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ABSTRACT In the progression of the life cycle of Plasmodium falciparum, a small
proportion of asexual parasites differentiate into male or female sexual forms called
gametocytes. Just like their asexual counterparts, gametocytes are contained within
the infected host’s erythrocytes (RBCs). However, unlike their asexual partners, they
do not exit the RBC until they are taken up in a blood meal by a mosquito. In the
mosquito midgut, they are stimulated to emerge from the RBC, undergo fertilization,
and ultimately produce tens of thousands of sporozoites that are infectious to hu-
mans. This transmission cycle can be blocked by antibodies targeting proteins ex-
posed on the parasite surface in the mosquito midgut, a process that has led to the
development of candidate transmission-blocking vaccines (TBV), including some that
are in clinical trials. Here we review the leading TBV antigens and highlight the on-
going search for additional gametocyte/gamete surface antigens, as well as antigens
on the surfaces of gametocyte-infected erythrocytes, which can potentially become
a new group of TBV candidates.
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Malaria control challenges arising from a combination of antimalarial-drug resis-
tance and insecticide resistance (1) have reignited interest in the development of

effective malaria vaccines and drugs that target multiple stages of the parasite’s life
cycle. Consequently, there has been increased focus on characterizing the sexual-stage
parasite in order to gain an in-depth understanding of essential processes such as
metabolism, sequestration, and infectiousness to the mosquito (2–5). The sexual-stage
parasite begins its life cycle as sexually committed (sc) merozoites contained within an
sc schizont in an infected red blood cell (RBC) (Fig. 1). When this sc schizont matures,
it bursts the RBC and releases the sc merozoites, which subsequently invade surround-
ing RBCs. Within the RBC, sc ring-stage parasites form and then differentiate into
mature transmissible gametocytes. For most Plasmodium parasites, the times required
for gametocyte and asexual maturation are similar, and all erythrocytic stages continue
to circulate in the peripheal blood. However, in the case of the most virulent human
malaria parasite, Plasmodium falciparum, which is the primary focus of this review, an
sc ring develops through five morphologically distinct developmental phases (stages I
to V) over the course of 10 to 12 days to become a mature male or female gametocyte
(6). Immature gametocytes (stages I to IV) are not observed in peripheral blood, and
early histological studies, as well as recent molecular studies, have identified the bone
marrow as a major sequestration site (7, 8). Apart from the bone marrow, immature
gametocytes have been identified in other organs, such as the spleen, gut, brain, and
heart (9). Following maturation to stage V, P. falciparum gametocytes are released and
circulate in the blood for 4 to 6 days before dying. Continuous production with each
asexual cycle ensures that mature stage V gametocyte-infected RBCs (giRBCs) circulate
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continuously for several weeks (5, 10), making them accessible for uptake when a
female mosquito takes a blood meal. The transcriptomes and proteomes of gameto-
cytes have been found to contain sexual-stage-specific gene transcripts and proteins,
some of which are expressed only in either immature or mature gametocytes (11–16).

Once in the mosquito midgut, mature male and female gametocytes of all Plasmo-
dium species egress out of the RBC and differentiate into male and female gametes,
respectively. Subsequently, mating (fertilization) occurs, resulting in the production of
a motile ookinete within 24 h. The ookinete migrates through the midgut epithelium
and forms an oocyst, where sporozoites mature over the course of 10 to 12 days before
they are released and migrate to the mosquito’s salivary glands. The infectous sporo-
zoites are then released into a new host when the infected mosquito takes a blood
meal.

The majority of current first-line antimalarial drugs are schizonticides that target the
asexual parasite; a few of these, such as chloroquine and artemisinin, have some level
of efficacy against early/young gametocytes (stages I, II, and III) (17), but not against
late-stage gametocytes (stages IV and V) (18–20). The ineffectiveness of first-line
antimalarials against transmissible mature gametocytes allows malaria transmission to
continue despite the effective clearance of asexual parasites. Given the prolonged
gametocyte maturation period in P. falciparum, a patient can remain infectious for more
than a week after drug treatment (19, 20). It is thus imperative to develop new tools,
such as transmission-blocking (TB) drugs and transmission-blocking vaccines (TBV), to
effectively clear all gametocytes. A reduction in gametocyte carriage can result in
reduced malaria transmission and the eventual eradication of the disease. This review
focuses on P. falciparum malaria and covers well-known TBV candidate antigens as well
as exploring a new class of gametocyte antigens, which may have the potential to elicit
TB antibodies. The lack of an in vitro culture system for Plasmodium vivax, the other
major cause of human malaria, has hindered de novo vaccine discovery. An effective
alternative strategy has been to target the P. vivax homologs of P. falciparum TB
candidates (21).

FIG 1 Life cycle of P. falciparum. Pre-erythrocytic-stage malaria vaccines target the sporozoites that are released from an infected mosquito into the human host
and infected liver cells. Blood-stage vaccines target the merozoites released from the liver schizont as well as preventing the development of the
asexual-stage-infected erythrocyte and the resulting merozoites produced from the erythrocytic schizont. Potential giRBC vaccines will target male and female
gametocytes that develop within the erythrocyte. Transmission-blocking vaccines prevent the eventual development of oocysts and sporozoites within the
mosquito. (Adapted from an Open Courseware image from the Johns Hopkins Bloomberg School of Public Health [188].)
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TRANSMISSION-BLOCKING VACCINE DEVELOPMENT
P. falciparum gametocyte and gamete surface antigens. Emergence from the

RBC within minutes of mosquito feeding effectively exposes all the proteins that were
present on the gametocyte membrane to the contents of the blood meal, including
antibodies and complement, which remain active in the midgut (22, 23). P230 and
P48/45 are two of the best-characterized gametocyte membrane proteins that are
exposed following gamete emergence from the RBC. The mosquito midgut environ-
ment also triggers the expression of additional gamete surface proteins from mRNA
stored in the parasite’s cytoplasm, such as P25 (24) and HAP2 (25). In contrast to
gametocyte membrane proteins, these gamete-specific proteins are not exposed to the
immune response of the human host, and thus, antibodies are not expected to be
naturally acquired but can be induced by vaccination. Antibodies recognizing either
type of gamete surface antigen have been shown to block/prevent the completion of
the sporogonic life cycle of the parasite within the mosquito and to result in the
development of transmission-reducing (TR) immunity or complete TB immunity (TBI)
upon vaccination (26–31). Another set of antibodies that have been found to prevent
the completion of the sporogonic life cycle of the malaria parasite target mosquito
midgut proteins, including Anopheles alanyl aminopeptidase N (AnAPN1) (32).

Parasite proteins expressed on the RBC surface during gametocyte development in
the human host could be another type of TBI target antigen. It is well established that
intraerythrocytic asexual parasites export proteins to the RBC surface, but evidence for
this in giRBCs has been more elusive and represents an opportunity to identify novel
vaccine candidates. Potential giRBC surface proteins are discussed in detail under
“Potential giRBC surface antigens” below.

Transmission-blocking antibodies. Early work using avian and murine Plasmodium
species clearly demonstrated that anti-gamete antibodies bind to the surfaces of
gametes and prevent the progression of parasite development within the mosquito
midgut (33–35). The establishment of in vitro culture for the human malaria agent P.
falciparum allowed the isolation of gametes that were used to produce murine mono-
clonal antibodies (MAbs) that recognized the gamete surface and also blocked oocyst
production (35–38) in an experimental membrane-feeding assay. This assay allows
mosquitoes to feed on gametocyte-infected red blood cells that have been mixed with
test antibodies and is the gold standard for measuring TB activity (TBA) (39–41).
Monoclonal antibodies with TBA or transmission-reducing activity (TRA) were then used
to identify specific target proteins on the gamete surface: first Pfs48/45, Pfs230, and
Pfs25, and later Pfs28 (Table 1). Pfs48/45, Pfs230, and Pfs25 are still being developed as
TBV candidates and are discussed in detail below, while antibodies against Pfs28 were
not found to be as as effective but did enhance the TBA of antibodies against Pfs25 (42).

TABLE 1 Characteristics of some important sexual-stage antigens

Gene (protein) TMDa Localization Reference(s)

PF3D7_0209000
(Pfs230)

0 Low-level protein expression begins in stage IIb gametocytes and peaks in
stage III gametocytes. Gene expression persists from early gametocytes
through macrogametes to zygotes.

2, 35, 36, 66, 159

PF3D7_1031000 (Pfs25) 1 Surfaces of emerged (extracellular) macrogametes through to ookinetes.
As with Pfs28, gene expression begins in stage V gametocytes but
remains in a translationally repressed state until gametocyte egress
from the giRBC.

35, 100, 159, 160

PF3D7_1346700
(Pfs48/45)

1 As with Pfs230, low-level protein expression begins in stage IIb
gametocytes and increases in stage III gametocytes. Gene expression
persists from male and female gametocytes through sporogonic
macrogametes to the zygote.

2, 35, 37, 71, 159

PF3D7_1346800 (Pfs47) 2 Protein expressed on the surfaces of extracellular female gametocytes and
gametes through to ookinetes. Low levels of gene transcripts are found
in early stage II/III gametocytes, and levels are increased in stage IV/V.

42, 79, 91

Pf3D7_1014200 (HAP2) 2 Surfaces of male gametocytes and microgametes. 44
aTMD, transmembrane domain (predicted using TMHMM [169]) obtained from PlasmoDB (142).
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Polyclonal antibodies targeting the male gamete protein HAP2 and a MAb targeting
female-specific Pfs47, a paralog of Pfs48/45, have been shown to reduce transmission
significantly (43, 44) and are included in the discussion. An Anopheles midgut antigen,
AnAPN1, with the potential to block the transmission of malaria in a parasite strain- and
species-transcending manner (45), has also been identified and is discussed below.

Sera from Plasmodium-infected individuals have also been shown to have TRA (30,
31, 41, 46–48), which has been associated with high antibody titers against gametocyte
surface antigens Pfs230 and/or Pfs48/45 in some studies (46, 47, 49). A recent study of
plasma from adults living in an area of malaria endemicity confirmed that naturally
acquired antibodies targeting recombinant Pfs230 region CMB (amino acids [aa] 444 to
730) and Pfs48/45 region 10C (aa 159 to 428) had TRA. However, the study also
demonstrated that the antibodies that remained after immunodepletion of anti-CMB
and 10C-reactive antibodies had TRA and recognized the surfaces of intact gametes
lacking both Pfs48/45 and Pfs230. Together, the data suggest the presence of gamete
surface antigens in addition to Pfs230 and Pfs48/45 that could be new TB targets (50).
To identify potential candidates, a protein microarray was used to compare the
reactivity profiles of plasma from two samples, one with �90% TRA and the other with
�10% TRA. Antibody reactivity was higher against Pfs230, Pfs48/45, and 43 other
gametocyte proteins in the plasma with high TRA. This set of proteins provides
candidates that need to be further evaluated for their ability to induce antibodies that
block transmission in the mosquito midgut and are discussed in detail under “Current
transmission-blocking vaccine candidates” below.

In contrast to antigens expressed in both gametocytes and gametes, naturally
induced antibody responses to Pfs25 and Pfs28 (Table 1) have not been reported (51,
52), which is expected, since the antigen is expressed only after gametocyte egress
from the erythrocyte within the mosquito. This lack of exposure during a natural
malaria infection has raised concerns about the ability of a vaccine targeting an antigen
expressed only in the mosquito midgut to be boosted by a natural malaria infection. To
overcome this lack of natural stimulation, repeat immunizations may be necessary.
Antibodies that target mosquito midgut antigens are similarly not primed in the human
host during an infection and will need repeated immunizations. The attractiveness of
this class of antibodies is the potential to disrupt the sporogonic life cycle of all malaria
parasites (45).

An alternative TB strategy is to target parasite antigens exposed on the surfaces of
giRBCs that are accessible to antibodies. In contrast to the finding of the robust
immune responses against antigens on the surfaces of erythrocytes infected with
asexual-stage parasites (iRBCs) (53), few studies have identified natural immune re-
sponses against antigens on the surfaces of giRBCs (54). One study involving Gambian
children found that antibodies from gametocyte carriers recognized the surfaces of
mature gametocytes produced from the P. falciparum parasite strain 3D7 (55). Although
the targets of the gametocyte-recognizing antibodies were not determined, the study
supported the existence of gametocyte-specific antigens on the surfaces of giRBCs. If
present, parasite-produced antigens on the giRBC surface would be good targets for
TBV candidates (53), since the clearance of gametocytes from the circulation would
result in the interruption of malaria transmission.

Transmission-blocking immunity. The identification of MAbs that effectively block
parasite transmission in a standard membrane-feeding assay (SMFA) clearly demon-
strates the importance of antibodies in TBI, but the roles of other immune effector
mechanisms are less well studied. There is no major histocompatibility complex class I
(MHC-I) expression on the host RBCs, and therefore, gametocyte antigens cannot be
presented directly to CD8� T cells, suggesting a minimal role for CD8� T-cell responses.
However, in contrast to asexual parasites, unless mature intraerythrocytic stage V
gametocytes are taken up by a mosquito, they die after circulating in the human host
for 4 to 6 days and are cleared from the body. This provides antigen-presenting cells
(APCs) the opportunity to take up gametocyte antigens and load them onto MHC-II
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molecules for presentation to CD4� T cells. Once activated, CD4� T cells could enhance
antibody production and memory B-cell formation. Effector CD4� T cells are also
important sources of cytokines that activate macrophages and other immune effector
cells. Although the role of CD4� T cells in the induction of antibodies against asexual-
stage P. falciparum parasites has been studied extensively (56), their role in inducing
gametocyte-specific antibodies is not well established (57–59). In general, antibody
responses against gametocyte antigens tend to be lower than anti-asexual-antigen
responses, but the intensity and breadth of the response increases over the season,
suggesting boosting during reexposure (60). The reduced response to gametocytes
could be due to the low number of gametocytes produced during an infection, as well
as to decreased CD4� T-cell help. There is some evidence that titers of antibodies
against some gametocyte antigens decline quickly (60, 61), but this decline is antigen
and epitope specific, suggesting that it is not due to a general suppression of CD4�

T-cell help. The marked epitope specificity indicates that the interplay between anti-
gens, B cells, APCs, and T cells needs to be tested for each candidate vaccine in order
to determine the optimal immunization strategy.

The cytokines gamma interferon (IFN-�) and tumor necrosis factor alpha (TNF-�) are
secreted from a number of cell types (including NK cells, �� T cells, and macrophages)
as well as Plasmodium-activated CD4� T cells and have been identified as factors that
inactivate gametocytes in symptomatic malaria infections (62). However, whether
cytokine levels are altered by giRBC exposure remains an open question. Complement-
mediated lysis of giRBCs has also been suggested (63), as well as nonopsonic phago-
cytosis of young (stage I and II) giRBCs (64). Immune components of the host’s blood,
including antibodies, white blood cells, cytokines, reactive nitrogen species, and com-
plement proteins, among others, are available to target all the various sporogonic
parasite forms, as they remain active in the mosquito midgut hours after ingestion (65).
The human complement system has been implicated in reducing transmission in the
mosquito midgut, since the TR activity of antibodies against some antigens, such as
Pfs230, requires complement (66, 67).

Current transmission-blocking vaccine candidates. Initially, the four P. falciparum
sexual-stage antigens identified as targets of transmission-blocking monoclonal anti-
bodies were advanced as transmission-blocking malaria vaccine candidates: two
(Pfs230 and Pfs48/45) are antigens whose expression begins in intracellular gameto-
cytes within the human host, and the other two (Pfs25 and Pfs28) are antigens whose
expression begins in extracellular gametocytes within the mosquito. Since then, three
additional candidates have been discovered: two expressed by the parasite, HAP2 (32)
and Pfs47 (68), and one mosquito midgut protein, AnAPN1 (69) (Fig. 2), which is
discussed below. Homologs of all these antigens are also expressed by P. vivax, the
other major cause of human malaria, and to date, all but HAP2 have also been reported
to be targets of TRA antibodies (70, 71).

GAMETOCYTE/GAMETE ANTIGENS Pfs230, Pfs48/45, Pfs47, AND HAP2

Pfs230, Pfs48/45, and Pfs47 belong to the 6-Cys s48/45 family of proteins (72). Some
essential features of this family of proteins include their surface localization on exposed,
extracelluar gametes (Table 1) and the presence of at least one s48/45 domain
comprising 6 positionally conserved cysteine residues (73, 74). It was initially thought
that the family comprised 10 members (72); however, 5 additional members have been
identified (74). Although the functions of only a few family members are known (74),
five members—Pfs230 and Pfs48/45, their respective paralogs Pf230p and Pfs47, and
the putative secreted ookinete protein 12 (PSOP12)—are expressed on gametocytes,
and their expression persists through the gamete to the zygote stage of the sexual life
cycle of P. falciparum (36, 73, 74). Until recently, only Pfs230 and Pfs48/45 had been
shown to be TB targets and had been very well characterized (37, 75–82). The
monoclonal antibodies initially available against Pfs47 did not exhibit TB activity (83),
and therefore, Pfs47 had not been the focus of much previous analysis. However, the
transmission-blocking potential of Pfs47 has been demonstrated recently (43).
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Pfs230. Pfs230 is a 3,135-amino-acid protein encoded by a 9.4-kb gene and is
predicted to be 363 kDa long (77). It is, however, truncated to 300 kDa as the gametes
emerge from the red blood cells (80). Gene disruption studies showed that Pfs230 is
retained on the surface of the parasite plasma membrane through interactions with
Pfs48/45 and is critical for the formation of exflagellation centers in the male gameto-
cyte (82). Pfs230 contains 14 s48/45 6-Cys domains (67), which is the maximum number
that has been found among members of the 6-Cys s48/45 family (74). The numerous
cysteine motif domains of the protein have made expression of full-length, correctly
folded, soluble protein difficult, but fragment expression has been achieved (85–87).
Through the expression of various maltose binding protein (MBP)-tagged fragments of
Pfs230 in Escherichia coli, antibodies generated against a region designated “C” (aa 443
to 1132) were found to reduce transmissibility to mosquitoes by as much as 80% (88).
Studies on various fragments of this region, expressed in a wheat germ cell-free
expression system, also indicated that the N-terminal subdomain (aa 443 to 588) was
sufficient to induce transmission-blocking activity (87). Higher concentrations of anti-
bodies against this subdomain were found to correlate positively with the age of the
host in a preliminary study and were not affected by deletion of one of the two “YGE”
tripeptides (85). Optimization using the Pichia pastoris expression system identified
recombinant Pfs230 aa 443 to 730 (Pfs230D1M) as a strong transmission-blocking
vaccine candidate, and two formulations (Pfs230D1M conjugated to exoprotein A
[Pfs230D1M-EPA]), one with aluminum hydroxide (Alhydrogel) (ClinicalTrials registra-
tion no. NCT02334462) and one with AS01 (ClinicalTrials registration no. NCT02942277),
are currently in phase I clinical trials (67).

Pfs48/45. Pfs48/45 is a 448-aa protein that is encoded by a 1.3-kb gene and is
predicted to be 51 kDa long. It is a glycosylphosphatidylinositol (GPI)-anchored protein
that interacts with Pfs230 and anchors it to the plasma membrane of the parasite (76).
Pfs48/45 has been identified as a vital antigen required for male fertility (75). It contains
three s48/45 domains and has three main epitopes. Antibodies against epitope I have
the highest level of TB activity and are independently able to reduce gametocyte
infectivity to mosquitoes in a complement-independent manner (89). Antibodies
against epitopes II and III exhibit negligible TB activity independently (89). Epitope I has
few polymorphisms, and antibody titers against epitope I have been found to be higher
in adults than in younger people (85, 90), making it a suitable region for the production
of a transmission-blocking vaccine candidate. A major challenge to the production of

FIG 2 Schematic of TBV gene structures. Brown segments represent the signal peptide motif; the gray
segment represents the prodomain; blue segments represent the main structural domains; black
segments represent the GPI motif or, for HAP2, the transmembrane domain. Thick red lines represent the
regions containing the active epitopes.
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correctly folded, functional fragments of Pfs48/45 has been the generation of a
construct with precise pairing of cysteine residues during disulfide bond formation, due
to the presence of numerous cysteine residues. Initial success was achieved by using E.
coli to produce the full-length protein without the secretory signal sequence (aa 27 to
427) (81), as well as constructs comprising aa 28 to 428 (16C) or aa 159 to 428 (10C) as
chimeras, both individually fused to MBP and referred to as M-Pfs16C and M-Pfs10C,
respectively (91). However, neither of these constructs could be scaled up using good
manufacturing practices (GMP), due to incorrect protein folding (92). Subsequently, the
10C fragment (aa 159 to 428), which contains epitopes I and II, was fused to the
nonrepititive region (R0) of P. falciparum glutamate-rich protein (GLURP; aa 26 to 500)
and expressed in Lactococcus lactis with much better success at GMP than that for
M-Pfs10C, although the yield of correctly folded protein was low, and extensive in vitro
refolding and purification was required to increase it (92). In order to overcome the
yield-associated challenges, the 10C fragment was further reduced to a 6C fragment (aa
287 to 428) that contained only epitope I, still fused to R0 (93). In order to obtain a
purified 6C fragment, without the R0 fusion partner, a tobacco etch virus (TEV) protease
site was inserted between R0 and the 6C fragment to obtain pure, correctly folded
Pfs48/45 6C protein (85). Correctly folded full-length Pfs48/45 has recently been
produced with high yields in insect cells (Drosophila S2 cells) and has been found to be
the target for highly potent transmission-blocking antibodies (94). No construct has
reached phase I clinical trials yet, although a number are in preclinical development
(68).

Pfs47. Pfs47 is a 439-amino-acid protein encoded by a 1.32-kb gene and predicted
to be 50.8 kDa long. It is a GPI-anchored protein that is expressed only by female
gametocytes and is retained on the surfaces of female gametes (83) through fertiliza-
tion and development into ookinetes (95). Earlier studies of this antigen suggested a
minimal role and functional redundancy, since gene disruption and monoclonal anti-
bodies against this antigen did not lead to reduced mosquito infection, undermining its
potential as a vaccine candidate (83). Subsequent genetic linkage and functional
genomic studies, however, identified this antigen as the crucial antigen that protects
the parasite from the mosquito’s hemolymph complement-like immune system (96).
The antigen downregulates JNK signaling in mosquito midgut cells, which targets the
invading ookinete for subsequent complement-like removal (97, 98). The gene encod-
ing this antigen has been found to be highly polymorphic (with 42 haplotypes) (84),
especially in the region encoding the second of the three 6-Cys domains, which shows
high geographic diversity. It has been reported that Pfs47 mediates immune evasion in
different mosquito species in a haplotype-dependent manner (99). A recent study
demonstrated that the full-length protein expressed in E. coli as a chimera with
thioredoxin protein was immunogenic but did not induce TB immunity. Monoclonal
antibodies generated against the full-length protein did not have transmission-
blocking activity and were found to bind s48/45 domain 1 or 3. Domain 2 was not
tested initially, because it could not be generated in E. coli due to toxicity. This problem
was overcome by expressing a section of domain 2 (aa 178 to 267) in which the two
cysteines were replaced with alanines (mD2). The original MAbs generated against
full-length protein did not recognize the recombinant, so mD2 was used to generate
additional MAbs, some of which were found to have significant TRA, inhibiting fertil-
ization and subsequent ookinete formation (43). Further analysis of domain 2 identified
a smaller, relatively conserved 52-aa region (aa 178 to 229) that elicited TRA antibodies
in mice, and this is currently a prospective transmission-blocking vaccine candidate.
This antigen is undergoing preclinical development (100).

HAP2. P. falciparum HAP2 (PfHAP2) is an 889-amino-acid protein encoded by a
1-intron, 2,816-bp gene. PfHAP2 belongs to the HAP2 family of proteins, which are class
II viral fusion proteins with a cysteine-rich extracellular region (101). PfHAP2 is ex-
pressed only in male gametocytes and activated male gametes and therefore is referred
to as the male gamete protein (44). The HAP2 gene is an essential gene, which enables
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the male microgamete to fuse with and fertilize the female macrogamete (25). The
conserved “fusion/cd loop” region (aa 174 to 205 in Plasmodium berghei and aa 178 to
207 in P. falciparum) has been found to be essential for HAP2 function (102). Subse-
quently, a study showed that antibodies against aa 355 to 609 of P. berghei HAP2
inhibited oocyst formation in the mosquito in vivo, although this inhibition was
reversed at low antibody dilutions (44). Another study produced a fragment of PfHAP2
(aa 195 to 684) representing the ortholog of P. berghei aa 355 to 604 in the wheat germ
cell-free expression system (101). Purified IgG from sera obtained from mice immunized
with PfHAP2 strongly inhibited (by 97%) oocyst formation in Anopheles mosquitoes in
the presence of complement (32). Additional studies have shown that antibodies
targeting the “cd loop” region (aa 178 to 195 in P. falciparum and aa 174 to 191 in P.
berghei) possess transmission-blocking activity (101). No construct has reached phase I
clinical trials yet.

Pfs25. Pfs25 is a 217-aa protein encoded by a 0.65-kb gene and predicted to be a
24-kDa, GPI-anchored protein that belongs to a 13-member P25 family of proteins
(103). This family of proteins is similar to the s48/45 family by virtue of having a
relatively complex tertiary structure containing a large number of disulfide bridges
(103). The protein is not expressed on the giRBC surface but rather is expressed after
egress of the sexual-stage parasite from the giRBC (104). Vaccina virus was the first
recombinant expression system found to generate correctly folded recombinant Pfs25
that bound to specific TB monoclonal antibodies (105, 106). Since then, expression in
a variety of recombinant systems, including yeast (105, 107), plants (108), and algae
(109), have been successful (Table 2). Monoclonal antibodies raised against correctly
folded recombinant Pfs25 antigens, such as the highly effective 4B7, have been found
to achieve potent TBA at high concentrations (105, 110), and MAb 4B7 is used as a
reference for mosquito-feeding assays (40, 111, 112). Pfs25 is among the most ad-
vanced antigens in terms of TBV development (100); however, the lack of natural
boosting within the human host continues to be a concern. A number of yeast- and
plant-expressed Pfs25 products are in phase I clinical development; these include
Pfs25-EPA formulated in Alhydrogel (ClinicalTrials registration no. NCT01434381,
NCT01867463, and NCT02334462) or AS01 (ClinicalTrials registration no. NCT02942277)
and chimeric Pfs25 fused in frame to the alfalfa mosaic virus coat protein and produced
as a virus-like particle (VLP) formulated in Alhydrogel (ClinicalTrials registration no.
NCT02013687). The initial trials using Alhydrogel formulations of Pfs-EPA or Pfs25-VLP
showed that they were safe but did not stimulate robust TBA titers, and these results
have led to the testing of alternative adjuvants, including AS01 (113–115).

AnAPN1. The most advanced mosquito-based malaria transmission-blocking vacine
candidate is the Anopheles alanyl aminopeptidase N (AnAPN1) (116), a member of the
M1 family of metallopeptidases (69). AnAP1 is a 1,020-aa residue GPI-anchored protein
predicted to be 113.5 kDa long. The gene is composed of four domains, designated
domains I to IV, the N-terminal domain I (aa 57 to 270), domain II (aa 271 to 523),
domain III (aa 524 to 613), and the C-terminal domain IV (aa 614 to 942). AnAPN1 is
found on the apical surfaces of both sugar-fed and blood-fed Anopheles gambiae
midguts and is a ligand for both murine and human Plasmodium ookinetes (69).
Antibodies against a 135-aa fragment of the N-terminal domain I (aa 60 to 195) are
capable of inhibiting the completion of the sporogonic life cycles of both P. falciparum
and P. berghei in the mosquito (69, 117). Recent epitope mapping of AnAPN1 has
identified aa 98 to 123 and aa 173 to 194 as targets of antibodies that block the binding
of AnAPNI to the ookinete micronemal pore-forming protein (116). AnAPN1 has been
expressed in a variety of expression systems, including E. coli, viral vectors (recombinant
chimpanzee adenovirus 63 [ChAd63] and modified vaccina virus Ankara [MVA]) (118),
and HEK293 human embryonic kidney cells, as either full-length protein or fragments
including all or part of the N-terminal domain I. Antibodies against full-length AnAPN1
expressed in viral vectors did not exhibit TBA (118), while those expressed in bacteria
exhibited 66% to 68% inhibition of P. falciparum oocyte development (69). Antibodies
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TABLE 2 Heterologous expression of some important sexual-stage antigens

Antigen Fragment/domain Expression system(s)a TBA (%)b Hu. comp.c Reference(s)

Pfs48/45 Full length (aa 1–448) Sf9 insect cells ND NA 170
aa 27–427 Drosophila melanogaster Yes (�96) Yes 94
M-Pfs10C (aa 159–428) E. coli Yes (�90) Yes 91
aa 118–218 E. coli ND NA 170
Full length (M-Pfs16C) E. coli ND NA 91
CH-rPfs48/45 (full length) E. coli Yes (�97) Yes 171
Epitope I (aa 287–428) L. lactis ND NA 85
Epitope I (aa 291–428) L. lactis Yes (�90) No 93
Epitope I�II (aa 159–428) L. lactis Yes (�90) Yes 92
C-terminal (domain III) Chlamydomonas reinhardtii ND NA 172
16C (full length) DNA based Yes (�90) Yes 173
Pfs48F1 (aa 28–401) Nicotiana benthamiana ND NA 174
Full length N. benthamiana ND NA 175
Pfs48/45�NGln (aa 28–427) MVA, ChAd63 Yes (45.5) Yes 118
Pfs48/45-NGln (aa 28–427) MVA, ChAd63 No Yes 118

Pfs230 Prodomain (aa 443–588) L. lactis ND NA 85
Prodomain, C0 (aa 443–588) WGCF system Yes (�82)d Yes 87
Region C (aa 443–1132) WGCF system Yes (�99)d Yes 87
Pfs230C1 (aa 443–715) WGCF system Yes (�91)d Yes 87
Pfs230C2 (aa 443–915) WGCF system Yes (�79)d Yes 87
Region C (aa 443–1132) E. coli Yes (�76) Yes 67
Pfs230D1–2 (aa 443–915) E. coli Yes (�65) Yes 176
Region C (aa 443–1132) DNA based Yes (94.4) Yes 177
D1M (aa 542–736) P. pastoris Yes (�100) Yes 176
Pfs230D1H (aa 443–736) P. pastoris Yes (�100) Yes 176
230CMB (aa 443–730) Plant Yes (�100) Yes 86
Region C (aa 443–1132) HEK293 cells Yes (100) Yes 118
Pfs230C1 (aa 443–731) Baculovirus Yes (99.5) Yes 178

Pfs25 Pfs25B (aa 22–190) Yeast Yes (�100) No 105
aa 22–193 P. pastoris Yes (�100) No 179
TBV25H (aa 22–193) Saccharomyces cerevisiae Yes (�100) No 180
aa 18–202 DNA based Yes (�99) Yes 181
Full length DNA based Yes (�99) Yes 173
aa 18–202 WGCF system Yes (�100) No 182
aa 1–217 Cell-free system Yes (�100) No 183
aa 24–193 Cell-free system Yes (�32) 183
Pfs25-FhCMB (aa 23–193) Plant Yes (�99) No 49
a-Pfs25 (aa 22–193) Algae Yes (�100) No 184
CHrPfs25 (full length) E. coli Yes (�100) No 185
Full length E. coli Yes (�62)e No 186
Full length (aa 1–217) Adenovirus Yes (�82.5) No 187
4B7 and 1D2 (aa 122–134) Adenovirus Yes (�78.1) No 187
aa 22–192 MVA, ChAd63 Yes (�99) Yes 118
aa 22–193 Baculovirus Yes (�98) No 179

Pfs47 Full length (aa 28–414) Insect cells ND No 43
Full length (aa 28–414) E. coli No No 43
Pfs47-mD2-Del1 (aa 178–267) E. coli Yes (87)f Yes/no 43
Pfs47-mD2-Del2 (aa 178–229) E. coli Yes (97)f Yes/no 43
Pfs47-mD2-Del3 (aa 155–181) E. coli No Yes/no 43

HAP2 aa 195–684 WGCF system Yes (97) NS 32, 112

AgAPN1 aa 60–195 E. coli Yes (�100) Yes 45
aa 60–195 E. coli Yes (�100) Yes 117
aa 60–195 Bacteria Yes (�87) NS 69
rAnAPN160-942 D. melanogaster ND NA 45
AgAPN1 Nterm (aa 61–195) MVA, ChAd63 Yes (48)f Yes/no 118
AgAPN1 DomI (aa 20–303) MVA, ChAd63 No Yes 118
AgAPN1 (aa 20–998) MVA, ChAd63 No Yes 118

aWGCF, wheat germ cell free; MVA, modified vaccinia virus Ankara; ChAd63, chimpanzee adenovirus 63.
bND, not determined.
cHu. comp., human complement; NA, not applicable; NS, not stated.
dReduced TBA in the absence of complement.
eAt low IgG concentrations.
fNot affected by the presence or absence of complement.
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against the entire N-terminal domain I expressed in viral vectors similarly lacked TBA;
however, antibodies against the 135-aa fragment of domain I (aa 61 to 196) expressed
in viral vectors exhibited 45% TBA only at low antibody concentrations (118). Other
studies, however, have demonstrated TBA as high as 100% for antibodies raised against
the same 135-aa fragment of N-terminal domain I expressed in E. coli (45, 117). This
antigen has not yet advanced to phase I clinical development.

NOVEL GAMETOCYTE AND GAMETE SURFACE ANTIGENS

A recent study aimed to identify novel TBV candidates by probing a protein
microarray containing 315 P. falciparum gametocyte-related proteins with human
plasma from an area of malaria endemicity (50). The antibody responses of plasma
samples with high (�90%) and low (�10%) TRA were compared, and 43 proteins, in
addition to Pfs230 and Pfs48/45, showed were significantly higher levels in plasma
samples with high TRA. Thirteen of these 43 proteins were highlighted as possible TBV
candidates based on enriched expression in gametocytes and the presence of at least
one predicted transmembrane domain (TMD) or a secretory signal sequence. Two of
the 13 antigens, PF3D7_1021100 and PF3D7_1324600, were specifically predicted by
go_cell_comp annotation to be surface exposed, and another two, Pf11-1 (PF3D7_
1038400) and gamete surface and sporozoite traversal protein/GEST (PF3D7_1449000),
have previously been functionally associated with gamete emergence in the mosquito
midgut (50). Except for Pf11-1, the TBA of antibodies specific for any of these antigens
has not been reported. Antibodies did recognize Pf11-1 on the gamete surface during
emergence but did not exhibit potent TB responses (119). Given the large size of Pf11-1
and the recent demonstration of the marked specificity of the TB epitope in Pfs47, it
may be worthwhile to reassess specific protein domains in Pf11-1 as TB antibody
targets. Additional work is needed to carefully characterize these 13 antigens in order
to validate their potential as TBV candidates.

PARASITE-SPECIFIC INFECTED-ERYTHROCYTE SURFACE ANTIGENS

After successful RBC invasion, P. falciparum develops and resides in the parasito-
phorous vacuole (PV), which separates it from the RBC cytoplasm. As the parasite
grows, it actively enlarges the PV membrane (PVM) and exports proteins across the PVM
to modify both the RBC cytoplasm and the plasma membrane (13, 120–122). A number
of these exported, parasite-produced proteins are exposed on the RBC surface during
asexual intracellular development. Many of these surface-exposed parasite proteins
belong to large multigene families, notably the surface-associated interspersed protein
(SURFIN) (123), the subtelomeric variable open reading frame (STEVOR) (124), Maurer’s
cleft two-transmembrane domain (PfMC-2TM) (124), type A and B repetitive inter-
spersed family (RIFIN) (125, 126), and P. falciparum erythrocyte membrane protein 1
(PfEMP1), which is encoded by var genes (127, 128). These multigene families are
known to be highly polymorphic and thus, as a group, are simply called variant suface
antigens (VSA). Erythrocyte surface exposure allows these genes to mediate the inter-
action of iRBCs with other cells, including uninfected RBCs and endothelial cells, and to
serve as targets for immune responses. Antibodies against specific PfEMP1 family
members are thought to be associated with allele-specific protection against malaria.
However, the expression of only 1 of the 60 distinct PfEMP1 proteins encoded in the
genome at a time, coupled with the extreme polymorphism in the population, allows
immune evasion through the continual emergnce of parasites expressing distinct
PfEMP1 proteins (129, 130). PfEMP1 also mediates endothelial cell adhesion, allowing
iRBCs to be sequestered and thus avoid circulation (53) and clearance in the spleen. The
roles of the other iRBC surface protein families are less well defined, especially for the
SURFIN family, and can differ between family members. RIFIN and STEVOR family
members have been identified that bind glycoproteins on the uninfected RBC surface
and play roles in merozoite invasion and adhesion and iRBC sequestration (124,
131–134). Some members of the SURFIN family of proteins have also been suggested
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to be involved in merozoite invasion (123); however, more studies are needed to
confirm this.

None of these protein families have been well characterized in giRBCs, but if
exposed on the surface, they could be targets for transmission-blocking immunity, as
seen with anti-PfEMP antibodies against asexual parasites. Initally, the sequestration of
immature gametocytes until they mature to stage V was thought to be due to the
presence of adhesins on the surfaces of immature giRBCs that are lost/degraded upon
maturity (135). The inability to identify PfEMP1 family members on immature gameto-
cytes (13), as well as the negligible binding of giRBCs to a variety of bone marrow-
derived endothelial cells (135–138) and C32 melanoma cells (139), has given rise to an
alternative theory, that sequestration is not dependent on adhesins. This alternative
theory suggests that the rigidity of immature gametocytes keeps them embedded
within the bone marrow until they mature to stage V, regain elasticity, and return to the
circulation (135, 140). However, transcripts for members of the SURFIN, STEVOR, and
RIFIN families have been found in gametocytes, and both indirect and live immuno-
fluorescence assays (IFA) indicate that the proteins are expressed on the gametocyte
surface (141) (Table 3). Recent proteomic data have identified a number of proteins
encoded by conserved single-copy-number genes exposed on the asexual iRBC surface
that may function as blood-stage malaria vaccines (127). To identify additional
gametocyte-specific giRBC proteins, a similar, careful protemic analysis of giRBCs is
needed.

POTENTIAL giRBC SURFACE ANTIGENS
stevor/STEVOR. There are 226 members of the subtelomeric variable open reading

frame (STEVOR) protein family (142). They range from about 27-kDa to 35-kDa proteins

TABLE 3 Selected potential RBC surface proteins with transcripts in gametocytes

Antigen PlasmoDB ID

Expression profilea

TMDGametocyte Asexual

SURFIN
SURFIN 1.1 Pf3D7_0113100 II/V All (low) Yes
SURFIN 1.3 Pf3D7_0113600 II/V All (low) No
SURFIN 8.2 Pf3D7_0830800 V All (low) Yes
SURFIN 13.1 Pf3D7_1301800 V All (low) Yes

STEVOR
STEVOR Pf3D7_0617600 II R, LT Yes
STEVOR Pf3D7_1040200 II R, ET, LT, Sc Yes

RIFIN
Type B PF3D7_0425700 II R Yes
Type A PF3D7_0114700 II (low) R Yes
Type B PF3D7_0115200 II (low) R Yes
Type B Pf3D7_0222700 V/II R Yes
Type NDb PF3D7_0632300 II/V R Yes
Type B PF3D7_0900300 II (low)/V (low) R/Sc Yes
Type B PF3D7_0900500 V All (low) Yes
Type A PF3D7_0901000 II (low)/V (low) R/ET Yes
Type B PF3D7_1300600 V/II LT (low) Yes
Type A PF3D7_0115600 II/V R Yes
Type A PF3D7_0324800 II/V R, ET, LT Yes

Other
Conserved protein PF3D7_1021100 V All Yes
Export protein (EP) PF3D7_1149100 II/V ET No
EP (PHISTc) PF3D7_0936800 II/V R Yes
FIKK4.1 PF3D7_0424500 II/V R Yes
MESA PF3D7_0500800 II ET/LT No

aRoman numerals refer to stages: II, early gametocytes; V, mature gametocytes. All, all asexual-parasite
stages; R, ring-stage asexual parasites; ET, early trophozoites; LT, late trophozoites; Sc, schizonts; low, low
expression levels. The expression data are from Lopez-Barragan et al. (14) as published in PlasmoDB (142).

bND, classification of rif gene not specified (14, 142).
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and have been strongly predicted as possible gametocyte surface antigens (141, 143).
STEVOR proteins have been identified on the surfaces of late-trophozoite- and schizont-
infected erythrocytes (53), and some studies have also identified STEVOR proteins on
the membranes of stage III to V giRBCs (141); however, limitations such as the
availability of variant- and domain-specific reagents to ascertain the actual localization
of the proteins weaken the report. Plasmodium falciparum is able to coexpress multiple
stevor genes in a single parasite (53). Although the surface exposure of STEVOR proteins
on giRBCs might suggest that STEVOR proteins play a role in gametocyte sequestration,
the absence of STEVOR proteins on sequestrable early-stage (stage I and II) gameto-
cytes (141) suggests that gametocyte sequestration is unlikely STEVOR dependent.

rif/RIFIN. The repetitive interspersed (RIFIN) proteins belong to a family of 222
variable genes (142) that code for proteins ranging between 30 and 45 kDa (125, 144).
These proteins, like the STEVOR proteins, have been identified on the surfaces of
parasite-infected erythrocytes, merozoites, sporozoites, and gametocyes (15, 126, 145).
RIFIN proteins have been suggested to be trafficked through the Maurer’s cleft (MC)
(126, 146) to the surface of the parasitized RBC (pRBC) (125, 144). All RIFIN proteins were
initially thought to possess two putative TMDs (147). However, it has recently been
confirmed that although some variants possess two TMDs, others have one (148). The
RIFIN proteins can be classified, based on sequence diversity, architecture, and cellular
localization, into two subgroups, RIFIN-A (RIF_A) and RIFIN-B (RIF_B) (126, 148), which
are most often coexpressed in a single parasite (149).

surf/SURFIN. The surface-associated interspersed gene (surf) family encodes 13
high-molecular-weight proteins (about 280 to 300 kDa) known as SURFIN proteins
(PlasmoDB). SURFIN proteins have structural similarities with other exported and
surface-exposed Plasmodium proteins, such as an N-terminal signal sequence similar to
that of P. vivax VIR (PvVIR) and tryptophan-rich domains (WRD) similar to those of
PfEMP1, both of which are surface-exposed proteins (123). Indirect IFA on iRBCs were
used to identify the localization of some surfins. SURFIN 4.2 was found to colocalize
with PfEMP1 on the iRBC membrane (123), and SURFIN 4.1 was found within the PV
(150) and the iRBC cytosol (151). In contrast to the observations for rifin and stevor
genes, coexpression of multiple surf variants in a single isolate has not yet been
reported, although several copy number variants have been identified (150). Just as
with stevor and rifin genes, surf genes are generally differentially transcribed in different
stages of the intraerythrocytic parasite (14). A few family members, such as surf 1.3, surf
4.2, and surf 8.3, are detected in all the various asexual intraerythrocytic stages of the
parasite (150), as opposed to surf 8.2, which is preferentially expressed in mature stage
V gametocytes, and surf 4.1, which is preferentially expressed in schizonts (14). As
opposed to rifin and stevor genes, where all family members have Plasmodium export
element (PEXEL) motifs, some surfins, such as surf 8.2, are PEXEL-negative exported
proteins (PNEPs). Although surf 4.2 has two PEXEL motifs, translocation to the iRBC
surface was found to be independent of either motifs (152). The high levels of surf 8.2
transcripts in gametocytes (14) and the presence of a TMD and a PNEP sequence
suggest that SURFIN 8.2 is exposed on the surfaces of gametocyte-infected RBCs;
however, this assumption has yet to be validated.

Insights/perspectives. Additional effective transmission-blocking interventions are
needed to complement current global malaria control and elimination efforts. A key
process in the life cycle of P. falciparum parasites that enhances both disease and
transmission is sequestration. Sequestration, which is thought to decrease recognition
and clearance of the parasite by the spleen, has been extensively studied in the asexual
parasite (127, 128, 153–157). Sequestration in the sexual-stage parasite has not gained
as much attention (136), although it is assumed to be responsible for gametocyte
development to maturity within the host without splenic clearance, which increases the
likelihood of malaria transmission. A humanized mouse model with a human bone
marrow transplant has recently been made available for the study of gametocyte
sequestration (158) and should enable us to better understand its mechanisms. Al-
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though there is some indirect evidence of gametocyte-specific giRBC surface antigens
(55, 159, 160), no specific antigens have been identified. Enhancing immune recogni-
tion of giRBCs by using vaccine-induced antibodies to target a gametocyte-specific
giRBC surface antigen could reduce the prevalence of mature and infective gameto-
cytes, leading to a reduction in malaria transmission. A few studies have identified
antibody responses that are specific to gametocyte carriage (60, 161); however, the
localization of these antigens on the giRBC or gamete is not currently known. Parasite
diversity is a major challenge to malaria vaccine design (162). It has been observed that
the licensed pre-erythrocytic-stage circumsporozoite protein (CSP) vaccine RTS,S is
more effective against an infection with parasites whose genetic backbones are similar
to that of the 3D7 vaccine strain than against genetically diverse parasites (163). This
finding suggests that TBVs based on a single genetic backbone will likely be more
effective against vaccine-like parasites. However, diversity in sexual-stage parasites is
limited relative to that of asexual- and pre-erythocytic-stage antigens (164, 165), so
TBVs based on sexual-stage parasites likely will be effective against more strains.

More efforts are needed to identify and characterize giRBCs as well as to continue
to explore the gamete surface and mosquito midgut in order to aid in the development
of effective TB interventions. It is also important to extend the analysis of candidates
identified in Plasmodium falciparum to P. vivax, the most prevalent form of the malaria
parasite circulating in Asia (166–168).

Conclusion. Antigens on the surfaces of gametocytes and antigens exported by
gametocytes to the surfaces of giRBCs have the potential to reduce and technically
prevent malaria transmission. Apart from the well-described antigens Pfs25, Pfs230, and
Pfs48/45, and the more recent demonstrations that HAP2, AnAPN1, and a region of
Pfs47 may elicit TB antibodies, the presence of other gametocyte antigens that elicit
TBA has yet to be discovered and/or validated. Identification of additional essential TB
antigens could be important for the design and construction of effective TB vaccines.
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