no
specific receptors had been demonstrated yet, it seemed that
alpha 4-integrin on B cell-derived exosomes was important
[58]. Integrin complexes with CD9 and CD81 tetraspanins,
externalized phosphatidylserine (PS), and CD11a (LFA-1)/
ICAM-1 interactions all participate in the binding and uptake
processes of DCs [57, 59]. Uptake can be through endocytic
mechanisms [60], including phagocytosis [61] and DCs may
be even more efficient than macrophages at picking up
exosome-sized particles [62, 63]. DCs are affected by their
interactions with vesicles. Uptake of mast cell exosomes can
induce bone-marrow precursors to acquire antigen presenting
capacity to T cells [64], and CD11b + and CD11c + cells in
mice began releasing IL-6 and TNFα and upregulated CD86
and MHC class II after exposure to exosomes [63]. Uptake of
tumor exosomes by bone marrow precursor cells can inhibit
maturation and promote induction of myeloid-derived sup-
pressor cells [65, 66].

B Cells

In addition to APCs like macrophages and DCs, B cells are
also capable of internalizing exosomes. B lymphocytes inter-
act with exosomes containingMHC class II and ICAM-1 from
mature DCs and obtain the ability to prime naïve T cells and
trigger antigen-specific effector responses [67, 68]. B cells
may need specific surface proteoglycans (HSPGs) such as
syndecans and glypicans to aid exosome uptake. It was dem-
onstrated that chronic lymphocytic leukemia (CLL) exosomes
can be internalized via active uptake by various benign cell
populations found in the TME such as endothelial cells, my-
eloid cells, bone marrow mesenchymal stem cells, and even
some leukocytes. However, CLL B cells themselves did not
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show uptake of labeled exosomes – possibly due to a lack of
surface HSPGs [37] or syndecan-1 [69]. Additionally, lym-
phoid cell differentiation from the pre-B-cells in the bone
marrow to the plasma cells that produce and release antibody,
and the multiple stages of development in between are accom-
panied by different syndecan-1 protein levels [69]. Syndecan-
1 is present on the Pre-B cells and also on the plasma cells but
it is absent on the circulating B cells.What this indicates is that
syndecan-1 is needed when cells require tissue environments
and interactions [70]. These studies support Syndecan-1’s im-
portance to exosome uptake and why CLL B cells, lacking
syndecan-1, are unable to, by themselves, uptake exosomes.
In a separate study, malignant B cell exosomes showed a nat-
ural specificity for B lymphocytes while in another B cells are
selectively targeted by exosomes carrying the EBV envelope
glycoprotein gp350 [71]. Furthermore, the interaction be-
tween an EBV-transformed B cell line (LCL1)-derived
exosomes and peripheral blood B cells could be blocked effi-
ciently by anti gp350 antibodies and by anti-CD21 [71].
Mantle cell lymphoma (MCL) exosomes were efficiently in-
ternalized by both healthy and diseased B-lymphocytes utiliz-
ing a cholesterol dependent pathway independent of clathrin
and caveolin [72]. Very little uptake was recorded in bone
marrow stroma cell lines, T-cell leukemia cells, or NK cells.

Exosomes have been relatively well-studied in EBV-
positive transformed human B cell lines, as these cells consti-
tutively produce large numbers of MVBs and MHC class II
molecules [73–75]. The WSU-DLCL2 B cell lymphoma cell
line used in our own study [49] as a source of exosomes, is
EBV-free. This may be of interest because the virus has been
known to hijack and alter exosomes in infected cells. The
internalization and subsequent effects of these exosomes
may involve viral factors, such as latent membrane protein
(LMP). One group examined epithelial uptake of exosomes
from EBV-infected B lymphocytes and found uptake was
through a dynamin and caveolae-dependent process. In addi-
tion, type III latency-derived exosomes were able to induce
proliferation and upregulation of ICAM-1 in recipient cells
[76]. LMP-1 was also harbored on exosomes from a
Burkitt’s lymphoma cell line, and could mimic CD40 signal-
ing to induce stimulatory changes in the B cells that efficiently
bound them [77].

T Cells and NK Cells

LMP-1 can also produce an immunosuppressive effect by
inhibiting T cell proliferation and NK cytotoxicity [78] and
has been shown co-localized with MHC-II on exosomes.
Though these studies appear supportive it is still unclear
whether T cells can truly obtain antigen/MHC signals from
exosomes or EV’s. Dendritic cells have been shown to require
dendritic cell derived exosome or DEX’s in order to activate T
cells [79, 80]. Specifically, these studies show that in addition

to carrying antigen, exosomes promote DC exchange of func-
tional peptide-MHC complexes [80]. T cells have been shown
in defined conditions to be activated by antigen presenting cell
(APC)-secreted exosomes. Under physiologic conditions
however, T cell activation required simply contact with a via-
ble APC. However, further supporting the co-stimulatory sce-
nario is the fact that Tcells, in order to be activated, must make
contact with B7, ICAM-1 CD28 and LFA-1 [81]. What this
might mean to exosome stimulation of T cells is that the sig-
nals are weak at best, or that specific requirements such as
high MHC density and the presence of ICAM1 and B7 are
critical.

There have been few studies investigating uptake of
exosomes by peripheral blood cell populations. However, rat
pancreatic adenocarcinoma exosomes could be taken up by all
leukocyte subpopulations examined, with CD11b + cells dem-
onstrating higher internalization than T or B cells [82]. At this
time there is only one other publication addressing peripheral
blood uptake of lymphoma exosomes - a study by Hazan-
Halevy et al., looking at MCL exosomes and their preferential
uptake by B-lymphocytes [72]. In this study, it was shown that
exosomes isolated from a MCL cell line, when administered
to B lymphocytes, NK cells, and various T lymphocytes, pref-
erentially internalized into B lymphocytes.

While effector cells such as T cells and NK cells are less
equipped to internalize vesicles, there is still evidence for a
variety of interactions with exosomes. T lymphocytes are af-
fected by exosomes from APCs harboring antigen in MHC
class I and II molecules, and constitute an important aspect of
immune system communication [73, 83]. The mechanisms of
T cell internalization or binding of exosomes from APCs have
been posited to involve the T-cell receptor (TCR), CD28, and
LFA-1 (CD11a) [84]. Activated T cells use LFA-1 (leukocyte
function-associated antigen-1) for binding of DC exosomes
containing MHC class II [85]. This LFA-1/ICAM interaction
is critical for priming of naïve T cells by exosomes from ma-
ture DCs [67]. CD4+ Tcells can internalize DC exosomes and
stimulate antigen-specific CD8+ CTL while overcoming Treg
suppression, with a resultant shift in immune responses [11].
In contrast to T cell priming effects of exosomes, tumor
exosomes (TEX) can suppress T cells. Surface ligands such
as TRAIL, PD-L1 and FasL result in exosome-mediated cell
death [86, 87].

Evidently, despite low exosome internalization, T cells are
still subject to exosome-mediated effects. Likewise, even with
little uptake, NK cells are influenced through exosomal inter-
actions. NK cell cytotoxicity is frequently seen to be inhibited
after exposure to exosomes derived from solid tumors and
even EBV-immortalized B cells. It has been surmised that
MICB and TGF-β1 expressed on exosomes are responsible
[88–90]. One mechanism is through the downregulation of
NK activating receptor NKG2D, as exemplified by plasma
exosomes from AML patients [91]. In contrast to tumor
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derived exosomes, dendritic cell derived exosomes can pro-
mote NK activation and proliferation through copresentation
of NKG2DL with IL-15Ra [92]. Some studies have found
evidence of NK cell uptake of exosomes in a time dependent
fashion, perhaps utilizing PS located on vesicle membranes as
demonstrated in ovarian cancer model [93].

Conclusion

Exosomes are important mediators and regulators of cellular
communication. Although they are involved in active immu-
nosuppression, they can also facilitate tumor progression and
are also a good source of tumor antigens. However, until a
more full understanding of the interplay between the tumor
microenvironment and the exosome occurs, effective strate-
gies to mobilize the immune system as an effective anticancer
modality will be limited. Recognizing the luminal and surface
contents of the exosome is not enough to design exosome-
associated therapy but understanding the communication pat-
terns and types of communication (luminal protein delivered
or surface to cell protein/protein interaction signaling) will be
key. Moreover, identifying which exosome populations are
communicating and which are providing additional ligands
or receptors in order to facilitate communication will prove
necessary to potentiate the immune response.

Funding Research reported in this publication was supported by NIH
awards P20MD006988.
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