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Abstract Acute myocardial infarction (AMI) and the heart failure (HF) that often complicates this condition, are among the
leading causes of death and disability worldwide. To reduce myocardial infarct (MI) size and prevent heart failure,
novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion in-
jury (IRI). In this regard, targeting cardiac innervation may provide a novel therapeutic strategy for cardioprotection.
A number of cardiac neural pathways mediate the beneficial effects of cardioprotective strategies such as ischaemic
preconditioning and remote ischaemic conditioning, and nerve stimulation may therefore provide a novel therapeu-
tic strategy for cardioprotection. In this article, we provide an overview of cardiac innervation and its impact on
acute myocardial IRI, the role of extrinsic and intrinsic cardiac neural pathways in cardioprotection, and highlight pe-
ripheral and central nerve stimulation as a cardioprotective strategy with therapeutic potential for reducing MI size
and preventing HF following AMI. This article is part of a Cardiovascular Research Spotlight Issue entitled
‘Cardioprotection Beyond the Cardiomyocyte’, and emerged as part of the discussions of the European Union
(EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
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This article is part of the Spotlight Issue on Cardioprotection Beyond the Cardiomyocyte.

1. Introduction

Acute myocardial infarction (AMI) and the heart failure that often compli-
cates this condition, are among the leading causes of death and disability
worldwide. To reduce myocardial infarct (MI) size and prevent heart fail-
ure, novel therapies are required to protect the heart against acute ischae-
mia/reperfusion injury (IRI). In this regard, the dense cardiac network of
parasympathetic and sympathetic nerves and their interactions with the in-
trinsic cardiac nerve system (ICNS), may provide novel targets for cardio-
protection. This cardiac neural network influences myocardial rhythm and
contractile function, and the susceptibility to acute IRI. It also contributes
to cardioprotective strategies such as ischaemic preconditioning (IPC) and

remote ischaemic conditioning (RIC). In this article, we provide an over-
view of cardiac innervation with a focus on acute myocardial IRI, the role of
extrinsic and intrinsic cardiac innervation in cardioprotection, and highlight
peripheral and central nerve stimulation as a cardioprotective strategy with
therapeutic potential for improving clinical outcomes in AMI patients.

2. An overview of the cardiac neural
network

The heart is innervated by a complex interacting hierarchal network of
neural pathways within the central nervous system (CNS), intrathoracic
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extracardiac ganglia, and intrinsic cardiac ganglia of the ICNS (see Figure 1).1

The heart is supplied and controlled by sympathetic and parasympa-
thetic nerves, which receive sensory inputs from heart, blood vessels,
and other organs. The parasympathetic nerves interface with ganglionic
neurons of the ICNS, whereas the sympathetic nerves traverse ganglia
without synapsing on ganglionic neurons, and together they provide
beat-to-beat regulation of heart rhythm and contractile function.
Sympathetic stimulation increases heart rate and cardiac contractile
function through activation of beta-adrenoceptors, and vagal activation
reduces heart rate and in some species, cardiac contractile function,
through activation of muscarinic receptors (reviewed in references 2
and 3).

Pre-ganglionic fibres of the parasympathetic nervous system (SNS)
arise from the medulla oblongata, and via the vagal nerves, secrete ace-
tylcholine (Ach) which binds to the nicotinic Ach receptors on the
plasma membrane of post-ganglionic fibres. These in turn secrete Ach,
which binds to the type 2 muscarinic Ach receptors present on the
plasma membrane of cardiac cells in the sinoatrial (SA) node, atrioven-
tricular (AV) node, left ventricle, and to some extent also other parts of
the heart, resulting in a reduction in contraction rate of cardiac muscle
by shortening its action potential duration (APD) and conduction veloc-
ity, by hyperpolarizing SA nodal cells that reduce heart rate.

Within the myocardium there exists an ICNS, comprising cardiac gan-
glia and interconnecting neurons (known as ganglionic plexuses), which
process sensory information and modulate efferent post-ganglionic para-
sympathetic and sympathetic activity within the heart, in the absence of
any central modulation (reviewed in reference 3). The extrinsic para-
sympathetic and sympathetic nerves access the ICNS arterially, around

the roots of the pulmonary artery and aortic root, and interface with the
venous portion of the heart around the roots of the pulmonary veins
and superior vena cava. The number of cardiac ganglia varies between
species from 19 in mice to over 800 in humans, and they are mainly lo-
cated on the dorsal atrial surface, around the base of the aorta and pul-
monary artery, dorsal and ventral to the pulmonary veins, and on the
anterior ventricular surface. From these cardiac ganglia, intrinsic cardiac
nerves extend epicardially from ganglionic plexuses to innervate the
atria, interatrial septum and the ventricles. A number of neurochemicals
shave been found within the ICNS, the presence of which highlight the
existence of both parasympathetic and sympathetic nervous compo-
nents within the atria and ventricles. The majority of the cardiac ganglia
are cholinergic (containing choline acetyltransferase, responsible for the
synthesis of acetylcholine) which innervate supraventricular myocardium
in and around the sinoatrial and atrioventricular nodes as well as the left
ventricle, and these co-exist with both neuronal nitric oxide synthase
(nNOS) [responsible for producing nitric oxide (NO)], and vasoactive
intestinal peptide. The cardiac ganglia also include adrenergic nerve fibres
(containing tyrosine hydroxylase, for the production of noradrenaline)
within the left and right coronary subplexuses that innervate the ven-
tricles, with which neuropeptide Y (NPY) is co-released. Within the
ICNS there are also neuronal subpopulations that are non-adrenergic
and non-cholinergic.4 Activation of the ICNS can result in local and/or
remote cardiac changes with effects on cardiac function and rhythm that
are dependent on location. The ganglionic plexuses can modulate post-
ganglionic parasympathetic nerve activity and selectively modulate vagal
control of heart rate, atrio-ventricular conduction and left ventricular
inotropy.5–7 The ganglionic plexuses may also help mediate the

Figure 1 Hierarchy of cardiac innervation to the heart. This figure shows the complex and hierarchal interactions between the different components
of the neural pathways of the CNS, intrathoracic extracardiac ganglia, and intrinsic cardiac ganglia of the intrinsic cardiac nervous system. This figure has
been modified from Armour with permission.1

1168 D.J. Hausenloy et al.
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differential effects of sympathetic nerves stimulation of the heart, with
nerves arising from the left sympathetic chain influencing LV contractile
function and electrical conduction via the AVN to a greater degree than
the right, whilst the nerves arising from the right sympathetic chain have
a more significant modulator effect on sinus rate via the sinoatrial node.8

The ICNS can respond to a variety of stimuli including acute IRI and influ-
ence cardiac function on a beat-to-beat basis and have been implicated
in both acute IRI and cardioprotection.9

3. Cardiac innervation and acute
myocardial IRA

Sensory nerve endings may detect consequences of acute ischaemia,
such as hypoxia, lactate, Kþ and low pH, which stimulate cardiac sensory
nerves to release their neuropeptide transmitters.3,10 Local afferent
function of these sensory nerves may have a strong influence on cardiac
function through cardio-cardiac reflexes and initiate adaptive responses
due to their NO and vasoactive neuropeptides, such as calcitonin
gene-related peptide (CGRP), substance P, somatostatin.10–12 Indeed, in
selective sensory desensitization by capsaicin, a ligand for TRPV channels,
cardiac sensory nerves were demonstrated to strongly influence gene
expression patterns in rat hearts,13 regulation of the cardiac NO-cGMP
system,11 SERCA function,14 with potential effects on cardiac function.
Moreover, cardiac sensory nerves play a role in acute myocardial injury
and adaptation to ischaemic stress,12,15 and in the mechanism of
doxorubicin-induced heart failure.16 Intact cardiac sensory nerves have
been shown to protect against acute IRI-induced cell death via the local
release of NO and cytoprotective neuropeptides.12 Sympathetic effer-
ent nerve terminals release norepinephrine (NE) and exacerbate IRI-
induced cardiac cell death directly and indirectly by deterioration of oxy-
gen supply and by increasing oxygen demand.2

Cardiac sympathetic afferent denervation attenuates cardiac remodel-
ling and improves cardiovascular function in rats with heart failure.17

Modulation of neural networks outside the heart can also impact on
post-AMI remodelling with renal nerve denervation preventing adverse
post-AMI LV remodelling and preserving vascular function in both spon-
taneously hypertensive rats and normotensive rats, effects which were
mediated by reduced neprilysin activity and preservation of circulating
natriuretic peptide levels.18 Interestingly, blockade of beta-
adrenoceptors directly in the brain via chronic intracerebroventricular
administration of metoprolol attenuated post-AMI LV remodelling in a
rat model of myocardial infarction-induced heart failure, suggesting that
the action of certain beta-blockers in the brain could contribute to the
beneficial effect of beta-blockers in the failing heart.19

Cardiac sympathetic neurons in the stellate ganglia co-express NPY
and the neurotransmitter NE. Following acute myocardial IRI, axonal
damage and the inflammatory response to injury, result in suppression of
NPY and NE expression, and enhanced expression of neuropeptides
such as vasoactive intestinal peptide, substance P, and galanin. Habecker
et al.20 observed extensive axon damage after AMI, and this was associ-
ated with a significant increase in galanin (a peptide which promotes re-
generation of sensory neurons21) in cardiac sympathetic neurons in the
left ventricle, suggesting the existence of an endogenous protective strat-
egy based on neuropeptides in cardiac sympathetic neurons. The suscep-
tibility to acute myocardial IRI differs between cardiomyocytes and
neurons, and found that cardiac sympathetic neurons are more suscepti-
ble to acute myocardial IRI than cardiomyocytes.22

Most cardiac neurons of the ICNS are perivascular, making them sus-
ceptible to acute myocardial IRI, thereby setting an environment for neu-
ronal remodelling following AMI. In response to acute myocardial IRI,
pathological and degenerative changes to the cardiac ganglia occur with
the appearance of cytoplasmic inclusions, a feature in common with neu-
ronal degeneration disorders. Acute myocardial IRI induces reorganiza-
tion and remodelling within ganglionic plexuses of the ICNS in the first
7 days post-AMI, resulting in increased adrenergic sensitivity and en-
hanced nNOS expression within parasympathetic post-ganglionic neu-
rons within the ICNS.23 Pathological features of damaged cardiac nerves
include enlargement, and degenerative changes to dendrites and axons,
and the appearance of cytoplasmic inclusions.24,25 Neuronal remodelling
also occurs within regions of non-infarcted myocardium, presumably en-
abling a compensatory response in remote myocardium and impacting
on post-AMI cardiac remodelling. In this regard, it has been proposed
that enhanced nNOS expression plays a protective role, attenuating the
initial increase in centrally derived sympathetic activity and facilitating
parasympathetic neuronal inputs.23 However, the actual interplay be-
tween the ICNS and extrinsic vagal or sympathetic nerves in the setting
of AMI needs to be further elucidated.

3.1 Protection of cardiac neurons against
acute myocardial IRI
The majority of studies investigating cardioprotective strategies for pro-
tecting the heart against the detrimental effects of acute IRI have focused
on preventing cell death of cardiomyocytes and only few studies have ex-
plored the beneficial effects on cardiac neurons. During acute myocardial
ischaemia, damage to cardiac sympathetic neurons results in the release of
NE into the myocardial interstitial space. IPC can reduce myocardial NE
levels following acute myocardial IRI in rat and rabbit hearts.26–28 Miura
et al.28 demonstrated that the detrimental effects of acute myocardial IRI
on cardiac sympathetic nerves were reduced by IPC, and the mechanism
underlying this neuroprotective effect was attributed to KATP channel
opening. The neurotrophin, nerve growth factor (NGF) is known to sup-
port survival and differentiation of sympathetic neurons, and is elevated
following AMI in a spinal nerve-dependent manner (thoracic epidural an-
aesthesia prevented the increase in NGF following AMI).29 Strande et al.30

have shown that NGF administered prior to ischaemia reduced MI size in
an in vivo rat AMI model, and this effect was mediated through PI3K and
NOS. A recent clinical study has shown that limb RIC can reduce the mus-
cle sympathetic nerve activity in the forearm induced by acute ischaemia,
and this was associated with decreased production of an erythrocyte
marker of oxidative stress and the reduction of NO availability, and ame-
liorated ischaemic reactive hyperaemia.31 Further studies are required to
investigate whether cardioprotective strategies can protect cardiac para-
sympathetic neurons and the ICNS against the detrimental effects of acute
myocardial IRI.

3.2 Cardiac innervation and ventricular
arrhythmias following acute myocardial
IRA
Ischaemia can directly provoke cardiomyocyte electrical instability, APD
heterogeneity, and arrhythmias as a result of ATP depletion, lactate pro-
duction, reactive oxygen species, Kþ accumulation, and other substances
e.g. endothelin, which enhances the response of perivascular afferent
nerves to autonomic reflexes. Some myocardial ischaemic events can be
triggered and enhanced by abnormal central autonomic activity such as
emotional stress leading to an imbalance in cardiac sympathovagal tone,

Cardiac innervation and cardioprotection 1169
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reflexly increasing cardiac sympathetic activity leading to further coro-
nary vasoconstriction.32,33 This is often accompanied by vagal withdrawal
perpetuating the clinical scenario. Since the ICNS has an integrative role
and can exert considerable influence on cardiodynamics, it is possible
that significant interaction occurs between the heart’s ‘little brain’3 locally
and with peripheral nerves that mediate important mechanisms underly-
ing arrhythmogenesis during acute myocardial IRI. Vagal control of heart
rate and release of Ach in non-ischaemic ventricular regions are both
blunted following a developed myocardial infarct,34 showing that re-
gional ischaemia can affect non-ischaemic sites both proximal and distal
to the insult site.

Preclinical studies support the notion that SNS activity is pro-arrhyth-
mic,35,36 whilst vagal nerve stimulation is anti-arrhythmic.37 High levels of
vagal activity exert powerful anti-arrhythmic effects, which can counter
the effects of acute ischaemia and sympathetic activation. Mechanisms
are complex and include indirect effects of accentuated antagonism
against sympathetic activity and direct protective effects on electrophysi-
ological parameters, Ca2þ-handling and other important factors such as
inflammation and gap junctions.38 Increased dispersion of repolarization
is an important mechanism in ventricular arrhythmogenesis, and sympa-
thetic stimulation increases dispersion of repolarization in vivo,39 espe-
cially in the ischaemic border which increases propensity to
arrhythmias.40

In an innervated isolated heart preparation,41 the kinetics of the APD
restitution relationship appear to be a key mechanism by which sympa-
thetic stimulation precipitates ventricular fibrillation (VF), resulting in a
steepening of APD-restitution slope—this facilitates alternans and hence
wave-breaks to generate VF.42 Vagal nerve stimulation, on the other
hand, protects against VF initiation by flattening the slope, an effect which
is mediated via NO from neuronal NO synthase,43 a property which
appears to be independent of muscarinic activation.44 This
NO-mediated protection has been shown to be important with intra-
pericardial perfusion of L-arginine increasing NO synthase activity, and
protecting against VF in open chest dogs during acute coronary artery
occlusion.45 Recent proof-of-concept evidence suggests that vagal stimu-
lation via low-level tragus stimulation can reduce arrhythmias related to
acute myocardial IRI in patients with STEMI, a finding which needs to be
confirmed in larger studies.46

Cardiac remodelling as a result of AMI exaggerates influences on dis-
persion and APD kinetics which results in increased arrhythmogeneity
coupled with cardiac fibrosis, regional denervation,47 and adaptive nerve
sprouting and heterogeneous hyperinnervation.48 Neural remodelling
also occurs in the stellate ganglion,49 and ICNS which further promotes
instability in the already arrhythmogenic environment.25 Preclinical stud-
ies have shown a beneficial effect of reducing sympathetic tone through
renal artery denervation on ventricular arrhythmias associated to post-
AMI LV remodelling.50,51

Clinically, left cardiac sympathetic denervation is effective in reducing
arrhythmia burden in otherwise refractory ventricular arrhythmias,52 but
with accompanying side effects. Recent evidence supports a cardiotopic
arrangement whereby functionally distinct neurons arise from discrete
regions of the sympathetic chain,53 which should be targeted for more
focused therapy. On the other hand, vagal protection against VF initia-
tion appears to be mediated through a specific population of anti-
fibrillatory nitrergic neurons,54 although other indirect and non-
arrhythmic mechanisms may also be at work including anti-inflammatory
actions and effects on gap junctions.38 Clinical studies using implanted va-
gal nerve stimulators in patients with heart failure have not produced
positive outcomes to date.55 Much work is needed to understand the

mechanisms underlying the autonomic modulation of lethal arrhythmias
especially following AMI, in order to develop effective therapeutic
options.

3.3 Coronary vascular effects of cardiac
sympathetic and vagal innervation in
myocardial IRI
Both, cardiac sympathetic and vagal nerve activation impact on coronary
blood flow through changes in heart rate with secondary effects on MI
size.56 Their direct effect on the coronary circulation is more immediate
and short-lasting such that it is of greater importance in acute episodes
of reversible ischaemic injury than in AMI. Sympathetic activation during
exercise, excitement, or pain not only increases heart rate and cardiac
contractile function through activation of b-adrenoceptors but also
coronary vasoconstriction of epicardial and resistive vessels through
activation of a-adrenoceptors.57 In the presence of coronary stenosis,
a-adrenergic coronary vasoconstriction is powerful enough to induce
lactate production and ischaemic contractile dysfunction.58,59 Acute
myocardial ischaemia then elicits a further positive-feedback activation
of cardiac sympathetic nerves which then results in progressive a-
adrenergic coronary vasoconstriction but can be eliminated by spinal an-
aesthesia.33 Coronary collateral vessels in dogs have no functional
a-adrenoceptors. Hence, the blood flow into collateral-dependent myo-
cardium is not reduced by sympathetic activation.60 Accordingly, chronic
sympathetic denervation does not increase collateral blood flow or re-
duce infarct size after 3 h coronary occlusion in conscious dogs,61 and
the same is true in anaesthetized rabbits.62,63 However, chronic sympa-
thetic denervation in mice attenuates post-infarct inflammation and ad-
verse remodelling.64 In anaesthetized pigs, carvedilol but not
propranolol improved coronary blood flow after 3 h coronary occlu-
sion/reperfusion and reduced coronary no-reflow, suggesting an action
through a- rather than ß-adrenoceptor blockade.65 a-Adrenergic coro-
nary vasoconstriction contributes to acute myocardial ischaemia also in
humans.66 In particular, the cardiac sympatho-excitatory reflex elicits a-
adrenergic coronary vasoconstriction during stenting in patients with
stable angina and with AMI, and a-blockade may therefore improve
blood flow during reperfusion following AMI.67

Activation of cardiac vagal nerves reduces MI size, not only through
HR reduction, but through a number of mechanisms, including improved
mitochondrial function, attenuated formation of reactive oxygen species,
and inflammation.68 There is no evidence that cardiac vagal nerve activa-
tion improves collateral blood flow during coronary occlusion.
However, cardiac vagal nerve activation just prior to reperfusion not
only reduces MI size69,70 but also decreases areas of no-reflow after re-
perfusion.70 Vagal activation by electrical stimulation of the auricular tra-
gus also reduced MI size in patients with AMI.46

3.4 Cardiac innervation and inflammation
The sympathetic control of the immune cell system has been investi-
gated in conditions such as rheumatoid arthritis, asthma, sepsis, and coli-
tis. Peripheral effects of SNS activation have been linked to the release of
monocytes from the bone marrow,71 macrophage programming,72 cyto-
kine expression of various immune cells,73 and B cell antibody produc-
tion.74 More recently, the SNS has been suggested to play a role in the
immune response to cardiovascular disease.75

Following AMI, the inflammatory response to acute myocardial IRI
plays a critical role in determining MI size and subsequent LV remodelling
(reviewed in references 76 and 77). Recent studies have investigated the

1170 D.J. Hausenloy et al.
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role of the cardiac SNS in the regulation of the inflammatory response
to AMI. In a murine model of AMI, Ziegler et al.64 surgically removed the
right and the left superior cervical ganglia, which resulted in near com-
plete loss of myocardial sympathetic innervation in the LV anterior wall.
Although this method of cardiac sympathetic denervation did not affect
acute myocardial injury and MI size, it did attenuate myocardial inflamma-
tion (with less infiltration of macrophages, neutrophils and T cells), and
prevent subsequent adverse LV remodelling in terms of less cardiomyo-
cyte hypertrophy, and preserved cardiac function. These findings confirm
the importance of chronic SNS activation in post-AMI heart failure as a
contributor to adverse LV remodelling. However, the mechanisms
through which the cardiac SNS modulates the inflammatory response
post-AMI is not known and requires further study. Interestingly, the in-
teraction between the SNS and the immune cell system appears to be
mutual, with a study showing less sympathetic hyperinnervation of re-
mote myocardium post-AMI following chemical depleting macrophages
with systemic clodronate.78

4. Cardiac innervation and
cardioprotection

A number of experimental studies have investigated the role of cardiac
innervation, and more recently the ICNS in endogenous cardioprotec-
tive strategies.79 Pacing-induced preconditioning requires intact cardiac
capsaicin-sensitive sensory innervation, and the release of NO and
CGRP from capsaicin-sensitive nerves may be involved in the mechanism
of pacing-induced preconditioning.

Cardiomyocytes per se are capable of synthesizing and releasing ACh, an
intrinsic cholinergic system which is known as the non-neuronal cholinergic
system within the heart.80 Ach is also produced in the myocardium during
acute myocardial ischaemia, and exogenous acetylcholine can be a trigger
of IPC cardioprotection.81 Bilateral vagotomy did not inhibit ischaemia-
induced Ach release in the myocardium.82,83 The role of Ach in the ICNS
as a mediator of IPC has recently demonstrated the involvement of intrinsic
cardiac ganglia. In an isolated perfused rat heart subjected to acute IRI, the
ganglion blocker, hexamethonium, and the muscarinic receptor antagonist,
atropine, abrogated IPC cardioprotection. Interestingly, IPC increased ace-
tylcholine in the perfusate, and the cardioprotection induced by this perfus-
ate in a naı̈ve rat heart was also blocked by hexamethonium.84 However,
the mechanism through which IPC stimulates the intrinsic cardiac ganglion
is not clear, and whether this pathway is operative in vivo is not known. In
contrast to these findings, an earlier study by Kudej et al.85 had found that in-
tact cardiac nerves were not required for classical IPC in a porcine acute
myocardial IRI model but were required for the second window of protec-
tion through the activation of a1-adrenergic receptor and increased ex-
pression of iNOS and COX-2. Atropine and bilateral vagotomy did not
abolish the infarct-limiting effects of classical IPC in rats.86,87

In the field of cardioprotection, most studies have focused on the role
of peripheral and cardiac innervation in RIC, the phenomenon by which
brief cycles of non-lethal ischaemia and reperfusion to an organ or tissue
away from the heart is able to protect the heart against AMI.88–94

4.1 Cardiac innervation and
cardioprotection by RIC
The actual mechanisms underlying cardioprotection induced by RIC remain
unclear, although a neuro-hormonal pathway has been implicated
(Figure 2).95 With respect to the neural component of RIC

cardioprotection, an intact neural pathway is required for application of
RIC to the remote organ or tissue. The neural element to the stimulus was
demonstrated in some of the earliest experimental studies of RIC, which
showed that the cardioprotection induced for example by transient mesen-
teric ischaemia was completely abrogated when animals were pre-treated
with the ganglion blocker hexamethonium.96 Resection of the neural path-
way to the lower limb abolished RIC-induced cardioprotection by transient
limb ischaemia,87,97,98 showing the dependency of the RIC stimulus upon
neural connections between the remote organ and the heart.

However, these observations predated the finding that a key component
of RIC is the release of cardioprotective substances into the blood, the
plasma, and plasma dialysate from animals and humans subjected to tran-
sient limb ischaemia being highly cardioprotective when used to perfuse
naı̈ve hearts subjected to prolonged ischaemia, or when used to pre-treat
isolated cardiomyocytes subjected to simulated IRI.99,100 While the identifi-
cation of the substance (or substances) released by RIC remain to be deter-
mined completely, there is little doubt that their release is dependent upon
intact neural pathways to the triggering organ. For example, the aforemen-
tioned abrogation of RIC by femoral nerve transection prior to limb RIC
was associated with failure to release humoral factor(s), the plasma dialy-
sate from such animals having no cardioprotective activity when tested in
Langendorff preparation.101 The testing of ‘cardioprotectivity’ of plasma in
this way has proven to be a useful biomarker for dissecting the neuro-hu-
moral pathways potentially involved in other conditioning stimuli.102 It is
perhaps unsurprising, given the earlier discussion, that direct stimulation of
the femoral nerve leads to release of humoral factor(s) and recapitulates
the cardioprotectivity associated with transient limb ischaemia.103

However other, less direct, neural stimuli appear also to invoke this neuro-
humoral response. For example, it has long been known that local IPC of
the heart and other organs involves the stimulation of capsaicin-sensitive
sensory nerves (C-sensory fibres),104 and more recently both surgical inci-
sion (presumably via stimulation of sensory fibres) and direct stimulation of
sensory nerves in the skin (using topical capsaicin) was shown to induce po-
tent ‘remote’ cardioprotection.105 In subsequent studies, topical capsai-
cin87,103 and stimulation of sensory nerves via transcutaneous nerve
stimulation106 were both shown to release cardioprotective humoral fac-
tor(s) into the blood. Interestingly, this humoral response was abolished by
pre-treatment with topical DMSO (a sensory nerve blocker) and
intra-arterial injection of the NO donor SNAP, presumably via the neuro-
inhibitory effects of NO on unmyelinated sensory nerves. Similarly,
although conceivably working via other signalling pathways, the ‘precondi-
tioning’ effect of targeted electro-acupuncture (EA) was associated with re-
lease of humoral factor(s) and can provide equally potent cardioprotection
to that of RIC induced by transient limb ischaemia in experimental ani-
mals.107 Interestingly, EA has been shown to be cardioprotective in the clin-
ical setting, where it reduces peri-operative myocardial injury in patients
undergoing cardiac surgery.108,109

Activation of the somatosensory system, the spinal cord, and the auto-
nomic nervous system have been shown to mediate the release of yet
unidentified humoral factor(s) that elicit the response in the target organ in
the setting of RIC. The sensory afferent nerve appears to be the pivotal com-
munication from the conditioned limb or organ as release of the humoral
mediator following RIC depends on an intact sensory pathway.101,110,111 The
stimulus may not only originate from local IRI in the conditioned organ or
limb, but may also be initiated by local surgical trauma, which appears to re-
cruit similar signalling pathways within the heart as RIC.105,111,112

Spinal cord involvement in RIC has been supported by loss of RIC cardi-
oprotection with spinal cord transection at T7-T10, or intrathecal spinal
opioid receptor blockade with naloxone, and MI size reduction can be
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..recapitulated via spinal cord stimulation at C8-T2.113,114 It appears that car-
diac sympathetic nerves are involved in the observed MI size reduction
upon spinal cord stimulation, and this cardioprotective effect is attenuated
by the a1-blocker, prazosin, and the beta-blocker, timolol.114 It is well-
established that systemic administration of morphine is cardioprotective,
but it has recently shown that lower doses of morphine can be adminis-
tered intrathecally into the cerebrospinal fluid to induce cardioprotec-
tion.115–117 This protective effect appears to be mediated by spinal m-opioid
receptors and signals through the spinal NOS-NO-cGMP pathway.116,117

The efferent cardioprotective efficacy of the humoral mediator on the
myocardium is dependent on functioning intrinsic neural loops and
recruitment of intrinsic cardiac ganglia, which regulate cardiac neural
activity in the absence of any extracardiac neural input. Transmission via
intrinsic cardiac ganglia is dependent on acetylcholine release to activate
nicotinic acetylcholine receptors (nAchR) on the post-ganglionic nerve
and initiate a nerve impulse. The ganglionic blocker, hexamethonium,

which prevents transmission of information at the ganglia by antagonizing
nAchR, abrogates protection by local bradykinin administration or RIC
in most, 96,105,118 but not all studies.119 Another ganglionic blocker, tri-
metaphan, also abrogates the protection by RIC from ischaemia–reper-
fusion induced endothelial dysfunction in humans.120

Further studies are clearly required, but the potential role of direct or
indirect neural stimulation as a cardioprotective strategy is compelling,
and further understanding of the neural component of the neuro-
humoral pathways of RIC may be important in understanding the vaga-
ries of response when RIC is used clinically.

4.2 Vagal nerve stimulation and
cardioprotection
The role of vagal stimulation, either as part of a remote stimulus or via di-
rect stimulation is an emerging area of interest in the field of

Figure 2 Cardiac innervation and cardioprotection. The heart is innervated by the cardiac sympathetic and parasympathetic afferent and efferent neu-
ral pathways which interact with intrinsic cardiac nerves within the heart to modulate myocardial function, susceptibility to acute IRI, and cardiac arrhyth-
mias. Cardioprotection induced by endogenous strategies such as IPC and RIC can modulate the intrinsic cardiac nerves and peripheral sensory afferent
nerves in the limb and the vagus nerve, respectively. IPC cardioprotection in the isolated perfused has shown to be dependent on the function of intrinsic
cardiac nerves within the heart. RIC which comprises brief non-lethal cycles of ischaemia and reperfusion to the limb, via cuff inflation/deflation, causes lo-
cal autacoid release. This in turn activates sensory afferent neurons which relay, via the spinal cord, to the dorsal nucleus of vagal nerve (DMVN) in the
CNS. Activation of nuclei within the DMVN results in increased vagal nerve firing to the heart which, via release of Ach and subsequent activation of
muscarinic Ach receptors induces the cardioprotective phenotype. In addition, following activation of afferent sensory neurons in the conditioned limb,
there is release of a dialysable cardioprotective factor into the systemic circulation. The source of this factor remains unknown, although possibilities
include: (i) from the conditioned limb itself, (ii) from the central nervous system, (iii) from pre-/post-ganglionic parasympathetic nerve endings within the
heart, and (iv) from a non-conditioned remote organ/tissue such as the gut or spleen. Neural stimulation of sensory afferent nerves [by RIC, transcutane-
ous nerve stimulation (TENS), trauma, EA, or topical capsaicin] or of the vagus nerve can induce cardioprotection. This figure has been modified from
Sivaraman et al. 91
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cardioprotection. Electrical stimulation of the vagal nerve is cardioprotec-
tive. Vagal stimulation reduced MI size in an in vivo rat AMI model when per-
formed either prior to ischaemia or a the onset of reperfusion, with
preconditioning vagal stimulation activating the Akt/GSK-3b muscarinic
pathway, whereas post-conditioning vagal stimulation activated a7-nico-
tinic acetylcholine receptors and JAK2, independently of the cholinergic
anti-inflammatory pathway.121 In a comprehensive study, Donato et al.122

demonstrated the involvement of these neural pathways in RIC induced
cardioprotection via limb ischaemia. The need for afferent innervation to
the limb was confirmed, since cardioprotection was abrogated in animals
undergoing femoral and sciatic nerve transection. More importantly, prior
transection of the spinal cord, or the left and right vagus nerves at the mid-
cervical level, or pre-treatment with atropine, also abolished the cardiopro-
tective effect of remote preconditioning by transient limb ischaemia.
Mastitskaya et al.123,124 further dissected the role of vagal innervation in
experiments using highly selective sectioning of different branches of the
vagus nerve. The authors concluded that the posterior gastric branch of
the vagus alone was pivotal in signal transduction of the preconditioning
stimulus from limb to heart. Although they did not prepare plasma dialy-
sate for confirmation of a coincident humoral signal, Mastitskaya concluded
that their results suggest ‘that the circulating factor (or factors) of RPc are
produced and released into the systemic circulation by the visceral organ(s)
innervated by the posterior gastric branch of the vagus nerve’. In a different
study that vagal stimulation induced the release of glucagon-like peptide 1
(GLP1),125 and GLP-1 signalling has been shown to limit MI size in isolated
hearts and intact pigs,126 as well as in proof-of-concept clinical trials.127

Although the signal transduction involved is not clear, there is increasing
evidence that GLP-1 signalling induces a metabolic shift towards glycolysis
in cardiomyocytes which is independent of insulin.128,129

Interestingly, it has recently been shown in pigs and rats that the vago-
splenic axis is required for RIC cardioprotection.130 Splenic denervation
or splenectomy abolished protection and muscarinergic stimulation of
an isolated perfused spleen released a substance which reduced infarct
size in an isolated perfused heart, indicating that the integrity of the vago-
splenic axis is essential for RIC cardioprotection. However, the nature of
the spleen-derived cardioprotective substance was not identified. Also,
the role of the vago-splenic axis in the more clinically relevant remote
ischaemic per-conditioning or post-conditioning, was not investigated,
but this limitation applies also to all other of the above studies. Although
the underlying mechanisms are not known, it is proposed that the spleen
acts as a source of neuroprotective,131 and cardioprotective substan-
ces.130 Most recently, acute cardioprotection via vagal nerve stimulation
has been tested in the clinical setting of AMI with the demonstration that
transcutaneous vagal activation by low-level electrical stimulation at the
right tragus reducing MI size.46,68

Chronic neuropathic pain impacts on the susceptibility to acute myo-
cardial IRI,132 and MI size was reduced in a murine model of chronic neu-
ropathic pain. This cardioprotective effect could be recapitulated
via activation of anterior nucleus of paraventricular thalamus (PVA)-
dependent parasympathetic pathway, as evidenced by the fact that phar-
macological inhibition of Erk activation in the PVA abolished neuropathic
pain-induced cardioprotection, whereas activation of PVA neurons phar-
macologically, or by optogenetic stimulation, induced cardioprotection.

4.3 Anaesthesia and cardioprotection by
neural stimulation
Any anaesthesia impacts on the autonomic nervous system and its bal-
ance. Of particular concern with respect to cardioprotection is the use

of pentobarbital anaesthesia in experimental studies since pentobarbital
augments sympathetic activity and its impact on ischaemic/reperfused
myocardium. Accordingly, sympathetic denervation augments ischaemic
myocardial blood flow and reduces MI size in pentobarbital-anaesthe-
tized dogs,133,134 and this effect is not seen in conscious, chronically
instrumented dogs.61 Of even greater concern is the use of propofol in
experimental and clinical studies on cardioprotection.135 Propofol inter-
feres with c-aminobutyrate-mediated central nervous control of cardiac
vagal nerves.136,137 Propofol, in contrast to volatile anaesthesia, inter-
feres with the cardioprotection by RIC in rats138 and in patients under-
going cardiovascular surgery,139–141 and this interference may have
accounted for the apparent lack of cardioprotection in two large ran-
domized clinical trials.142–144

4.4 Diabetic neuropathy as modulator of
cardioprotection by RIC
The efficacy of IPC is decreased in animal and human models of diabetes
mellitus,145–151 while the responses to RIC in humans with diabetes have
been varying.110,152,153 Depending on the presence of peripheral neu-
ropathy, dialysed plasma from diabetic patients subjected to RIC has
revealed differential responses. Plasma from diabetic patients without
neuropathy was cardioprotective in naı̈ve recipient rabbit hearts, while
plasma from patients with peripheral neuropathy failed to provide cardi-
oprotective plasma.110 The findings confirm the interaction between the
neural and humoral components of RIC and that release of the humoral
mediator following RIC is dependent on an intact sensory innervation in
the conditioned limb.98

As described above, the vagal nerve is an essential neural mediator for
limb RIC cardioprotection and facilitates the release of the blood-borne
mediator.100,122,123 However, studies exploring the impact of autonomic
neuropathy upon the efficacy of RIC in a human context have not been
identified. Despite deprivation of extracardiac innervation, experimental
studies using isolated hearts have demonstrated consistent attenuation
of the efficacy of RIC by diabetes. Acute myocardial IRI appears to be de-
pendent on diabetes duration, but the efficacy of RIC is not.150,154,155

Moreover, the majority of studies have been conducted in young experi-
mental animals with a low likelihood of diabetic complications. Although
extracardiac autonomic neuropathy may be involved, it does not seem
to be a leading mechanism behind the impaired response to RIC in dia-
betic individuals.

Degenerative changes and reduced numbers of nerve fibres and intra-
cardiac ganglia have been demonstrated in patients and animal models of
type 1 and 2 diabetes,156–158 and the density of cholinergic nerves may
be changed in diabetic rats.159 The functional impact of disarrays in intrin-
sic neural cardiac loops and cardiac ganglia, which regulate cardiac neural
activity and intracellular signalling pathways involved in cytoprotection,
and interference with RIC is currently unknown.

5. Clinical implications and future
perspectives

Limb RIC appears to the most promising strategy for limiting MI size in
patients with AMI.160 There is compelling evidence that neural stimula-
tion is a key element in triggering and coordinating RIC cardioprotection,
but the contribution of the neural network is complex and depends on
the type of RIC intervention (pre-, per-, and post-conditioning), the ani-
mal species and other factors, and that may be additive or redundant.
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Elucidating the exact role of the different neuronal pathways involved in
each situation appears as an essential step to bring the maximal benefit
of RIC strategies to patients. It should help optimize RIC protocols for
different clinical contexts, as the type of ischaemic insult to the myocar-
dium, age, sex, comorbidities, and co-medications, as well as to identify
situations of resistance to RIC strategies and opportunities for combina-
tion therapies. It should also help to develop new treatments that could
reproduce the cardioprotection afforded by remote ischaemia with
pharmacological or physical methods or combinations of both. Among
these new treatments, different modalities of direct nerve stimulation
and neuromodulation appear as a promising, safe, and effective strategy.
In this regard, transcutaneous vagal nerve stimulation has been shown to
reduce MI size in AMI patients,46 and EA has been reported to reduce
peri-operative myocardial injury patients undergoing cardiac sur-
gery.108,109 Finally, limb RIC appears to be the most promising strategy
for limiting MI size in patients with AMI,160 and whether it can improve
clinical outcomes is being tested in the CONDI2/ERIC-PPCI trial,161

which reports its result in Summer 2019.
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