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Abstract
Pancreatic ductal adenocarcinoma remains one of the most challenging human cancers. Desmoplasia is predominant in this
disease exhibiting a strong stromal reaction with an abundance of the cancer-associated fibroblasts (CAFs). We aimed in this
study to investigate the reciprocal interaction between the tumor cells and the CAFs and its effect on tumor cells survival. We
hypothesized that the survival of pancreatic cancer cell with aggressive phenotype is modulated by the Interactions between
malignant pancreatic tumor cells and surrounding CAFs. To examine this, we utilized co-culture methods where tumor cells with
different malignant potentials, HPAF (low) HPAF-CD11 (moderate/high) co-cultured with CAFs. CAFs-conditioned media
increased the growth of HPAF-CD11 but not HPAF cells and increased CXCL8 levels highly in HPAF-CD11 and slightly in
HPAF. The growth stimulatory effect and elevated CXCL8 level caused by CAFs-conditioned media were diminished by
neutralizing the fibroblast growth factor-2 (FGF-2). In addition, conditioned media of HPAF-CD11 increased CAFs cell number
whereas that of HPAF did not, and these effects were suppressed by neutralizing CXCL8. Furthermore, data from gene expres-
sion microarray study exhibited different expression profiles between HPAF and HPAF-CD11 when co-culture with CAFs. A
significant increase in CXCL8 and FGF-2 expression was observed with HPAF-CD11/CAFs co-culture and to a lower extent
with HPAF/CAFs co-culture. Together, these data demonstrate a paracrine bi-directional interaction between pancreatic tumor
cells and the CAFs through CXCL8 and FGF-2 that helps the tumor growth. Future in-depth study of these pathways will assist in
obtaining diagnostic and therapeutic tools for pancreatic ductal adenocarcinoma.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most com-
mon type of pancreatic cancers, the fourth leading cause of
cancer deaths in the United States [1]. The increased incidence
of the disease, as well as the cellular and molecular complexity
of the tumor, makes it very challenging to manage. A chance of
cure exists for only aminority of the patients, thosewith locally

limited and surgically resectable tumors [2]. At the time of
diagnosis, the majority of PDAC patients present at advanced
stages beyond surgical resection. Studying the complex cellu-
lar and molecular interaction between malignant cells and oth-
er cells in the tumor microenvironment can shed more light on
how the diseases initiate, progresses and spreads.

Desmoplasia is of particular predominance in PDAC
exhibiting a strong stromal reaction [3–5]. A consistently
low ratio of the infiltrating adenocarcinoma component rela-
tive to this abundant desmoplastic response is unique to
PDAC, in contrast to infiltrating carcinomas in other organ
or tissue types [6, 7]. Typically, these invasive pancreatic tu-
mors are composed of infiltrating adenocarcinoma surrounded
by a predominance of dense fibrous (or desmoplastic) stroma
[8], which itself contains proliferating cancer-associated fibro-
blasts (CAFs), small endothelial-lined vessels, inflammatory
cells, and trapped residual atrophic parenchymal components
of the organ invaded [9]. CAFs, represent the fibrotic compo-
nent of the tumor microenvironment, are derived from cells of
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multiple origins including tissue-resident fibroblasts, bone
marrow-derived mesenchymal cells, fibrocytes, and pancreat-
ic stellate cells (PSCs) [10]. PSCs, in particular, have gained
much attention more than other subsets of CAFs. PSCs, sim-
ilar to other stellate cells found in other organs such as in liver,
kidneys, and lungs, are known to modulate physiological
functions by storing vitamin-A at their quiescent state and
tissue maintenance and repair at the activated state [11–14].
In PDAC, activated PSCs have been described to be involved
in tumorigenesis, therapy resistance, and metastasis [11,
15–18]. Interactions between the malignant cells and sur-
rounding stromal CAFs have been suggested to play a critical
role in tumor invasion and progression [19, 20]. Once tumor
cells have spread to different microenvironments, their subse-
quent growth will depend on the compatibility of the Bseed^
with the Bsoil^ that they encounter in the microenvironment
[21, 22], which depend on the molecular interactions between
cancer cells and the stromal cells in the different microenvi-
ronment [23, 24]. Invasive cancers do not exist in isolation.
Rather, they arise from and intimately interact with non-
neoplastic host cells [25, 26].

For long, CAFs have been regarded for their role in the
formation of desmoplasia, by producing excessive amounts
of extracellular matrix proteins [27]. Desmoplasia aids in ac-
quiring resistance to current chemotherapy treatments
[28–30]. Nonetheless, recent literature describes a vast net-
work of CAFs interactions beyond the desmoplasia formation.
Through their network of secreted factors, such as cytokine,
chemokines and growth factors, CAFs can interact with the
multiple components in the tumor microenvironment to mod-
ulate tumor progression in different malignancies [31–34].

Fibroblast growth factor (FGF)-2 is a member of the FGF
family that control multiple cellular processes including pro-
liferation, differentiation, survival, and motility [35]. In the
context of cancer, FGF-2 has been shown to promote tumor
progression [36]. Enhanced FGF-2 protein levels have been
shown to correlate with shorter postoperative survival of pa-
tients with PDAC [37]. Furthermore, FGF-2 was linked to
PDAC invasion via its activity in PSCs [38].

A member of the CXC chemokine family, CXCL8 signals
through CXCR1 and CXCR2 chemokine receptors. These
chemokines are known for their role in inflammation by
recruiting inflammatory cells and inducing angiogenesis. In
malignant tumors, sustained CXCL8 signaling is associated
with immunosuppression, angiogenesis, and tumor growth;
thus, essential to the progression of PDAC [39–41]. There is
evidence that CXCL8 and FGF-2 are involved in tumor-
stromal interaction [38, 42].

We hypothesized that the aggressive phenotype of PDAC
depends on their interaction with CAFs, which involves FGF-
2 and CXCL8. To test this hypothesis, we examined the effect
of CAFs on pancreatic tumor cells with different malignant
potential, HPAF (low) and HPAF-CD11 (moderate/high).

HPAF-CD11 is derived from the parent cell line HPAF, where
both cells show well-differentiation features and mutations in
both Kras and TP53 [43–47]. We demonstrated that the ag-
gressive phenotype of PDAC has a stronger bi-directional
interaction with CAFs through paracrine factors such as
FGF-2 and CXCL8.

Materials and Methods

Patient-Derived Cancer-Associated Fibroblasts (CAF)
Cell Line

CAF cell line was derived from patient pancreatic tumor tis-
sues. All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the University of Nebraska Medical Center, Omaha, NE and
with the 1964 Helsinki Declaration and its later amendments
or comparable ethical standards.

Cell Lines and Culture Conditions

The human pancreatic cancer cell lines (HPAF and HPAF-
CD11) were kind gifts from Dr. Michel Hollingsworth
(Eppley Cancer Center, University of Nebraska Medical
Center, Omaha, NE) and Dr. S.K. Batra (Department of
Biochemistry and Molecular Biology, University of
Nebraska Medical Center). Normal human fibroblast, BJ cell
line, was obtained from ATCC. CAF was derived from the
pancreatic tumor tissues. The pancreatic tumor was minced,
and the fibroblasts were isolated by differential trypsinization,
and subsequently immortalized using hTERT. HPAF were
maintained in RPMI 1640 (Cellgro, Herndon, VA) supple-
mented with 5% fetal bovine serum (FBS), HPAF-CD11 were
in DMEM (Cellgro, Herndon, VA) with 10% FBS, and both
BJ and CAF cells were maintained in EMEM (Cellgro,
Herndon, VA) with 10% FBS supplemented with streptomy-
cin, and penicillin (complete media) at 37 °C in a humidified
atmosphere containing 5% CO2. All the cell lines were free of
mycoplasma as determined by MycoAlert Plus Mycoplasma
Detection kit (Lonza) and pathogenic murine viruses. For cell
line authentication, Human DNA Identification Laboratory,
University of Nebraska Medical Center, Omaha, NE, USA
performed the short tandem repeat (STR) tests [48]. Cultures
were maintained for no longer than six weeks after recovery
from frozen stocks.

PDAC Cells Cultured with Experimental Conditions

1 × 106 cells of normal fibroblasts (BJ) were seeded in the six-
well plate and incubated with EMEM media for 24 h to gen-
erate fibroblasts monolayer. PDAC cells (1 × 105) were then
seeded onto the fibroblasts monolayer and co-cultured in
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complete media. After a 24 h incubation, complete media was
changed to serum-free media (day 0) and incubated for an
additional 72 h (day 4).

Generation of CAFs-Conditioned Media and ECM

To analyze the effects of secreted factors from CAFs on tumor
cells, CAFs were cultured with the respective media for 48 h.
Cell-free conditioned media was collected and stored at
−70 °C until used. To generate CAFs ECM, we used the
methods established by Mizuguchi et al. [49]. Briefly, we
seeded CAFs cell (1 × 105 cells) onto six-well plate and cul-
ture them with EMEM supplemented with 10% FBS. After
the CAFs cell reach confluence (24hlater), we removed the
media and washed the cells once with PBS, and then added
1 ml of the aqueous solution of 0.02 N ammonia to the cells,
and incubated them at room temperature for 10 min to lyse the
cells. We removed any remaining cellular debris from the
culture plate by gentle pipetting and washed the resulting ly-
sate over ten times Hanks’s balanced salt solution (HBSS).

PDAC cells (1 × 105) were seeded alone or on top of
CAFs-derived ECM for 24 h with complete media. Next, at
day 0, cells were washed and serum-free, serum containing or
CAF-conditioned media were added accordingly for an addi-
tional 72 h (day 4). We counted the number of tumor cell and
calculated the differences between Day 0 and Day 4. To ex-
amine the effect of neutralizing antibodies, we added human
FGF (basic) antibody (American Diagnostica inc., Greenwich,
CT) and human CXCL8 antibody (BD Pharmingen) at
10 μg/ml concentration on Day 0.

Enzyme-Linked Immunosorbent Assay (ELISA)

Cells (1 × 105) / well were grown in a six-well culture plate.
After 24 h, media was replaced, and tumor cells either were
incubated with standard media or conditioned media from
CAFs. Oppositely, CAFs were incubated with standard media
or conditioned media from tumor cells. After 48 h, superna-
tants were taken for ELISA analysis.

CXCL8 levels in culture supernatants were determined
using an ELISA kit paired antibody purchased from Pierce
Inc. (Woburn, MA), according to manufacturer instructions.
Briefly, 100 μl of the primary monoclonal antibody against
CXCL8 (2 μg/ml) was coated in Immulon plates in each well.
After 1 h of incubation at 37 °C, the plates were washed and
blocked for 1 h with blocking buffer (4% BSA in PBS). After
washing the plates four times, 50 μl culture supernatants or
standards at different concentrations (recombinant CXCL8
protein, Endogen Inc. Woburn, MA) and 50 μl of biotinylated
CXCL8 Ab was added to each well. After 2 h of incubation,
the plates were washed, and the immunoreactivity determined
using the avidin-HRP-TMB detection system (Dako Labs.
Denmark). The reactions were stopped by adding50 μl of

0.18 N H2SO4. Absorbance was determined using an ELISA
microtiter plate reader (Bio-Tek Instruments Inc. Winooski,
VT) at 450 nm. CXCL8 concentrations of the unknown sam-
ples were calculated using a plotted curve of the absorbance
versus the concentration of CXCL8 in the standard wells.

For analyzing levels of FGF-2, we used direct ELISA.
Samples and different concentrations of recombinant FGF-2
protein (for standard curve) was coated onto ELISA plate
overnight. Following washing and blocking non-specific ac-
tivity, 100 μl of anti-FGF-2 antibody (R & D System,
Minneapolis MN) was added into each well. Following two
hours of incubation, samples were incubated with biotinylated
secondary antibody and immunoreactivity was determined
using avidin-HRP-TMB detection system. A curve of the ab-
sorbance versus the concentration of FGF-2 in the standard
wells was plotted to calculate FGF-2 concentrations in the
unknown samples by comparing the absorbance of the sam-
ples to the standard curve.

Gene Expression Microarray

PDAC cell lines HPAF and HPAF-CD11 were cultured alone
or on CAF monolayer. Next, nucleic acid was collected for
cDNA microarray analysis using a set of two 10 K chips
(Compugn/Sigma Genosys) that interrogate the full 18+
Compugen Human oligonucleotide at DNA Microarray core
facility (UNMC). The library contains 18,861 oligos
representing 17,260 unique genes. Raw fluorescent intensity
values were collected to determine gene expression levels.
Flagged artifacts and negative controls were removed from
the series. The data was then normalized, and the channels
(Cy3 and Cy5) were background subtracted. The normalized
and background subtracted values were log2 transformed. The
fold-change was calculated between the Cy3 and Cy5 chan-
nels. Emphasis was placed on genes demonstrating greater
than 2 fold-change in expression between the two channels.
A list of 169 chemokines and cytokines identified by the
KEGG_CHEMOKINE_SIGNALING_PATHWAY and
BIOCARTA_CYTOKINE_PATHWAY were identified in
the dataset and used for differential expression where indicat-
ed. Cluster 3.0 was used to median-center the genes prior to
heat map generation in Java TreeView.

Statistical Analysis

Statistical method and sample size (n; the number of repli-
cates) are indicated in the figure legends. Statistical analysis
was performed using Prism 7 (GraphPad) software. A two-
tailed student’s t test was performed on the means of all para-
metric data. Statistical significance was defined as p < 0.05.
Error bars on figures show standard error of the mean (SEM).
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Results

Aggressive Pancreatic Tumor Cells Survived Following
Co-Culture with Fibroblasts in the Absence of Serum

We examined the growth of HPAF and HPAF-CD11 cells in
the presence or absence of serum-containing media when cul-
tured with or without fibroblasts. Both HPAF and HPAF-
CD11 cells showed serum dependency irrespective of their
aggressive differential phenotype when cultured in the ab-
sence of fibroblasts (Fig. 1a and b). Further, the growth of
HPAF cells was inhibited following co-culture with fibro-
blasts (BJ cells monolayer) in the presence of or absence of
serum (Fig. 1c) as compared to HPAF cells cultured alone.
The level of inhibition of HPAF cells growth following co-
culture with fibroblasts was similar to that observed when
HPAF cells alone were cultured in the absence of serum
(Fig. 1a). In contrast, we observed an increased survival and
growth of HPAF-CD11 cells following co-culture with fibro-
blasts (BJ cells monolayer). Interestingly the growth of HPAF-
CD11 cells was enhanced in following co-culture with fibro-
blasts in the absence of serum (Fig. 1d).

Survival of Tumor Cells Is Mediated by CAFs
Conditioned Media

To evaluate whether the survival of HPAF-CD11 cells on the
fibroblasts monolayer was mediated by the direct contact or
paracrine factors, HPAF and HPAF-CD11 cells were incubat-
ed with CAF-conditioned media or extracellular matrix

(ECM) generated from CAFs, and the increase in cell number
was quantitated. No increase in the cell number was observed
in HPAF cells in response to CAFs conditioned media, and
further inhibition was detected with ECM culture (Fig. 2a).
We observed a significant increase in the number of HPAF-
CD11 cells following co-culture with both CAFs conditioned
media and CAFs ECM (Fig. 2b). The increase in HPAF-CD11
cells cultured with CAFs conditioned media was greater than
that observed in response to ECM but less than that observed
with serum containing media (Fig. 2b). Next, we examined
the dose-dependence of CAFs-conditioned media on the
growth of HPAF-CD11 cell (Fig. 2c) and demonstrated that
increasing concentrations of CAFs conditioned media in-
creased the growth of HPAF-CD11 cells. Together, we per-
ceive that CAFs-derived paracrine factors contribute to the
survival of the aggressive PDAC cells.

CAFs Promote Tumor Cell Survival Via FGF-2

To determine the putative growth factors present in CAFs
conditioned media, we examined the effect of the neutralizing
antibodies of FGF-2 and CXCL8, which have been shown to
be involved in the tumor-stromal interaction [38, 42], on the
survival of HPAF-CD11 cells. Anti-FGF-2 antibody treatment
significantly abrogated the increase of cell number of HPAF-
CD11 following culture with CAFs conditioned media
(Fig. 3a), while anti-CXCL8 antibody treatment did not (Fig.
3b). To confirm that FGF-2 is produced by CAFs, we per-
formed ELISA on the CAF supernatant collected in serum-
free media or complete media (Fig. 3c). These results indicate

a b

c d

+FBS -FBS +FBS -FBS

+FBS -FBS +FBS -FBS

Fig. 1 Fibroblasts promote the survival of aggressive pancreatic
tumor cell. a Light microscope images of HPAF cells cultured in
complete media or serum-free media. b Light microscope images of
HPAF-CD11 cells cultured in complete media or serum-free media. c

Light microscope images of HPAF cells cultured on top of fibroblasts
(BJ) monolayer with complete media, or serum-free media. d Light mi-
croscope images of HPAF-CD11 cells cultured on top of fibroblasts (BJ)
monolayer with complete media, or serum-free media
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that FGF-2 but not CXCL8 in the CAFs conditioned media
was involved in the survival of HPAF-CD11.

FGF-2 Secreted by CAFs Induces CXCL8 Production
in Tumor Cells

CXCL8 and other CXC chemokines that signal through
CXCR1/2 axis are known to be expressed in PDAC cells
[50–52]. Autocrine and paracrine signaling through CXCR1/
2 axis plays a vital role in the progression of PDAC by pro-
moting tumor cells growth, angiogenesis, immunosuppression
and chemotherapy resistance [39, 53–55]. To examine the
involvement of FGF-2 in the CXCL8 production by PDAC
cells, we determined CXCL8 production in HPAF and HPAF-
CD11 cell after treatment with CAFs-conditioned media using
ELISA. Our data shows that HPAF-CD11 produce more

CXCL8 than their HPAF counterparts by comparing CXCL8
levels produced in serum-free media treatment as well as in
response to CAFs-conditioned media treatment (Fig. 4a-b).
By comparing the CXCL8 production in each cell in re-
sponse to CAFs-conditioned media, we show that CAFs-
conditioned media increased CXCL8 level in both HPAF
and HPAF-CD11 cells, and neutralizing FGF-2 has
lowered the CXCL8 inducing effect of the CAFs-
conditioned media (Fig. 4c and d).

Effect of Tumor Cell Conditioned Media
on the Survival of CAFs

Next, we examined the effect of the conditioned media from
PDAC cells with different aggressiveness on the survival of
CAFs. CAFs were incubated with the conditioned media of
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HPAF or and HPAF-CD11 for 1, 2, and 3 days, and the in-
crease in cell number was quantitated. We observed a signif-
icant increase in the number of CAFs following co-culture
with conditioned media of HPAF-CD11 cell at each time
point but not with that of HPAF (Fig. 5a). To determine
the putative growth factors present in the conditioned me-
dia of HPAF-CD11, we examined the effect of the neu-
tralizing antibodies of CXCL8 (Fig. 5b). Anti-CXCL8 an-
tibody treatment significantly abrogated the increase of
cell number of CAFs following culture with HPAF-
CD11 conditioned media. These results indicate that
CXCL8 was involved in the survival of CAFs by the
conditioned media of PDAC cells.

Aggressiveness-Dependent Gene Expression
of Tumor Cells when Co-Cultured with CAF

Finally, we used gene expression microarray to explore the
expressional differences between HPAF and HPAF-CD11

cells upon their co-cultured with CAF. Distinct gene expres-
sion profiles were observed for HPAF and HPAF-CD11 when
compared alone or in co-culture. More focused look into the
expression profile of paracrine factors revealed that CAFs are
the major contributor of many cytokines and chemokines
(Fig. 6a). Comparing HPAF/CAF co-culture to HPAF-
CD11/CAF co-culture revealed upregulation of motility
supporting gene ELMO1 in HPAF-CD11 co-culture, whereas,
mainly cytokines and chemokines were upregulated in the
HPAF co-culture (Fig. 6a). Targeted look into CXCL8 and
FGF-2 expression exhibited that CAFs are the leading produc-
er of CXCL8 and that CXCL8 was upregulated in the co-
culture condition compared to tumor cells cultured alone for
both HPAF and HPAF-CD11 (Fig. 6b). For FGF-2, only
HPAF-CD11 co-culture exhibited significance upregulation
of the gene compared to the tumor cells cultured alone (Fig.
6b). Together, these data demonstrate the versatility of CAFs
and their ability to support tumor cells in an aggressive-
dependent manner.
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Discussion

PDAC, one of the most malignant tumors, is often character-
ized by an abundant desmoplastic stroma. CAFs, which con-
stitute a major stromal compartment in PDAC, have been
shown to promote the invasive growth of several cancer types
such as breast, prostate, and lung [31, 56]. CAFs are often
only associated with excess extracellular matrix production;
thus, their contribution to desmoplasia [27]. Recent studies
have addressed the role of CAFs in pancreatic tumor aggres-
siveness. Non-irradiated CAFs significantly increased the in-
vasive ability of pancreatic cancer cells and the invasiveness
was further accelerated when they were co-cultured with irra-
diated CAFs [57]. Nitric Oxide released by CAFs has been
shown to lead to the upregulation of IL-1β in pancreatic car-
cinoma cells, leading to the induction of chemotherapy resis-
tance in these tumor cells [58]. CAFs can produce many para-
crine factors including chemokines, cytokines and growth fac-
tor, which allow interaction and subsequent modulation of
other cells in the tumor microenvironment [10]. This secretory
role of CAFs remained under-investigated. In the present
study, we demonstrated that pancreatic tumor with more ag-
gressive phenotype could interact with CAFs more than non-
aggressive cells. These data underscored the importance of the
interaction with CAFs in the exertion of the malignant poten-
tial of the pancreatic tumor.

FGF-2 is expressed in pancreas cancer [59], as well as
in many other malignant neoplasms [60, 61]. FGFs bind
to a family of transmembrane tyrosine kinase receptors
(FGFRs 1–4), and FGFR-1 and FGFR-4 are potent recep-
tors for FGF-2 [62]. A member of the CXC chemokine
family, CXCL8, its production has been correlated with

tumor growth, immunosuppression, resistance to chemo-
therapy, angiogenesis, and increased metastatic potential
of PDAC [40, 41].

In the current study, we demonstrate a bi-directional inter-
action between tumor cells and CAFs that creates a
feedforward loop to promote the survival of the tumor cells
in PDAC. The said interaction was more obvious with HPAF-
CD11 cells that acquire more PDAC aggressive features.
Culturing tumor cells on top of CAFs monolayer proved that
the interaction between malignant cells and CAFs could pro-
mote survival and growth of PDAC cells. Nonetheless, cultur-
ing tumor cells in CAFs-derived conditioned media demon-
strated that the survival stimulation effect of CAFs on malig-
nant cells is mediated through paracrine factors rather than
direct interaction. The use of neutralizing antibodies demon-
strated that FGF-2 is the putative factor that stimulates malig-
nant cells survival. Whereas it is clear that FGF-2 was present
in CAFs-conditioned media, the difference in the expression
of the appropriate FGF-2 receptors is possibly responsible for
the difference between HPAF and HPAF-CD11. Moreover,
CXCL8 has been shown to enhance endothelial cell prolifer-
ation and to regulate angiogenesis [63, 64]. In this study, we
show that CAFs-conditioned media increased CXCL8 pro-
duction by HPAF-CD11. Subsequently, CXCL8 may induce
angiogenesis necessary for further tumor progression. On the
other hand, HPAF cells that carry less aggressive potential
produce less CXCL8. Therefore, the CXCL8 level induced
by CAFs-conditioned media may be one of the determinants
for malignant potential. Recently, CXCL8 has been shown to
be produced by prostatic epithelial cells of benign prostatic
hyperplasia which consists of slow but progressive growth of
both epithelial and stromal cell and can act as a paracrine
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Fig. 6 Differential gene expression of tumor cells cultured with
CAFs. a Heat map of gene expression of HPAF and HPAF-CD11 cul-
tured alone or with CAFs determined using gene expression microarray.
Heat maps show chemokines and cytokine with >2-fold increase. b
Expression of CXCL8, represented as normalized signal intensity, in

HPAF and HPAF-CD11 cultured alone or with CAFs determined using
gene expression microarray. c Expression of FGF-2, represented as nor-
malized signal intensity, in HPAF andHPAF-CD11 cultured alone or with
CAFs determined using gene expression microarray
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inducer of FGF-2 production by prostatic stromal cells in vitro
[42]. In our study, conditioned media of the more aggressive
PDAC cells, HPAF-CD11, stimulated and maintained the sur-
vival of CAFs through the secretion of CXCL8. Therefore,
pancreatic tumor cell-derived CXCL8, released as a conse-
quence of FGF-2 stimulation, may act on CAFs to stimulate
further FGF-2 production. On the other hand, we have shown
that CAFs derived FGF-2 can act as a paracrine inducer of
CXCL8 production by pancreatic tumor cells.

Looking into the differential gene expression profiles of
HPAF and HPAF-CD11 upon their co-culture with CAFs
can reveal the extent of CAFs contribution to tumor progres-
sion. CAFs appear to have a high baseline of several cytokines
and chemokines including CXCL8. An interesting observa-
tion is that HPAF-CD11 cell/CAFs co-culture upregulates
ELMO1 gene that has been associated with motility [65, 66].
If we put this together with the ability of CXCL8 to induce
angiogenesis, we can assume that CAFs can contribute to
tumor cells spread to other organs.

In conclusion, interactions between pancreatic tumor cells
and CAFs promote the survival of tumor cells with aggressive
potentials and promote CXCL8 production. CXCL8, released
as a consequence of FGF-2 stimulation, act on CAFs to stim-
ulate further FGF-2 production. Thus, such bi-directional in-
teractions between pancreatic tumor cells and CAFs help the
tumor growth in different microenvironments, which leads to
the pancreatic tumor progression and spread.
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